首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fusarium is one of the important phytopathogenic genera of microfungi causing serious losses on cucurbit plants in Kermanshah province, the largest area of cucurbits plantation in Iran. Therefore, the objectives in this study were to isolate and identify disease-causing Fusarium spp. from infected cucurbit plants, to ascertain their pathogenicity, and to determine their phylogenetic relationships. A total of 100 Fusarium isolates were obtained from diseased cucurbit plants collected from fields in different geographic regions in Kermanshah province, Iran. According to morphological characters, all isolates were identified as Fusarium oxysporum, Fusarium proliferatum, Fusarium equiseti, Fusarium semitectum and Fusarium solani. All isolates of the five Fusarium spp. were evaluated for their pathogenicity on healthy cucumber (Cucumis sativus) and honeydew melon (Cucumis melo) seedlings in the glasshouse. F. oxysporum caused damping-off in 20–35 days on both cucurbit seedlings tested. Typical stem rot symptoms were observed within 15 days after inoculation with F. solani on both seedlings. Based on the internal transcribed spacer (ITS) regions of ribosomal DNA (rDNA) restriction fragment length polymorphism (RFLP) analysis, the five Fusarium species were divided into two major groups. In particular, isolates belonging to the F. solani species complex (FSSC) were separated into two RFLP types. Grouping among Fusarium strains derived from restriction analysis was in agreement with criteria used in morphological classification. Therefore, the PCR-ITS-RFLP method provides a simple and rapid procedure for the differentiation of Fusarium strains at species level. This is the first report on identification and pathogenicity of major plant pathogenic Fusarium spp. causing root and stem rot on cucurbits in Iran.  相似文献   

2.
Variations of 12 morphological characters and 78 isozymic bands among 78 isolates of five Fusarium spp. from Dongtan wetland were described and analysed with cladistic parsimony and phenetic UPGMA methods. Hierarchical cluster analysis of 12 morphological characters grouped 78 strains into five defined species with a high overlap between isolates. Hierarchical cluster analysis of isozyme patterns showed a higher degree of relationship among five Fusarium spp., in which Fusarium nivale, Fusarium semitectum and Fusarium oxysporum clustered as one group, and F. semitectum was closer to F. nivale than to F. oxysporum; Fusarium graminearum and Fusarium moniliforme formed one group and showed clearly distinct from the first group. Groups of individual isolates indicated by a plot of principal component analysis were consistent with these findings. The comparison of two different data sets revealed that isozyme patterns showed higher variations between species and among individual isolates than morphological characters. Parsimony analysis of morphological characters yielded unresolved cladograms. Parsimony analysis of isozymes as presence/absence characters revealed the same five species in general as the results indicated by phenetic analysis, differing in the relative position of species in subclusters.  相似文献   

3.
This study assessed the potential impact of various Fusarium strains on the population development of sugarbeet cyst nematodes. Fungi were isolated from cysts or eggs of Heterodera schachtii Schmidt that were obtained from a field suppressive to that nematode. Twenty-six strains of Fusarium spp. were subjected to a phylogenic analysis of their rRNA-ITS nucleotide sequences. Seven genetically distinct Fusarium strains were evaluated for their ability to influence population development of H. schachtii and crop performance in greenhouse trials. Swiss chard (Beta vulgaris) seedlings were transplanted into fumigated field soil amended with a single fungal strain at 1,000 propagules/g soil. One week later, the soil was infested with 250 H. schachtii J2/100 cm3 soil. Parasitized eggs were present in all seven Fusarium treatments at 1,180 degree-days after fungal infestation. The percentage of parasitism ranged from 17 to 34%. Although the most efficacious F. oxysporum strain 471 produced as many parasitized eggs as occurred in the original suppressive soil, none of the Fusarium strains reduced the population density of H. schachtii compared to the conducive check. This supports prior results that Fusarium spp. were not the primary cause of the population suppression of sugarbeet cyst nematodes at this location.  相似文献   

4.
《Biological Control》2010,52(3):480-486
The potential of the biological control fungus Penicillium oxalicum to suppress wilt caused by Fusarium oxysporum f. sp. melonis and F. oxysporum f. sp. niveum on melon and watermelon, respectively, was tested under different growth conditions. The area under disease progress curve of F. oxysporum f. sp. melonis infected melon plants was significantly reduced in growth chamber and field experiments. In glasshouse experiments, it was necessary to apply P. oxalicum and dazomet in order to reduce Fusarium wilt severity in melons caused by F. oxysporum f. sp. melonis. For watermelons, we found that P. oxalicum alone reduced the area under the disease progress curve by 58% in the growth chamber experiments and 54% in the glasshouse experiments. From these results, we suggested that P. oxalicum may be effective for the management of Fusarium wilt in melon and watermelon plants.  相似文献   

5.
《Experimental mycology》1993,17(4):329-337
Migheli, Q., Berio, T., and Gullino, M. L. 1993. Electrophoretic karyotypes of Fusarium spp. Experimental Mycology 17, 329-337. The electrophoretic karyotype of 17 antagonistic and pathogenic strains of Fusarium spp. has been established by using contour-clamped homogeneous electric field gel electrophoresis. Intact chromosomal DNA was prepared from fungal protoplasts with standard procedures. Up to 11 distinct chromosomal bands were resolved after 184 h of migration at 50 V. Polymorphic karyotypes were observed in different species of Fusarium, formae speciales of F. oxysporum , and races of F. oxysporum f.sp. dianthi. Using the Schizosaccharomyces pombe and Saccharomyces cerevisiae chromosomes as size standards, the size of the Fusarium genome was estimated to range from approximately 18.1 to 51.5 Mb. The suitability of electrophoretic karyotyping as a tool for strain characterization, as well as some applications in hybridization analysis of Fusarium spp., is discussed.  相似文献   

6.
Growth of alfalfa (Medicago sativa cv. Vernal) seedlings was compared after inoculation with combinations of either Pratylenchus penetrans and Fusarium soloni or P. penetrans and F. oxysporum f. sp. medicaginis. A synergistic disease interaction occurred in alfalfa when F. oxysporum and P. penetrans were added simultaneously to the soil. Alfalfa growth was suppressed at all inoculum levels of P. penetrans and F. oxysporum, but not with F. solani. Seedlings inoculated with the nematode alone gave lower yields than when inoculated with either Fusarium species alone. Fusarium oxysporum, but not F. solani, was pathogenic to alfalfa under similar experimental conditions. Fusarium oxysporum did not alter the populations of P. penetrans in alfalfa roots, whereas the presence of F. solani was associated with a diminished number of P. penetrans in the roots.  相似文献   

7.
The potential of the biological control fungus Penicillium oxalicum to suppress wilt caused by Fusarium oxysporum f. sp. melonis and F. oxysporum f. sp. niveum on melon and watermelon, respectively, was tested under different growth conditions. The area under disease progress curve of F. oxysporum f. sp. melonis infected melon plants was significantly reduced in growth chamber and field experiments. In glasshouse experiments, it was necessary to apply P. oxalicum and dazomet in order to reduce Fusarium wilt severity in melons caused by F. oxysporum f. sp. melonis. For watermelons, we found that P. oxalicum alone reduced the area under the disease progress curve by 58% in the growth chamber experiments and 54% in the glasshouse experiments. From these results, we suggested that P. oxalicum may be effective for the management of Fusarium wilt in melon and watermelon plants.  相似文献   

8.
Abstract

Fusarium species are known to play a role in several diseases of cotton including the seedling disease complex, wilt, and boll rot. Therefore, a mycoflora study was conducted in 1998 in order to identify Fusarium species found in association with cotton roots. A total of 109 samples of cotton seedlings infected with post-emergence damping-off or rotted roots of adult plants were obtained from different cotton-growing areas in Egypt. Forty-six isolates were recovered and were identified as follows: F. oxysporum (28 isolates), F. moniliforme (9), F. solani (6), F. avenaceum (2), F. chlamydosporum (1). F. oxysporum, F. moniliforme and F. solani, the dominant species, accounted for 60.9%, 19.6% and 13% of the total isolates, respectively in 1998. F. oxysporum showed the highest isolation frequency in Beharia and Minufiya while F. moniliforme showed the most isolation frequency in Minufiya and Gharbiya. F. oxysporum was one of the major taxa of the Fusarium assemblage from Giza 70. F. oxysporum showed the most frequently isolated fungus in May while F. moniliforme and F. solani were the most frequently isolated fungi in August. Isolation frequency of Fusarium spp. during July and August was significantly greater than that of April or June. This implies that cotton roots are subjected more to colonization by Fusarium spp. as plants mature. Regarding pathogenicity, of the 46 isolates of Fusarium spp. tested under greenhouse conditions, 38 isolates (82.4%) were pathogenic to seedlings of Giza 89. This study indicates that F. oxysporum and F. moniliforme are important pathogens in the etiology of cotton damping-off in Egypt.  相似文献   

9.
Fusarium oxysoporum f. sp. radicis-cucumerinum (Forc) is able to cause disease in cucumber, melon, and watermelon, while F. oxysporum f. sp. melonis (Fom) can only infect melon plants. Earlier research showed that mobile chromosomes in Forc and Fom determine the difference in host range between Forc and Fom. By closely comparing these pathogenicity chromosomes combined with RNA-sequencing data, we selected 11 candidate genes that we tested for involvement in the difference in host range between Forc and Fom. One of these candidates is a putative effector gene on the Fom pathogenicity chromosome that has nonidentical homologs on the Forc pathogenicity chromosome. Four independent Forc transformants with this gene from Fom showed strongly reduced or no pathogenicity towards cucumber, while retaining pathogenicity towards melon and watermelon. This suggests that the protein encoded by this gene is recognized by an immune receptor in cucumber plants. This is the first time that a single gene has been demonstrated to determine a difference in host specificity between formae speciales of F. oxysporum.  相似文献   

10.
In order to determine the presence of Fusarium spp. in atmospheric dust and rainfall dust, samples were collected during September 2007, and July, August, and October 2008. The results reveal the prevalence of airborne Fusarium species coming from the atmosphere of the South East coast of Spain. Five different Fusarium species were isolated from the settling dust: Fusarium oxysporum, F. solani, F. equiseti, F. dimerum, and F. proliferatum. Moreover, rainwater samples were obtained during significant rainfall events in January and February 2009. Using the dilution-plate method, 12 fungal genera were identified from these rainwater samples. Specific analyses of the rainwater revealed the presence of three species of Fusarium: F. oxysporum, F. proliferatum and F. equiseti. A total of 57 isolates of Fusarium spp. obtained from both rainwater and atmospheric rainfall dust sampling were inoculated onto melon (Cucumis melo L.) cv. Piñonet and tomato (Lycopersicon esculentum Mill.) cv. San Pedro. These species were chosen because they are the main herbaceous crops in Almeria province. The results presented in this work indicate strongly that spores or propagules of Fusarium are able to cross the continental barrier carried by winds from the Sahara (Africa) to crop or coastal lands in Europe. Results show differences in the pathogenicity of the isolates tested. Both hosts showed root rot when inoculated with different species of Fusarium, although fresh weight measurements did not bring any information about the pathogenicity. The findings presented above are strong indications that long-distance transmission of Fusarium propagules may occur. Diseases caused by species of Fusarium are common in these areas. They were in the past, and are still today, a problem for greenhouses crops in Almería, and many species have been listed as pathogens on agricultural crops in this region. Saharan air masses dominate the Mediterranean regions. The evidence of long distance dispersal of Fusarium spp. by atmospheric dust and rainwater together with their proved pathogenicity must be taken into account in epidemiological studies.  相似文献   

11.
Okra was grown in field plots of Tifton loamy sand naturally infested with the nematodes Meloidogyne incognita and Criconemoides ornalus and the pathogenic fungi Fusarium oxysporum, F. solani, F. roseum, and Pythium spp. Plots were treated with various soil pesticides and left exposed or covered with biodegradable paper film mulch under trickle irrigation. Soil was assayed for nematodes and fungi, and plant roots were examined for root-rot and insect damage. Fewer nematodes and fungi generally were recovered from soil treated with DD-MENCS (with and without film mulch) or methyl bromide-chloropicrin (2:1) (MBC) and film mulch than from nontreated soil. Funfigation with DD-MENCS or MBC suppressed populations of M. incognita, C. ornatus, F. oxysporum, F. solani, F. roseum, and Pythium spp. Ethoprop (alone or combined with other pesticides), sodium azide, and chloroneb were less effective than DD-MENCS and MBC. Plant growth anti yield were greatest when nematodes and pathogenic fungi were controlled. Yield was increased 3-fold by DD-MENCS + film mulch or MBC + film mulch in comparison with the average yield of okra produced in Georgia. The root-knot nematode-Fusarium wilt complex was most severe in nonfuntigated soil.  相似文献   

12.
Fusarium oxysporum f. sp. radicis-cucumerinum (Forc) causes severe root rot and wilt in several cucurbit species, including cucumber, melon, and watermelon. Previously, a pathogenicity chromosome, chrRC, was identified in Forc. Strains that were previously nonpathogenic could infect multiple cucurbit species after obtaining this chromosome via horizontal chromosome transfer (HCT). In contrast, F. oxysporum f. sp. melonis (Fom) can only cause disease on melon plants, even though Fom contains contigs that are largely syntenic with chrRC. The aim of this study was to identify the genetic basis underlying the difference in host range between Fom and Forc. First, colonization of different cucurbit species between Forc and Fom strains showed that although Fom did not reach the upper part of cucumber or watermelon plants, it did enter the root xylem. Second, to select candidate genomic regions associated with differences in host range, high-quality genome assemblies of Fom001, Fom005, and Forc016 were compared. One of the Fom contigs that is largely syntenic and highly similar in sequence to chrRC contains the effector gene SIX6. After HCT of the SIX6-containing chromosome from Fom strains to a nonpathogenic strain, the recipient (HCT) strains caused disease on melon plants, but not on cucumber or watermelon plants. These results provide strong evidence that the differences in host range between Fom and Forc are caused by differences between transferred chromosomes of Fom and chrRC, thus narrowing down the search for genes allowing or preventing infection of cucumber and watermelon to genes located on these chromosomes.  相似文献   

13.
Twenty one isolates of Fusarium oxysporum f. sp. psidii (Fop), causing a vascular wilt in guava (Psidium guajava L.), were collected from different agro-ecological regions of India. The pathogenicity test was performed in guava seedlings, where the Fop isolates were found to be highly pathogenic. All 21 isolates were confirmed as F. oxysporum f. sp. psidii by a newly developed, species-specific primer against the conserved regions of 28S rDNA and the intergenic spacer region. RAPD and PCR-RFLP were used for genotyping the isolates to determine their genetic relationships. Fifteen RAPD primers were tested, of which five primers produced prominent, polymorphic, and reproducible bands. RAPD yielded an average of 6.5 polymorphic bands per primer, with the amplified DNA fragments ranging from 200–2,000 bp in size. A dendrogram constructed from these data indicated a 22–74% level of homology. In RFLP analysis, two major bands (350 and 220 bp) were commonly present in all isolates of F. oxysporum. These findings provide new insight for rapid, specific, and sensitive disease diagnosis. However, genotyping could be useful in strain-level discrimination of isolates from different agro-ecological regions of India.  相似文献   

14.
Wilt-susceptible cultivar ''Rowden'' cotton was inoculated wilh Meloidogyne incognita (N), Trichoderma harzianum (T), and Fusarium oxysporum f. sp. vasinfectum (F) alone and in all combinations in various time sequences. Plants inoculated with F alone or in combination with T did not develop wilt, Simultaneous inoculation of 7-day-old seedlings with all three organisms (NTF) produced earliest wilt. However, plants receiving nematodes at 7 days and Fusarium and Trichoderma at 2 or 4 weeks later (N-T-F, N-TF) developed the greatest wilt between 49-84 days after initial nematode inoculation. During the same period, Fusarium added 4 weeks after initial nematode inoculation (N-F) and Fusarium added 4 weeks after initial simultaneous inoculation of nematode and Trichoderma (NT-F) produced the least wilt. The addition of Fusarium inhibited nematode reproduction. Simultaneous inoculation with nematodes and Trichoderma (NT-) resulted in the greatest root gall development, whereas nematodes alone produced the greatest number of larvae. In comparison with noninoculated controls (CK), treatments involving all three organisms inhibited plant growth, plants inoculated with the nematode alone (N-) or with nematodes and Trichoderma (NT-) simultaneously had greatest root weight. Any treatment involving the nematode resulted in fewer bolls per plant and greater necrosis on roots than the noninoculated checks.  相似文献   

15.
Jojoba [Simmondsia chinensis (Link) Schneider] plantations in Israel originated from vegetative propagation, planted during 1991–92, have shown symptoms of wilting and subsequent death. Verticillium dahliae was only rarely isolated from these plants and artificial inoculation showed only mild disease symptoms. Fusarium oxysporum caused severe chlorosis, desiccation, defoliation and wilt in leaves of jojoba plants, resulting in plant death. Recovery of the fungus from artificially inoculated stem cuttings and seedlings showed for the first time that F. oxysporum was the primary pathogen. Inoculated cuttings exhibited wilt within 3 weeks, while in seedlings wilt occurred 10–24 weeks after inoculation. Seedlings and cuttings of jojoba which were inoculated with other Fusarium isolates originating from different crops (F. oxysporum f. sp. vasinfectum from cotton, F. oxysporum f. sp. dianthi from carnation, F. oxysporum f. sp. lycopersici from tomato and F. oxysporum f. sp. basilicum from basil) did not develop symptoms. Moreover, cotton, tomato, melon and cucumber seedlings inoculated with several virulent F. oxysporum isolates from jojoba did not show any symptoms of wilt or defoliation. These results indicate a high degree of specificity of the Fusarium isolates from jojoba; therefore, it is suggested that this isolate be defined as F. oxysporum f. sp. simmondsia.  相似文献   

16.
A field soil, artificially infested with pathogenic isolates of Fusarium oxysporum f. sp. melonis was continuously used for screening resistant varieties of melon to Fusarium wilt. After 9–10 years of continuous cropping with resistant varieties, the soil had developed induced suppressiveness. Seven to 9 experimental replantings of the induced suppressive soil with the susceptible cultivar of melon, ‘Ein-Dor', nullified its suppressiveness. This was expressed by 90 % disease incidence. Only 2 replantings were required to obtain the same disease incidence in an adjacent field of a conducive soil. Nonpathogenic isolates of F. oxysporum, isolated from the rhizospheres of melon seedlings, induced various degrees of soil suppressiveness when added to soil at various ratios to the pathogenic isolate.  相似文献   

17.
The impact of 10 Fusarium species in concomitant association with Rotylenchulus reniformis on cotton seedling disease was examined under greenhouse conditions. In experiment 1, fungal treatments consisted of Fusarium chlamydosporum, F. equiseti, F. lateritium, F. moniliforme, F. oxysporum, F. oxysporum f.sp. vasinfectum, F. proliferatum, F. semitectum, F. solani, and F. sporotrichioides; Rhizoctonia solani; and Thielaviopsis basicola. The experimental design was a 2 × 14 factorial consisting of the presence or absence of R. reniformis and the 12 fungal treatments plus two controls in autoclaved field soil. In experiment 2, the same fungal and nematode treatments were examined in autoclaved or non-autoclaved soil. This experimental design was a 2 × 2 × 14 factorial consisting of field or autoclaved soil, presence or absence of R. reniformis, and the 12 fungal treatments plus two controls. In both tests, Fusarium oxysporum f. sp. vasinfectum, F. solani, R. solani, and T. basicola consistently displayed extensive root and hypocotyl necrosis that was more severe (P ≤ 0.05) in the presence of R. reniformis. Soil treatment (autoclaved vs. non-autoclaved) influenced the impact of the Fusarium species on cotton seedling disease, with disease being more severe in the autoclaved soil. Rotylenchulus reniformis reproduction on cotton seedlings was greater in field soil compared to autoclaved soil (P ≤ 0.05). This study suggests the importance of Fusarium species and R. reniformis in cotton seedling disease.  相似文献   

18.
Tomato (Lycopersicon esculentum Mill.) seedlings, susceptible (cv. Pearson A-I Improved) and resistant (cv. Pearson Improved) to race 1 Fusarium oxysporum f. sp. lycopersici (Sacc.) Snyd &Hans., were inoculated with Meloidogyne javanica (Trueb) Chitwood second-stage juveniles and 3 weeks later with race 1 F. oxysporum f. sp. lycopersici spores. One week after fungal inoculation, no fungus was visible in root tissue of the tomato cultivars and the giant cells were normal. Two weeks after fungal inoculation, abundant hyphae were visible in xylem tissues of Fusarium-susceptible but not of Fusarium-resistant plants. In susceptible plants, giant cell degeneration occurred, characterized by membrane and organelle disruption. In addition, where hyphae were in direct contact with the giant cell, dissolution of the giant cell wall occurred. Three weeks after fungal inoculation, fungal hyphae and spores were visible inside xylem tissues and giant cells in Fusarium-susceptible plants and in xylem tissue of the resistant plants. In susceptible and resistant plants, giant cell degeneration was apparent. Giant cell walls were completely broken down in Fusarium-susceptible tomato plants. In both cultivars infected by Fusarium, giant cell nuclei became spherical and dark inclusions occurred within the chromatin material which condensed adjacent to the fragmented nuclear membrane. No such ultrastructural changes were seen in the giant cells of control plants inoculated with nematode alone. Giant cell deterioration in both cultivars is probably caused by toxic fungal metabolites.  相似文献   

19.
Fusarium spp. isolated from insect-infested, diseased Centaurea diffusa and Centaurea maculosa in Europe were assessed for pathogenicity to North American plants of their respective original hosts: either C. diffusa or C. maculosa. Of the ten isolates of Fusarium spp. isolated from diseased Centaurea spp. in the Caucasus region of Russia and eastern Europe, all caused one or more disease symptoms or reductions in fresh weight of North American accessions of their original host species. In three instances, these reductions were statistically significant (p = 0.05). Symptoms included overall stunting, root lesions, and crown rot. Reductions in fresh weight of C. diffusa ranged from 17–78%, and C. maculosa exhibited reductions of 18–82%. The pathogenic cultures were identified as F. solani, F. tricinctum and F. oxysporum. Six of seven other cultures were identified as F. oxysporum, and one as F. tricinctum. It was concluded that further screening of a larger set of isolates of foreign Fusarium spp. under quarantine conditions stateside or in limited USDA-ARS overseas facilities is justified and promising.  相似文献   

20.
Fusarium oxysporum is a ubiquitous species complex of soilborne plant pathogens that comprises many different formae speciales, each characterized by a high degree of host specificity. In this study, the evolutionary relationships between different isolates of the F. oxysporum species complex have been examined, with a special emphasis on the formae speciales lycopersici and radicis-lycopersici, sharing tomato as host while causing different symptoms. Phylogenetic analyses of partial sequences of a housekeeping gene, the elongation factor-1α (EF-1α) gene, and a gene encoding a pathogenicity trait, the exopolygalacturonase (pgx4) gene, were conducted on a worldwide collection of F. oxysporum strains representing the most frequently observed vegetative compatibility groups of these formae speciales. Based on the reconstructed phylogenies, multiple evolutionary lineages were found for both formae speciales. However, different tree topologies and statistical parameters were obtained for the cladograms as several strains switched from one cluster to another depending on the locus that was used to infer the phylogeny. In addition, mating type analysis showed a mixed distribution of the MAT1-1 and MAT1-2 alleles in the F. oxysporum species complex, irrespective of the geographic origin of the tested isolates. This observation, as well as the topological conflicts that were detected between EF-1α and pgx4, are discussed in relation to the evolutionary history of the F. oxysporum species complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号