首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined the effects of microtubule-targeting anticancer drugs (paclitaxel, cabazitaxel, and eribulin) on the expression of drug efflux transporter P-glycoprotein, which is encoded by MDR1. Paclitaxel and eribulin induced MDR1 promoter activity in a concentration-dependent manner, while cabazitaxel had little effect in human intestinal epithelial LS174T cells. Overexpression of the nuclear receptor pregnane X receptor (PXR) gene (NR1I2) enhanced paclitaxel- and eribulin-induced MDR1 activation, but expression of the nuclear receptor co-repressor silencing mediator for retinoid and thyroid receptors (SMRT) gene (NCOR2) repressed MDR1 activation. Eribulin increased the mRNA and protein expression of P-glycoprotein in LS174T cells. Cellular uptake of rhodamine 123 and calcein-acetoxymethyl ester (calcein-AM), P-glycoprotein substrates, decreased in paclitaxel- or eribulin-treated LS174T cells. Eribulin also increased MDR1 promoter activity in human breast cancer MCF7 cells. The results suggest that the microtubule-targeting anticancer drug eribulin can induce the drug efflux transporter P-glycoprotein via PXR in human intestinal and breast cancer cells and thus influence the efficacy of anticancer drugs.  相似文献   

2.

Introduction

A combination of carboplatin and paclitaxel is often used as first line chemotherapy for treatment of ovarian cancer. Therefore the use of imaging biomarkers early after initiation of treatment to determine treatment sensitivity would be valuable in order to identify responders from non-responders. In this study we describe the non-invasive PET imaging of glucose uptake and cell proliferation using 2-deoxy-2-[18F]fluoro-D-glucose (FDG) and 3’-deoxy-3’-[18F]fluorothymidine (FLT) for early assessment of treatment response in a pre-clinical mouse model of human ovarian cancer treated with carboplatin and paclitaxel.

Methods

In vivo uptake of FLT and FDG in human ovarian cancer xenografts in mice (A2780) was determined before treatment with carboplatin and paclitaxel (CaP) and repeatedday 1, 4 and 8 after treatment start. Tracer uptake was quantified using small animal PET/CT. Tracer uptake was compared with gene expression of Ki67, TK1, GLUT1, HK1 and HK2.

Results

Tumors in the CaP group was significantly smaller than in the control group (p=0.03) on day 8. On day 4 FDG SUVmax ratio was significantly lower in the CaP group compared to the control group (105±4% vs 138±9%; p=0.002) and on day 8 the FDG SUVmax ratio was lower in the CaP compared to the control group (125±13% vs 167±13%; p=0.05). On day 1 the uptake of FLT SUVmax ratio was 89±9% in the CaP group and 109±6% in the control group; however the difference was not statistically significant (p=0.08).

Conclusions

Our data suggest that both FDG and FLT PET may be used for the assessment of anti-tumor effects of a combination of carboplatin and paclitaxel in the treatment of ovarian cancer. FLT provides an early and transient signal and FDG a later and more prolonged response. This underscores the importance of optimal timing between treatment and FLT or FDG imaging since treatment response may otherwise be overlooked.  相似文献   

3.

Objectives

Adipose tissue contains a population of multipotent adipose stem cells (ASCs) that form tumor stroma and can promote tumor progression. Given the high rate of ovarian cancer metastasis to the omental adipose, we hypothesized that omental-derived ASC may contribute to ovarian cancer growth and dissemination.

Materials and Methods

We isolated ASCs from the omentum of three patients with ovarian cancer, with (O-ASC4, O-ASC5) and without (O-ASC1) omental metastasis. BM-MSCs, SQ-ASCs, O-ASCs were characterized with gene expression arrays and metabolic analysis. Stromal cells effects on ovarian cancer cells proliferation, chemoresistance and radiation resistance was evaluated using co-culture assays with luciferase-labeled human ovarian cancer cell lines. Transwell migration assays were performed with conditioned media from O-ASCs and control cell lines. SKOV3 cells were intraperitionally injected with or without O-ASC1 to track in-vivo engraftment.

Results

O-ASCs significantly promoted in vitro proliferation, migration chemotherapy and radiation response of ovarian cancer cell lines. O-ASC4 had more marked effects on migration and chemotherapy response on OVCA 429 and OVCA 433 cells than O-ASC1. Analysis of microarray data revealed that O-ASC4 and O-ASC5 have similar gene expression profiles, in contrast to O-ASC1, which was more similar to BM-MSCs and subcutaneous ASCs in hierarchical clustering. Human O-ASCs were detected in the stroma of human ovarian cancer murine xenografts but not uninvolved ovaries.

Conclusions

ASCs derived from the human omentum can promote ovarian cancer proliferation, migration, chemoresistance and radiation resistance in-vitro. Furthermore, clinical O-ASCs isolates demonstrate heterogenous effects on ovarian cancer in-vitro.  相似文献   

4.
5.
6.
In murine macrophages, the anti-tumor agent, paclitaxel, induces expression of a wide variety of inflammatory and anti-inflammatory genes, and causes cytokine secretion via signaling pathways that overlap with those engaged by lipopolysaccharide (LPS), the endotoxic component of Gram-negative bacteria. Using semi-quantitative RT-PCR for detection of gene expression, coupled with ELISA for the detection of secreted gene products, we analyzed the responsiveness of an extensive panel of cytokine and non-cytokine genes to induction by paclitaxel and LPS in the murine DA-3 breast cancer line. A subset of the genes examined (e.g., G-CSF, MIP-2, iNOS, and IL-1 beta, and GM-CSF) was upregulated >3-20-fold by both LPS and paclitaxel in the DA-3 cell line, while IP-10 mRNA was induced by paclitaxel, but not by LPS. In the human MDA-MB-231 breast cancer cell line, LPS also increased mRNA levels for both GM-CSF and IP-10 significantly, while, paclitaxel increased IP-10 mRNA levels with delayed kinetics and failed to induce GM-CSF mRNA. Co-cultures of murine breast cancer cells and macrophages, stimulated with IFN-gamma plus either paclitaxel or LPS, resulted in augmented release of nitric oxide. As both GM-CSF and IP-10 have been implicated in tumor rejection in vivo through either indirect actions on the host immune system or by inhibiting tumor angiogenesis, our data strengthen the hypothesis that tumor cell-derived inflammatory mediators may, in part, underlie the anti-tumor efficacy of paclitaxel in breast cancer.  相似文献   

7.

Background

Every year approximately 74,000 women die of endometrial cancer, mainly due to recurrent or metastatic disease. The presence of tumor infiltrating lymphocytes (TILs) as well as progesterone receptor (PR) positivity has been correlated with improved prognosis. This study describes two mechanisms by which progesterone inhibits metastatic spread of endometrial cancer: by stimulating T-cell infiltration and by inhibiting epithelial-to-mesenchymal cell transition (EMT).

Methodology and Principal Findings

Paraffin sections from patients with (n = 9) or without (n = 9) progressive endometrial cancer (recurrent or metastatic disease) were assessed for the presence of CD4+ (helper), CD8+ (cytotoxic) and Foxp3+ (regulatory) T-lymphocytes and PR expression. Progressive disease was observed to be associated with significant loss of TILs and loss of PR expression. Frozen tumor samples, used for genome-wide expression analysis, showed significant regulation of pathways involved in immunesurveillance, EMT and metastasis. For a number of genes, such as CXCL14, DKK1, DKK4, PEG10 and WIF1, quantitive RT-PCR was performed to verify up- or downregulation in progressive disease. To corroborate the role of progesterone in regulating invasion, Ishikawa(IK) endometrial cancer cell lines stably transfected with PRA (IKPRA), PRB(IKPRB) and PRA+PRB (IKPRAB) were cultured in presence/absence of progesterone (MPA) and used for genome-wide expression analysis, Boyden- and wound healing migration assays, and IHC for known EMT markers. IKPRB and IKPRAB cell lines showed MPA induced inhibition of migration and loss of the mesenchymal marker vimentin at the invasive front of the wound healing assay. Furthermore, pathway analysis of significantly MPA regulated genes showed significant down regulation of important pathways involved in EMT, immunesuppression and metastasis: such as IL6-, TGF-β and Wnt/β-catenin signaling.

Conclusion

Intact progesterone signaling in non-progressive endometrial cancer seems to be an important factor stimulating immunosurveilance and inhibiting transition from an epithelial to a more mesenchymal, more invasive phenotype.  相似文献   

8.
9.

Background

Epithelial ovarian cancer is a significant cause of mortality both in the United States and worldwide, due largely to the high proportion of cases that present at a late stage, when survival is extremely poor. Early detection of epithelial ovarian cancer, and of the serous subtype in particular, is a promising strategy for saving lives. The low prevalence of ovarian cancer makes the development of an adequately sensitive and specific test based on blood markers very challenging. We evaluated the performance of a set of candidate blood markers and combinations of these markers in detecting serous ovarian cancer.

Methods and Findings

We selected 14 candidate blood markers of serous ovarian cancer for which assays were available to measure their levels in serum or plasma, based on our analysis of global gene expression data and on literature searches. We evaluated the performance of these candidate markers individually and in combination by measuring them in overlapping sets of serum (or plasma) samples from women with clinically detectable ovarian cancer and women without ovarian cancer. Based on sensitivity at high specificity, we determined that 4 of the 14 candidate markers-MUC16, WFDC2, MSLN and MMP7-warrant further evaluation in precious serum specimens collected months to years prior to clinical diagnosis to assess their utility in early detection. We also reported differences in the performance of these candidate blood markers across histological types of epithelial ovarian cancer.

Conclusions

By systematically analyzing the performance of candidate blood markers of ovarian cancer in distinguishing women with clinically apparent ovarian cancer from women without ovarian cancer, we identified a set of serum markers with adequate performance to warrant testing for their ability to identify ovarian cancer months to years prior to clinical diagnosis. We argued for the importance of sensitivity at high specificity and of magnitude of difference in marker levels between cases and controls as performance metrics and demonstrated the importance of stratifying analyses by histological type of ovarian cancer. Also, we discussed the limitations of studies (like this one) that use samples obtained from symptomatic women to assess potential utility in detection of disease months to years prior to clinical detection.  相似文献   

10.

Background

The epithelial-mesenchymal transition (EMT) is a key developmental program that is often activated during cancer progression and may promote resistance to therapy. An analysis of patients (n = 71) profiled with both gene expression and a global microRNA assessment (∼415 miRs) identified miR-147 as highly anti-correlated with an EMT gene expression signature score and postulated to reverse EMT (MET).

Methods and Findings

miR-147 was transfected into colon cancer cells (HCT116, SW480) as well as lung cancer cells (A-549). The cells were assessed for morphological changes, and evaluated for effects on invasion, motility, and the expression of key EMT markers. Resistance to chemotherapy was evaluated by treating cells with gefitinib, an EGFR inhibitor. The downstream genes regulated by miR-147 were assayed using the Affymetrix GeneChip U133 Plus2.0 platform. miR-147 was identified to: 1. cause MET primarily by increasing the expression of CDH1 and decreasing that of ZEB1; 2. inhibit the invasion and motility of cells; 3. cause G1 arrest by up-regulating p27 and down-regulating cyclin D1. miR-147 also dramatically reversed the native drug resistance of the colon cancer cell line HCT116 to gefitinib. miR-147 significantly repressed Akt phosphorylation, and knockdown of Akt with siRNA induced MET. The morphologic effects of miR-147 on cells appear to be attenuated by TGF-B1, promoting a plastic and reversible transition between MET and EMT.

Conclusion

miR-147 induced cancer cells to undergo MET and induced cell cycle arrest, suggesting a potential tumor suppressor role. miR-147 strikingly increased the sensitivity to EGFR inhibitor, gefitinib in cell with native resistance. We conclude that miR-147 might have therapeutic potential given its ability to inhibit proliferation, induce MET, as well as reverse drug sensitivity.  相似文献   

11.
12.
13.

Background

Claudins are tight junction proteins that are involved in tight junction formation and function. Previous studies have shown that claudin-7 is frequently upregulated in epithelial ovarian cancer (EOC) along with claudin-3 and claudin-4. Here, we investigate in detail the expression patterns of claudin-7, as well as its possible functions in EOC.

Methodology/Principal Findings

A total of 95 ovarian tissue samples (7 normal ovarian tissues, 65 serous carcinomas, 11 clear cell carcinomas, 8 endometrioid carcinomas and 4 mucinous carcinomas) were studied for claudin-7 expression. In real-time RT-PCR analysis, the gene for claudin-7, CLDN7, was found to be upregulated in all the tumor tissue samples studied. Similarly, immunohistochemical analysis and western blotting showed that claudin-7 protein was significantly overexpressed in the vast majority of EOCs. Small interfering RNA-mediated knockdown of claudin-7 in ovarian cancer cells led to significant changes in gene expression as measured by microarrays and validated by RT-PCR and immunoblotting. Analyses of the genes differentially expressed revealed that the genes altered in response to claudin-7 knockdown were associated with pathways implicated in various molecular and cellular functions such as cell cycle, cellular growth and proliferation, cell death, development, and cell movement. Through functional experiments in vitro, we found that both migration and invasion were altered in cells where CLDN7 had been knocked down or overexpressed. Interestingly, claudin-7 expression was associated with a net increase in invasion, but also with a decrease in migration.

Conclusion/Significance

Our work shows that claudin-7 is significantly upregulated in EOC and that it may be functionally involved in ovarian carcinoma invasion. CLDN7 may therefore represent potential marker for ovarian cancer detection and a target for therapy.  相似文献   

14.

Objective

Aldehyde dehydrogenase (ALDH) has recently been reported as a marker of cancer stem-like cells in ovarian cancer. However, the prognostic role of ALDH in ovarian cancer still remains controversial. In this study, we aimed to evaluate the association between the expression of ALDH and the outcome of ovarian cancer patients by performing a meta-analysis.

Methods

We systematically searched for studies investigating the relationships between ALDH expression and outcome of ovarian cancer patients. Only articles in which ALDH expression was detected by immunohistochemical staining were included. A meta-analysis was performed to generate combined hazard ratios (HRs) with 95% confidence intervals (CIs) for overall survival (OS) and disease-free survival (DFS).

Results

A total of 1,258 patients from 7 studies (6 articles) were included in the analysis. Our results showed that high ALDH expression in patients with ovarian cancer was associated with poor prognosis in terms of Os (HR, 1.25; 95% CI, 1.07-1.47; P = 0.005) and DFS (HR, 1.58; 95% CI, 1.00-2.49; P = 0.052), though the difference for DFS was not statistically significant. In addition, there was no evidence of publication bias as suggested by Begg’s and Egger’s tests (Begg’s test, P = 0.707; Egger’s test, P = 0.355).

Conclusion

The present meta-analysis indicated that elevated ALDH expression was associated with poor prognosis in patients with ovarian cancer.  相似文献   

15.

Background

Many patients diagnosed with ovarian cancer experience recurrence and metastasis, two aspects that will often cause their demise. Epithelial-to-mesenchymal transition (EMT) is a key process involved in cancer progression. With increasing evidence linking Cisplatin and EMT, we wanted to identify a compound able to counter EMT progression when cancer cells are treated with Cisplatin.

Methodology/Principal Findings

Cell death was evaluated by cytometry with Annexin V/PI staining in A2780 and A2780CP cells. Ovarian cancer cell lines were treated with Cisplatin (24 h, 10 µM) and different concentrations of Resveratrol to evaluate its effect on Cisplatin-induced EMT using Western Blot and RT-PCR analysis. Morphological studies and wound healing assay to evaluate cell motility were performed using 72 h Cisplatin treatment with A2780 and A2780CP cells. Densitometry was done on Western Blot and PCR results, and statistical significance was determined using One-Way ANOVA followed by Tukey post-hoc test. Our results show that Cisplatin induced EMT-associated morphological changes in the A2780 ovarian cancer cell line and to a lesser extent in its Cisplatin-resistant counterpart A2780CP. Resveratrol caused cell death in A2780 and A2780CP cell lines in an apoptotic-independent manner. Resveratrol inhibited Cisplatin-induced Snail expression by reducing the Erk pathway activation, reverted morphological changes induced by Cisplatin and decreased cell migration.

Conclusions

These results indicate that Resveratrol has interesting potential to prevent Cisplatin-induced EMT in ovarian cancer cells. By increasing cell death, it also represents an inviting approach as adjuvant therapy to be used with chemotherapy. Using Erk pathway inhibitors could also prove helpful in ovarian cancer treatment to reduce the risk of metastasis.  相似文献   

16.
We previously identified a gene signature predicted to regulate the epithelial-mesenchymal transition (EMT) in both epithelial tissue stem cells and breast cancer cells. A phenotypic RNA interference (RNAi) screen identified the genes within this 140-gene signature that promoted the conversion of mesenchymal epithelial cell adhesion molecule-negative (EpCAM) breast cancer cells to an epithelial EpCAM+/high phenotype. The screen identified 10 of the 140 genes whose individual knockdown was sufficient to promote EpCAM and E-cadherin expression. Among these 10 genes, RNAi silencing of the SWI/SNF chromatin-remodeling factor Smarcd3/Baf60c in EpCAM breast cancer cells gave the most robust transition from the mesenchymal to epithelial phenotype. Conversely, expression of Smarcd3/Baf60c in immortalized human mammary epithelial cells induced an EMT. The mesenchymal-like phenotype promoted by Smarcd3/Baf60c expression resulted in gene expression changes in human mammary epithelial cells similar to that of claudin-low triple-negative breast cancer cells. These mammary epithelial cells expressing Smarcd3/Baf60c had upregulated Wnt5a expression. Inhibition of Wnt5a by either RNAi knockdown or blocking antibody reversed Smarcd3/Baf60c-induced EMT. Thus, Smarcd3/Baf60c epigenetically regulates EMT by activating WNT signaling pathways.  相似文献   

17.

Background

We evaluated the therapeutic effects of the histone deacetylase inhibitor PXD101 alone and in combination with conventional chemotherapy in treating thyroid cancer.

Methodology/Principal Findings

We studied eight cell lines from four types of thyroid cancer (papillary, follicular, anaplastic and medullary). The cytotoxicity of PXD101 alone and in combination with three conventional chemotherapeutic agents (doxorubicin, paclitaxel and docetaxel) was measured using LDH assay. Western blot assessed expression of acetylation of histone H3, histone H4 and tubulin, proteins associated with apoptosis, RAS/RAF/ERK and PI3K/AKT/mTOR signaling pathways, DNA damage and repair. Apoptosis and intracellular reactive oxygen species (ROS) were measured by flow cytometry. Mice bearing flank anaplastic thyroid cancers (ATC) were daily treated with intraperitoneal injection of PXD101 for 5 days per week. PXD101 effectively inhibited thyroid cancer cell proliferation in a dose-dependent manner. PXD101 induced ROS accumulation and inhibited RAS/RAF/ERK and PI3K/mTOR pathways in sensitive cells. Double-stranded DNA damage and apoptosis were induced by PXD101 in both sensitive and resistant cell lines. PXD101 retarded growth of 8505C ATC xenograft tumors with promising safety. Combination therapy of PXD101with doxorubicin and paclitaxel demonstrated synergistic effects against four ATC lines in vitro.

Conclusions

PXD101 represses thyroid cancer proliferation and has synergistic effects in combination with doxorubicin and paclitaxel in treating ATC. These findings support clinical trials using PXD101 for patients with this dismal disease.  相似文献   

18.
19.

Background

It is supposed that fibroblasts present in tumour microenvironment increase cancer invasiveness and its ability to metastasize but the mechanisms have not been clearly defined yet. Thus, the current study was designed to assess changes in gene expression in five various cancer cell lines grown as a co-culture with the carcinoma-associated fibroblasts (CAFs) in vitro.

Results

A carcinoma-associated fibroblast cell line was isolated from a canine mammary cancer. Then, a co-culture of cancer cells with the CAFs was established and maintained for 72 hrs. Having sorted the cells, a global gene expression in cancer cells using DNA microarrays was examined. The analysis revealed an up-regulation of 100 genes and a down-regulation of 106 genes in the cancer cells grown as a co-culture with the CAFs in comparison to control conditions. The PANTHER binomial statistics tool was applied to determine statistically over-manifested pathways (p < 0.05). Bulk of the up-regulated genes are involved in the adhesion, the angiogenesis, the epithelial-mesenchymal transition (EMT) and generally take part in the developmental processes. These results were further confirmed using real-time qPCR. Moreover, a wound-healing assay and growth characteristics on Matrigel matrix showed that CAFs increase cancer cell migration and matrix invasion.

Conclusion

The results of the current study showed that the co-culturing of cancer cells and the CAFs caused significant changes to the cancer gene expression. The presence of the CAFs in a microenvironment of cancer cells promotes adhesion, angiogenesis and EMT.  相似文献   

20.

Background

There is extensive epidemiological evidence that menopausal hormone therapy (MHT) increases breast cancer risk, particularly combinations of estrogen and progestagen (EP). We investigated the effects of the specific formulations and types of therapies used by French women. Progestagen constituents, regimen (continuous or sequential treatment by the progestagen), and time interval between onset of menopause and start of MHT were examined.

Methods

We conducted a population-based case-control study in France in 1555 menopausal women (739 cases and 816 controls). Detailed information on MHT use was obtained during in-person interviews. Odds ratios and 95% confidence interval adjusted for breast cancer risk factors were calculated.

Results

We found that breast cancer risk differed by type of progestagen among current users of EP therapies. No increased risk was apparent among EP therapy users treated with natural micronized progesterone. Among users of EP therapy containing a synthetic progestin, the odds ratio was 1.57 (0.99-2.49) for progesterone-derived and 3.35 (1.07-10.4) for testosterone-derived progestagen. Women with continuous regimen were at greater risk than women treated sequentially, but regimen and type of progestagen could not be investigated independently, as almost all EP combinations containing a testosterone-derivative were administered continuously and vice-versa. Tibolone was also associated with an increased risk of breast cancer. Early users of MHT after onset of menopause were at greater risk than users who delayed treatment.

Conclusion

This study confirms differential effects on breast cancer risk of progestagens and regimens specifically used in France. Formulation of EP therapies containing natural progesterone, frequently prescribed in France, was not associated with increased risk of breast cancer but may poorly protect against endometrial cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号