共查询到20条相似文献,搜索用时 15 毫秒
1.
Claudia C. Cornilescu Gabriel Cornilescu E. Sethe Burgie John L. Markley Andrew T. Ulijasz Richard D. Vierstra 《The Journal of biological chemistry》2014,289(5):3055-3065
The phytochrome superfamily of photoreceptors exploits reversible light-driven changes in the bilin chromophore to initiate a variety of signaling cascades. The nature of these alterations and how they impact the protein moiety remain poorly resolved and might include several species-specific routes. Here, we provide a detailed picture of photoconversion for the photosensing cGMP phosphodiesterase/adenylyl cyclase/FhlA (GAF) domain from Thermosynechococcus elongatus (Te) PixJ, a member of the cyanobacteriochrome clade. Solution NMR structures of the blue light-absorbing dark state Pb and green light-absorbing photoactivated state Pg, combined with paired crystallographic models, revealed that the bilin and GAF domain dynamically transition via breakage of the C10/Cys-494 thioether bond, opposite rotations of the A and D pyrrole rings, sliding of the bilin in the GAF pocket, and the appearance of an extended region of disorder that includes Cys-494. Changes in GAF domain backbone dynamics were also observed that are likely important for inter-domain signal propagation. Taken together, photoconversion of T. elongatus PixJ from Pb to Pg involves complex structural changes within the GAF domain pocket that transduce light into a mechanical signal, many aspects of which should be relevant to others within the extended phytochrome superfamily. 相似文献
2.
Wen-Xing Ding Min Li Joanna M. Biazik David G. Morgan Fengli Guo Hong-Min Ni Michael Goheen Eeva-Liisa Eskelinen Xiao-Ming Yin 《The Journal of biological chemistry》2012,287(50):42373-42378
Mitochondria undergo dynamic structural alterations to meet changing needs and to maintain homeostasis. We report here a novel mitochondrial structure. Conventional transmission electron microscopic examination of murine embryonic fibroblasts treated with carbonyl cyanide m-chlorophenylhydrazone (CCCP), a mitochondrial uncoupler, found that more than half of the mitochondria presented a ring-shaped or C-shaped morphology. Many of these mitochondria seemed to have engulfed various cytosolic components. Serial sections through individual mitochondria indicated that they formed a ball-like structure with an internal lumen surrounded by the membranes and containing cytosolic materials. Notably, the lumen was connected to the external cytoplasm through a small opening. Electron tomographic reconstruction of the mitochondrial spheroids demonstrated the membrane topology and confirmed the vesicular configuration of this mitochondrial structure. The outside periphery and the lumen were defined by the outer membranes, which were lined with the inner membranes. Matrix and cristae were retained but distributed unevenly with less being kept near the luminal opening. Mitochondrial spheroids seem to form in response to oxidative mitochondrial damage independently of mitophagy. The structural features of the mitochondrial spheroids thus represent a novel mitochondrial dynamics. 相似文献
3.
Lee S Augustin S Tatsuta T Gerdes F Langer T Tsai FT 《The Journal of biological chemistry》2011,286(6):4404-4411
FtsH-related AAA proteases are conserved membrane-anchored, ATP-dependent molecular machines, which mediate the processing and turnover of soluble and membrane-embedded proteins in eubacteria, mitochondria, and chloroplasts. Homo- and hetero-oligomeric proteolytic complexes exist, which are composed of homologous subunits harboring an ATPase domain of the AAA family and an H41 metallopeptidase domain. Mutations in subunits of mitochondrial m-AAA proteases have been associated with different neurodegenerative disorders in human, raising questions on the functional differences between homo- and hetero-oligomeric AAA proteases. Here, we have analyzed the hetero-oligomeric yeast m-AAA protease composed of homologous Yta10 and Yta12 subunits. We combined genetic and structural approaches to define the molecular determinants for oligomer assembly and to assess functional similarities between Yta10 and Yta12. We demonstrate that replacement of only two amino acid residues within the metallopeptidase domain of Yta12 allows its assembly into homo-oligomeric complexes. To provide a molecular explanation, we determined the 12 Å resolution structure of the intact yeast m-AAA protease with its transmembrane domains by electron cryomicroscopy (cryo-EM) and atomic structure fitting. The full-length m-AAA protease has a bipartite structure and is a hexamer in solution. We found that residues in Yta12, which facilitate homo-oligomerization when mutated, are located at the interface between neighboring protomers in the hexamer ring. Notably, the transmembrane and intermembrane space domains are separated from the main body, creating a passage on the matrix side, which is wide enough to accommodate unfolded but not folded polypeptides. These results suggest a mechanism regarding how proteins are recognized and degraded by m-AAA proteases. 相似文献
4.
Qian P Marklew CJ Viney J Davison PA Brindley AA Söderberg C Al-Karadaghi S Bullough PA Grossmann JG Hunter CN 《The Journal of biological chemistry》2012,287(7):4946-4956
The biosynthesis of chlorophyll, an essential cofactor for photosynthesis, requires the ATP-dependent insertion of Mg2+ into protoporphyrin IX catalyzed by the multisubunit enzyme magnesium chelatase. This enzyme complex consists of the I subunit, an ATPase that forms a complex with the D subunit, and an H subunit that binds both the protoporphyrin substrate and the magnesium protoporphyrin product. In this study we used electron microscopy and small-angle x-ray scattering to investigate the structure of the magnesium chelatase H subunit, ChlH, from the thermophilic cyanobacterium Thermosynechococcus elongatus. Single particle reconstruction of negatively stained apo-ChlH and Chl-porphyrin proteins was used to reconstitute three-dimensional structures to a resolution of ∼30 Å. ChlH is a large, 148-kDa protein of 1326 residues, forming a cage-like assembly comprising the majority of the structure, attached to a globular N-terminal domain of ∼16 kDa by a narrow linker region. This N-terminal domain is adjacent to a 5 nm-diameter opening in the structure that allows access to a cavity. Small-angle x-ray scattering analysis of ChlH, performed on soluble, catalytically active ChlH, verifies the presence of two domains and their relative sizes. Our results provide a basis for the multiple regulatory and catalytic functions of ChlH of oxygenic photosynthetic organisms and for a chaperoning function that sequesters the enzyme-bound magnesium protoporphyrin product prior to its delivery to the next enzyme in the chlorophyll biosynthetic pathway, magnesium protoporphyrin methyltransferase. 相似文献
5.
Conformational Changes Leading to T7 DNA Delivery upon Interaction with the Bacterial Receptor 总被引:1,自引:0,他引:1
Verónica A. González-García Mar Pulido-Cid Carmela Garcia-Doval Rebeca Bocanegra Mark J. van Raaij Jaime Martín-Benito Ana Cuervo José L. Carrascosa 《The Journal of biological chemistry》2015,290(16):10038-10044
The majority of bacteriophages protect their genetic material by packaging the nucleic acid in concentric layers to an almost crystalline concentration inside protein shells (capsid). This highly condensed genome also has to be efficiently injected into the host bacterium in a process named ejection. Most phages use a specialized complex (often a tail) to deliver the genome without disrupting cell integrity. Bacteriophage T7 belongs to the Podoviridae family and has a short, non-contractile tail formed by a tubular structure surrounded by fibers. Here we characterize the kinetics and structure of bacteriophage T7 DNA delivery process. We show that T7 recognizes lipopolysaccharides (LPS) from Escherichia coli rough strains through the fibers. Rough LPS acts as the main phage receptor and drives DNA ejection in vitro. The structural characterization of the phage tail after ejection using cryo-electron microscopy (cryo-EM) and single particle reconstruction methods revealed the major conformational changes needed for DNA delivery at low resolution. Interaction with the receptor causes fiber tilting and opening of the internal tail channel by untwisting the nozzle domain, allowing release of DNA and probably of the internal head proteins. 相似文献
6.
Rosenberg MF O'Ryan LP Hughes G Zhao Z Aleksandrov LA Riordan JR Ford RC 《The Journal of biological chemistry》2011,286(49):42647-42654
Cystic fibrosis affects about 1 in 2500 live births and involves loss of transmembrane chloride flux due to a lack of a membrane protein channel termed the cystic fibrosis transmembrane conductance regulator (CFTR). We have studied CFTR structure by electron crystallography. The data were compared with existing structures of other ATP-binding cassette transporters. The protein was crystallized in the outward facing state and resembled the well characterized Sav1866 transporter. We identified regions in the CFTR map, not accounted for by Sav1866, which were potential locations for the regulatory region as well as the channel gate. In this analysis, we were aided by the fact that the unit cell was composed of two molecules not related by crystallographic symmetry. We also identified regions in the fitted Sav1866 model that were missing from the map, hence regions that were either disordered in CFTR or differently organized compared with Sav1866. Apart from the N and C termini, this indicated that in CFTR, the cytoplasmic end of transmembrane helix 5/11 and its associated loop could be partly disordered (or alternatively located). 相似文献
7.
Allan Pang Stefanie Frank Ian Brown Martin J. Warren Richard W. Pickersgill 《The Journal of biological chemistry》2014,289(32):22377-22384
Bacterial microcompartments are large proteinaceous assemblies that are found in the cytoplasm of some bacteria. These structures consist of proteins constituting a shell that houses a number of enzymes involved in specific metabolic processes. The 1,2-propanediol-utilizing microcompartment is assembled from seven different types of shell proteins, one of which is PduA. It is one of the more abundant components of the shell and intriguingly can form nanotubule-like structures when expressed on its own in the cytoplasm of Escherichia coli. We propose a model that accounts for the size and appearance of these PduA structures and underpin our model using a combinatorial approach. Making strategic mutations at Lys-26, Val-51, and Arg-79, we targeted residues predicted to be important for PduA assembly. We present the effect of the amino acid residue substitution on the phenotype of the PduA higher order assemblies (transmission electron microscopy) and the crystal structure of the K26D mutant with one glycerol molecule bound to the central pore. Our results support the view that the hexamer-hexamer interactions seen in PduA crystals persist in the cytoplasmic structures and reveal the profound influence of the two key amino acids, Lys-26 and Arg-79, on tiling, not only in the crystal lattice but also in the bacterial cytoplasm. Understanding and controlling PduA assemblies is valuable in order to inform manipulation for synthetic biology and biotechnological applications. 相似文献
8.
Kazuhiro Abe Kazutoshi Tani Yoshinori Fujiyoshi 《The Journal of biological chemistry》2014,289(44):30590-30601
Gastric H+,K+-ATPase, an ATP-driven proton pump responsible for gastric acidification, is a molecular target for anti-ulcer drugs. Here we show its cryo-electron microscopy (EM) structure in an E2P analog state, bound to magnesium fluoride (MgF), and its K+-competitive antagonist , determined at 7 Å resolution by electron crystallography of two-dimensional crystals. Systematic comparison with other E2P-related cryo-EM structures revealed that the molecular conformation in the (SCH)E2·MgF state is remarkably distinguishable. Although the azimuthal position of the A domain of the (SCH)E2·MgF state is similar to that in the E2·AlF (aluminum fluoride) state, in which the transmembrane luminal gate is closed, the arrangement of transmembrane helices in the (SCH)E2·MgF state shows a luminal-open conformation imposed on by bound SCH28080 at its luminal cavity, based on observations of the structure in the SCH28080-bound E2·BeF (beryllium fluoride) state. The molecular conformation of the (SCH)E2·MgF state thus represents a mixed overall structure in which its cytoplasmic and luminal half appear to be independently modulated by a phosphate analog and an antagonist bound to the respective parts of the enzyme. Comparison of the molecular conformations revealed that the linker region connecting the A domain and the transmembrane helix 2 (A-M2 linker) mediates the regulation of luminal gating. The mechanistic rationale underlying luminal gating observed in H+,K+-ATPase is consistent with that observed in sarcoplasmic reticulum Ca2+-ATPase and other P-type ATPases and is most likely conserved for the P-type ATPase family in general. SCH28080相似文献
9.
10.
McGlinchey RP Shewmaker F Hu KN McPhie P Tycko R Wickner RB 《The Journal of biological chemistry》2011,286(10):8385-8393
Most amyloids are pathological, but fragments of Pmel17 form a functional amyloid in vertebrate melanosomes essential for melanin synthesis and deposition. We previously reported that only at the mildly acidic pH (4-5.5) typical of melanosomes, the repeat domain (RPT) of human Pmel17 can form amyloid in vitro. Combined with the known presence of RPT in the melanosome filaments and the requirement of this domain for filament formation, we proposed that RPT may be the core of the amyloid formed in vivo. Although most of Pmel17 is highly conserved across a broad range of vertebrates, the RPT domains vary dramatically, with no apparent homology in some cases. Here, we report that the RPT domains of mouse and zebrafish, as well as a small splice variant of human Pmel17, all form amyloid specifically at mildly acid pH (pH ~5.0). Protease digestion, mass per unit length measurements, and solid-state NMR experiments suggest that amyloid of the mouse RPT has an in-register parallel β-sheet architecture with two RPT molecules per layer, similar to amyloid of the Aβ peptide. Although there is no sequence conservation between human and zebrafish RPT, amyloid formation at acid pH is conserved. 相似文献
11.
Ana Cuervo Mar Pulido-Cid Mónica Chagoyen Rocío Arranz Verónica A. González-García Carmela Garcia-Doval José R. Castón José M. Valpuesta Mark J. van Raaij Jaime Martín-Benito José L. Carrascosa 《The Journal of biological chemistry》2013,288(36):26290-26299
Most bacterial viruses need a specialized machinery, called “tail,” to inject their genomes inside the bacterial cytoplasm without disrupting the cellular integrity. Bacteriophage T7 is a well characterized member of the Podoviridae family infecting Escherichia coli, and it has a short noncontractile tail that assembles sequentially on the viral head after DNA packaging. The T7 tail is a complex of around 2.7 MDa composed of at least four proteins as follows: the connector (gene product 8, gp8), the tail tubular proteins gp11 and gp12, and the fibers (gp17). Using cryo-electron microscopy and single particle image reconstruction techniques, we have determined the precise topology of the tail proteins by comparing the structure of the T7 tail extracted from viruses and a complex formed by recombinant gp8, gp11, and gp12 proteins. Furthermore, the order of assembly of the structural components within the complex was deduced from interaction assays with cloned and purified tail proteins. The existence of common folds among similar tail proteins allowed us to obtain pseudo-atomic threaded models of gp8 (connector) and gp11 (gatekeeper) proteins, which were docked into the corresponding cryo-EM volumes of the tail complex. This pseudo-atomic model of the connector-gatekeeper interaction revealed the existence of a common molecular architecture among viruses belonging to the three tailed bacteriophage families, strongly suggesting that a common molecular mechanism has been favored during evolution to coordinate the transition between DNA packaging and tail assembly. 相似文献
12.
Newman ER Kneale GG Ravelli RB Karuppasamy M Karimi Nejadasl F Taylor IA McGeehan JE 《The Journal of biological chemistry》2012,287(32):26657-26665
The nucleosome assembly protein (NAP) family represents a key group of histone chaperones that are essential for cell viability. Several x-ray structures of NAP1 dimers are available; however, there are currently no structures of this ubiquitous chaperone in complex with histones. We have characterized NAP1 from Xenopus laevis and reveal that it forms discrete multimers with histones H2A/H2B and H3/H4 at a stoichiometry of one NAP dimer to one histone fold dimer. These complexes have been characterized by size exclusion chromatography, analytical ultracentrifugation, multiangle laser light scattering, and small-angle x-ray scattering to reveal their oligomeric assembly states in solution. By employing single-particle cryo-electron microscopy, we visualized these complexes for the first time and show that they form heterogeneous ring-like structures, potentially acting as large scaffolds for histone assembly and exchange. 相似文献
13.
Bebeacua C Bron P Lai L Vegge CS Brøndsted L Spinelli S Campanacci V Veesler D van Heel M Cambillau C 《The Journal of biological chemistry》2010,285(50):39079-39086
P335 lactococcal phages infect the gram(+) bacterium Lactococcus lactis using a large multiprotein complex located at the distal part of the tail and termed baseplate (BP). The BP harbors the receptor-binding proteins (RBPs), which allow the specific recognition of saccharidic receptors localized on the host cell surface. We report here the electron microscopic structure of the phage TP901-1 wild-type BP as well as those of two mutants bppL (-) and bppU(-), lacking BppL (the RBPs) or both peripheral BP components (BppL and BppU), respectively. We also achieved an electron microscopic reconstruction of a partial BP complex, formed by BppU and BppL. This complex exhibits a tripod shape and is composed of nine BppLs and three BppUs. These structures, combined with light-scattering measurements, led us to propose that the TP901-1 BP harbors six tripods at its periphery, located around the central tube formed by ORF46 (Dit) hexamers, at its proximal end, and a ORF47 (Tal) trimer at its distal extremity. A total of 54 BppLs (18 RBPs) are thus available to mediate host anchoring with a large apparent avidity. TP901-1 BP exhibits an infection-ready conformation and differs strikingly from the lactococcal phage p2 BP, bearing only 6 RBPs, and which needs a conformational change to reach its activated state. The comparison of several Siphoviridae structures uncovers a close organization of their central BP core whereas striking differences occur at the periphery, leading to diverse mechanisms of host recognition. 相似文献
14.
Aziz A Hess JF Budamagunta MS Voss JC Kuzin AP Huang YJ Xiao R Montelione GT Fitzgerald PG Hunt JF 《The Journal of biological chemistry》2012,287(34):28349-28361
Despite the passage of ~30 years since the complete primary sequence of the intermediate filament (IF) protein vimentin was reported, the structure remains unknown for both an individual protomer and the assembled filament. In this report, we present data describing the structure of vimentin linker 1 (L1) and rod 1B. Electron paramagnetic resonance spectra collected from samples bearing site-directed spin labels demonstrate that L1 is not a flexible segment between coiled-coils (CCs) but instead forms a rigid, tightly packed structure. An x-ray crystal structure of a construct containing L1 and rod 1B shows that it forms a tetramer comprising two equivalent parallel CC dimers that interact with one another in the form of a symmetrical anti-parallel dimer. Remarkably, the parallel CC dimers are themselves asymmetrical, which enables them to tetramerize rather than undergoing higher order oligomerization. This functionally vital asymmetry in the CC structure, encoded in the primary sequence of rod 1B, provides a striking example of evolutionary exploitation of the structural plasticity of proteins. EPR and crystallographic data consistently suggest that a very short region within L1 represents a minor local distortion in what is likely to be a continuous CC from the end of rod 1A through the entirety of rod 1B. The concordance of this structural model with previously published cross-linking and spectral data supports the conclusion that the crystallographic oligomer represents a native biological structure. 相似文献
15.
Kyle P. Heim Ruby May A. Sullan Paula J. Crowley Sofiane El-Kirat-Chatel Audrey Beaussart Wenxing Tang Richard Besingi Yves F. Dufrene L. Jeannine Brady 《The Journal of biological chemistry》2015,290(14):9002-9019
P1 (antigen I/II) is a sucrose-independent adhesin of Streptococcus mutans whose functional architecture on the cell surface is not fully understood. S. mutans cells subjected to mechanical extraction were significantly diminished in adherence to immobilized salivary agglutinin but remained immunoreactive and were readily aggregated by fluid-phase salivary agglutinin. Bacterial adherence was restored by incubation of postextracted cells with P1 fragments that contain each of the two known adhesive domains. In contrast to untreated cells, glutaraldehyde-treated bacteria gained reactivity with anti-C-terminal monoclonal antibodies (mAbs), whereas epitopes recognized by mAbs against other portions of the molecule were masked. Surface plasmon resonance experiments demonstrated the ability of apical and C-terminal fragments of P1 to interact. Binding of several different anti-P1 mAbs to unfixed cells triggered release of a C-terminal fragment from the bacterial surface, suggesting a novel mechanism of action of certain adherence-inhibiting antibodies. We also used atomic force microscopy-based single molecule force spectroscopy with tips bearing various mAbs to elucidate the spatial organization and orientation of P1 on living bacteria. The similar rupture lengths detected using mAbs against the head and C-terminal regions, which are widely separated in the tertiary structure, suggest a higher order architecture in which these domains are in close proximity on the cell surface. Taken together, our results suggest a supramolecular organization in which additional P1 polypeptides, including the C-terminal segment originally identified as antigen II, associate with covalently attached P1 to form the functional adhesive layer. 相似文献
16.
Dinesh C. Soares Nicholas J. Bradshaw Juan Zou Christopher K. Kennaway Russell S. Hamilton Zhuo A. Chen Martin A. Wear Elizabeth A. Blackburn Janice Bramham Bettina B?ttcher J. Kirsty Millar Paul N. Barlow Malcolm D. Walkinshaw Juri Rappsilber David J. Porteous 《The Journal of biological chemistry》2012,287(39):32381-32393
Paralogs NDE1 (nuclear distribution element 1) and NDEL1 (NDE-like 1) are essential for mitosis and neurodevelopment. Both proteins are predicted to have similar structures, based upon high sequence similarity, and they co-complex in mammalian cells. X-ray diffraction studies and homology modeling suggest that their N-terminal regions (residues 8–167) adopt continuous, extended α-helical coiled-coil structures, but no experimentally derived information on the structure of their C-terminal regions or the architecture of the full-length proteins is available. In the case of NDE1, no biophysical data exists. Here we characterize the structural architecture of both full-length proteins utilizing negative stain electron microscopy along with our established paradigm of chemical cross-linking followed by tryptic digestion, mass spectrometry, and database searching, which we enhance using isotope labeling for mixed NDE1-NDEL1. We determined that full-length NDE1 forms needle-like dimers and tetramers in solution, similar to crystal structures of NDEL1, as well as chain-like end-to-end polymers. The C-terminal domain of each protein, required for interaction with key protein partners dynein and DISC1 (disrupted-in-schizophrenia 1), includes a predicted disordered region that allows a bent back structure. This facilitates interaction of the C-terminal region with the N-terminal coiled-coil domain and is in agreement with previous results showing N- and C-terminal regions of NDEL1 and NDE1 cooperating in dynein interaction. It sheds light on recently identified mutations in the NDE1 gene that cause truncation of the encoded protein. Additionally, analysis of mixed NDE1-NDEL1 complexes demonstrates that NDE1 and NDEL1 can interact directly. 相似文献
17.
18.
Identification and localization of a lipase-like acyltransferase in phenylpropanoid metabolism of tomato (Solanum lycopersicum) 总被引:1,自引:0,他引:1
Teutschbein J Gross W Nimtz M Milkowski C Hause B Strack D 《The Journal of biological chemistry》2010,285(49):38374-38381
We have isolated an enzyme classified as chlorogenate: glucarate caffeoyltransferase (CGT) from seedlings of tomato (Solanum lycopersicum) that catalyzes the formation of caffeoylglucarate and caffeoylgalactarate using chlorogenate (5-O-caffeoylquinate) as acyl donor. Peptide sequences obtained by trypsin digestion and spectrometric sequencing were used to isolate the SlCGT cDNA encoding a protein of 380 amino acids with a putative targeting signal of 24 amino acids indicating an entry of the SlCGT into the secretory pathway. Immunogold electron microscopy revealed the localization of the enzyme in the apoplastic space of tomato leaves. Southern blot analysis of genomic cDNA suggests that SlCGT is encoded by a single-copy gene. The SlCGT cDNA was functionally expressed in Nicotiana benthamiana leaves and proved to confer chlorogenate-dependent caffeoyltransferase activity in the presence of glucarate. Sequence comparison of the deduced amino acid sequence identified the protein unexpectedly as a GDSL lipase-like protein, representing a new member of the SGNH protein superfamily. Lipases of this family employ a catalytic triad of Ser-Asp-His with Ser as nucleophile of the GDSL motif. Site-directed mutagenesis of each residue of the assumed respective SlCGT catalytic triad, however, indicated that the catalytic triad of the GDSL lipase is not essential for SlCGT enzymatic activity. SlCGT is therefore the first example of a GDSL lipase-like protein that lost hydrolytic activity and has acquired a completely new function in plant metabolism, functioning in secondary metabolism as acyltransferase in synthesis of hydroxycinnamate esters by employing amino acid residues different from the lipase catalytic triad. 相似文献
19.
Gina M. Clayton Daniel J. Klein Keith W. Rickert Sangita B. Patel Maria Kornienko Joan Zugay-Murphy John C. Reid Srivanya Tummala Sujata Sharma Sheo B. Singh Lynn Miesel Kevin J. Lumb Stephen M. Soisson 《The Journal of biological chemistry》2013,288(47):34073-34080
The emergence of antibiotic-resistant strains of pathogenic bacteria is an increasing threat to global health that underscores an urgent need for an expanded antibacterial armamentarium. Gram-negative bacteria, such as Escherichia coli, have become increasingly important clinical pathogens with limited treatment options. This is due in part to their lipopolysaccharide (LPS) outer membrane components, which dually serve as endotoxins while also protecting Gram-negative bacteria from antibiotic entry. The LpxC enzyme catalyzes the committed step of LPS biosynthesis, making LpxC a promising target for new antibacterials. Here, we present the first structure of an LpxC enzyme in complex with the deacetylation reaction product, UDP-(3-O-(R-3-hydroxymyristoyl))-glucosamine. These studies provide valuable insight into recognition of substrates and products by LpxC and a platform for structure-guided drug discovery of broad spectrum Gram-negative antibiotics. 相似文献
20.
Jeffrey K. Holden Nathan Lim Thomas L. Poulos 《The Journal of biological chemistry》2014,289(42):29437-29445
Production of nitric oxide (NO) by nitric oxide synthase (NOS) requires electrons to reduce the heme iron for substrate oxidation. Both FAD and FMN flavin groups mediate the transfer of NADPH derived electrons to NOS. Unlike mammalian NOS that contain both FAD and FMN binding domains within a single polypeptide chain, bacterial NOS is only composed of an oxygenase domain and must rely on separate redox partners for electron transfer and subsequent activity. Here, we report on the native redox partners for Bacillus subtilis NOS (bsNOS) and a novel chimera that promotes bsNOS activity. By identifying and characterizing native redox partners, we were also able to establish a robust enzyme assay for measuring bsNOS activity and inhibition. This assay was used to evaluate a series of established NOS inhibitors. Using the new assay for screening small molecules led to the identification of several potent inhibitors for which bsNOS-inhibitor crystal structures were determined. In addition to characterizing potent bsNOS inhibitors, substrate binding was also analyzed using isothermal titration calorimetry giving the first detailed thermodynamic analysis of substrate binding to NOS. 相似文献