首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Targeting interleukin-2 (IL-2) and/or agonist anti-CD40 antibody (Ab) into tumors represents an effective vaccination strategy that avoids systemic toxicity and resolves treated-site tumors. Here, we examined IL-2 and/or anti-CD40 Ab-driven local versus systemic T cell function and the installation of T cell memory. Single tumor studies showed that IL-2 induced a potent CD4+ and CD8+ T cell response that was limited to the draining lymph node and treated-site tumor, and lymph node tumor-specific CD8+ T cells did not upregulate CD44. A two-tumor model showed that while IL-2-treated-site tumors resolved, distal tumors continued to grow, implying limited systemic immunity. In contrast, anti-CD40 Ab treatment with or without IL-2 expanded the systemic T cell response to non-draining lymph nodes, and distal tumors resolved. Tumor-specific T cells in lymph nodes of anti-CD40 Ab ± IL-2-treated mice upregulated CD44, demonstrating activation and transition to effector/memory migratory cells. While CD40-activated CD4+ T cells were not required for eradicating treated-site tumors, they, plus CD8+ T cells, were crucial for removing distal tumors. Rechallenge/depletion experiments showed that the effector/memory phase required the presence of previously CD40/IL-2-activated CD4+ and CD8+ T cells to prevent recurrence. These novel findings show that different T cell effector mechanisms can operate for the eradication of local treated-site tumors versus untreated distal tumors and that signaling through CD40 generates a whole of body, effector/memory CD4+ and CD8+ T cell response that is amplified and prolonged via IL-2. Thus, successful immunotherapy needs to generate collaborating CD4+ and CD8+ T cells for a complete long-term protective cure.  相似文献   

2.
Malignant gliomas are heavily infiltrated by immature myeloid cells that mediate immunosuppression. Agonistic CD40 monoclonal antibody (mAb) has been shown to activate myeloid cells and promote antitumor immunity. Our previous study has also demonstrated blockade of cyclooxygenase-2 (COX-2) reduces immunosuppressive myeloid cells, thereby suppressing glioma development in mice. We therefore hypothesized that a combinatory strategy to modulate myeloid cells via two distinct pathways, i.e., CD40/CD40L stimulation and COX-2 blockade, would enhance anti-glioma immunity. We used three different mouse glioma models to evaluate therapeutic effects and underlying mechanisms of a combination regimen with an agonist CD40 mAb and the COX-2 inhibitor celecoxib. Treatment of glioma-bearing mice with the combination therapy significantly prolonged survival compared with either anti-CD40 mAb or celecoxib alone. The combination regimen promoted maturation of CD11b+ cells in both spleen and brain, and enhanced Cxcl10 while suppressing Arg1 in CD11b+Gr-1+ cells in the brain. Anti-glioma activity of the combination regimen was T-cell dependent because depletion of CD4+ and CD8+ cells in vivo abrogated the anti-glioma effects. Furthermore, the combination therapy significantly increased the frequency of CD8+ T-cells, enhanced IFN-γ-production and reduced CD4+CD25+Foxp3+ T regulatory cells in the brain, and induced tumor-antigen-specific T-cell responses in lymph nodes. Our findings suggest that the combination therapy of anti-CD40 mAb with celecoxib enhances anti-glioma activities via promotion of type-1 immunity both in myeloid cells and T-cells.  相似文献   

3.
Long-term protection against Toxoplasma gondii is dependent on robust CD8+ T cell immunity. In the absence of this response, the host is unable to maintain chronicity, which results in recrudescence of infection and possible death. Factors needed for the persistence of protective CD8+ T cells against the parasite need to be evaluated. Previous studies from our laboratory have reported that synergism between γ chain cytokines like IL-7 and IL-15 is critical for the generation of CD8+ T cell response needed for protection during acute infection. In this study we report that the situation is different during the recall response where CD8+ T cell response is almost entirely dependent on IL-15, with IL-7 at best playing a minor role. In the absence of IL-15, CD8+ T cells fail to respond optimally to parasitic re-challenge and hosts are unable to control their replication, which leads to their death. Thus T. gondii infection may represent a unique situation where CD8+ T cell response during secondary challenge is primarily dependent on IL-15 with other γ chain cytokines having nominal effect. These findings provide important information regarding factors involved in the generation of protective immunity against T. gondii with strong implications in developing immunotherapeutic agents against the pathogen.  相似文献   

4.
CD8+ T cells may contribute to vaccines for respiratory syncytial virus (RSV). Compared to CD8+ T cells responding to RSV infection, vaccine-elicited anti-RSV CD8+ T cells are less well defined. We used a peptide vaccine to test the hypothesis that vaccine-elicited RSV-specific CD8+ T cells are protective against RSV pathogenesis. BALB/c mice were treated with a mixture (previously termed TriVax) of an M282-90 peptide representing an immunodominant CD8 epitope, the Toll-like receptor (TLR) agonist poly(I·C), and a costimulatory anti-CD40 antibody. TriVax vaccination induced potent effector anti-RSV CD8+ cytotoxic T lymphocytes (CTL). Mice were challenged with RSV strain A2-line19F, a model of RSV pathogenesis leading to airway mucin expression. Mice were protected against RSV infection and against RSV-induced airway mucin expression and cellular lung inflammation when challenged 6 days after vaccination. Compared to A2-line19F infection alone, TriVax vaccination followed by challenge resulted in effector CD8+ T cells with greater cytokine expression and the more rapid appearance of RSV-specific CD8+ T cells in the lung. When challenged 42 days after TriVax vaccination, memory CD8+ T cells were elicited with RSV-specific tetramer responses equivalent to TriVax-induced effector CD8+ T cells. These memory CD8+ T cells had lower cytokine expression than effector CD8+ T cells, and protection against A2-line19F was partial during the memory phase. We found that vaccine-elicited effector anti-RSV CD8+ T cells protected mice against RSV infection and pathogenesis, and waning protection correlated with reduced CD8+ T cell cytokine expression.  相似文献   

5.
CD8+ T cells directed against conserved viral regions elicit broad immunity against distinct influenza viruses, promote rapid virus elimination and enhanced host recovery. The influenza neuraminidase inhibitor, oseltamivir, is prescribed for therapy and prophylaxis, although it remains unclear how the drug impacts disease severity and establishment of effector and memory CD8+ T cell immunity. We dissected the effects of oseltamivir on viral replication, inflammation, acute CD8+ T cell responses and the establishment of immunological CD8+ T cell memory. In mice, ferrets and humans, the effect of osteltamivir on viral titre was relatively modest. However, prophylactic oseltamivir treatment in mice markedly reduced morbidity, innate responses, inflammation and, ultimately, the magnitude of effector CD8+ T cell responses. Importantly, functional memory CD8+ T cells established during the drug-reduced effector phase were capable of mounting robust recall responses. Moreover, influenza-specific memory CD4+ T cells could be also recalled after the secondary challenge, while the antibody levels were unaffected. This provides evidence that long-term memory T cells can be generated during an oseltamivir-interrupted infection. The anti-inflammatory effect of oseltamivir was verified in H1N1-infected patients. Thus, in the case of an unpredicted influenza pandemic, while prophylactic oseltamivir treatment can reduce disease severity, the capacity to generate memory CD8+ T cells specific for the newly emerged virus is uncompromised. This could prove especially important for any new influenza pandemic which often occurs in separate waves.  相似文献   

6.
7.
8.
In this study, we evaluated the long-term efficacy of a two-component subunit vaccine against Trypanosoma cruzi infection. C57BL/6 mice were immunized with TcG2/TcG4 vaccine delivered by a DNA-prime/Protein-boost (D/P) approach and challenged with T. cruzi at 120 or 180 days post-vaccination (dpv). We examined whether vaccine-primed T cell immunity was capable of rapid expansion and intercepting the infecting T. cruzi. Our data showed that D/P vaccine elicited CD4+ (30-38%) and CD8+ (22-42%) T cells maintained an effector phenotype up to 180 dpv, and were capable of responding to antigenic stimulus or challenge infection by a rapid expansion (CD8>CD4) with type 1 cytokine (IFNγ+ and TFNα+) production and cytolytic T lymphocyte (CTL) activity. Subsequently, challenge infection at 120 or 180 dpv, resulted in 2-3-fold lower parasite burden in vaccinated mice than was noted in unvaccinated/infected mice. Co-delivery of IL-12- and GMCSF-encoding expression plasmids provided no significant benefits in enhancing the anti-parasite efficacy of the vaccine-induced T cell immunity. Booster immunization (bi) with recombinant TcG2/TcG4 proteins 3-months after primary vaccine enhanced the protective efficacy, evidenced by an enhanced expansion (1.2-2.8-fold increase) of parasite-specific, type 1 CD4+ and CD8+ T cells and a potent CTL response capable of providing significantly improved (3-4.5-fold) control of infecting T. cruzi. Further, CD8+T cells in vaccinated/bi mice were predominantly of central memory phenotype, and capable of responding to challenge infection 4-6-months post bi by a rapid expansion to a poly-functional effector phenotype, and providing a 1.5-2.3-fold reduction in tissue parasite replication. We conclude that the TcG2/TcG4 D/P vaccine provided long-term anti-T. cruzi T cell immunity, and bi would be an effective strategy to maintain or enhance the vaccine-induced protective immunity against T. cruzi infection and Chagas disease.  相似文献   

9.
In chronic viral infections, persistent antigen presentation causes progressive exhaustion of virus-specific CD8+ T cells. It has become clear, however, that virus-specific naïve CD8+ T cells newly generated from the thymus can be primed with persisting antigens. In the setting of low antigen density and resolved inflammation, newly primed CD8+ T cells are preferentially recruited into the functional memory pool. Thus, continual recruitment of naïve CD8+ T cells from the thymus is important for preserving the population of functional memory CD8+ T cells in chronically infected animals. Friend virus (FV) is the pathogenic murine retrovirus that establishes chronic infection in adult mice, which is bolstered by the profound exhaustion of virus-specific CD8+ T cells induced during the early phase of infection. Here we show an additional evasion strategy in which FV disseminates efficiently into the thymus, ultimately leading to clonal deletion of thymocytes that are reactive to FV antigens. Owing to the resultant lack of virus-specific recent thymic emigrants, along with the above exhaustion of antigen-experienced peripheral CD8+ T cells, mice chronically infected with FV fail to establish a functional virus-specific CD8+ T cell pool, and are highly susceptible to challenge with tumor cells expressing FV-encoded antigen. However, FV-specific naïve CD8+ T cells generated in uninfected mice can be primed and differentiate into functional memory CD8+ T cells upon their transfer into chronically infected animals. These findings indicate that virus-induced central tolerance that develops during the chronic phase of infection accelerates the accumulation of dysfunctional memory CD8+ T cells.  相似文献   

10.
Cytomegaloviruses (CMVs) establish lifelong infections that are controlled in part by CD4+ and CD8+ T cells. To promote persistence, CMVs utilize multiple strategies to evade host immunity, including modulation of costimulatory molecules on infected antigen-presenting cells. In humans, CMV-specific memory T cells are characterized by the loss of CD27 expression, which suggests a critical role of the costimulatory receptor-ligand pair CD27-CD70 for the development of CMV-specific T cell immunity. In this study, the in vivo role of CD27-CD70 costimulation during mouse CMV infection was examined. During the acute phase of infection, the magnitudes of CMV-specific CD4+ and CD8+ T cell responses were decreased in mice with abrogated CD27-CD70 costimulation. Moreover, the accumulation of inflationary memory T cells during the persistent phase of infection and the ability to undergo secondary expansion required CD27-CD70 interactions. The downmodulation of CD27 expression, however, which occurs gradually and exclusively on inflationary memory T cells, is ligand independent. Furthermore, the IL-2 production in both noninflationary and inflationary CMV-specific T cells was dependent on CD27-CD70 costimulation. Collectively, these results highlight the importance of the CD27-CD70 costimulation pathway for the development of CMV-specific T cell immunity during acute and persistent infection.  相似文献   

11.
12.
T cells are functionally compromised during HIV infection despite their increased activation and proliferation. Although T cell hyperactivation is one of the best predictive markers for disease progression, its causes are poorly understood. Anti-tat natural immunity as well as anti-tat antibodies induced by Tat immunization protect from progression to AIDS and reverse signs of immune activation in HIV-infected patients suggesting a role of Tat in T cell dysfunctionality. The Tat protein of HIV-1 is known to induce, in vitro, the activation of CD4+ T lymphocytes, but its role on CD8+ T cells and how these effects modulate, in vivo, the immune response to pathogens are not known. To characterize the role of Tat in T cell hyperactivation and dysfunction, we examined the effect of Tat on CD8+ T cell responses and antiviral immunity in different ex vivo and in vivo models of antigenic stimulation, including HSV infection. We demonstrate for the first time that the presence of Tat during priming of CD8+ T cells favors the activation of antigen-specific CTLs. Effector CD8+ T cells generated in the presence of Tat undergo an enhanced and prolonged expansion that turns to a partial dysfunctionality at the peak of the response, and worsens HSV acute infection. Moreover, Tat favors the development of effector memory CD8+ T cells and a transient loss of B cells, two hallmarks of the chronic immune activation observed in HIV-infected patients. Our data provide evidence that Tat affects CD8+ T cell responses to co-pathogens and suggest that Tat may contribute to the CD8+ T cell hyperactivation observed in HIV-infected individuals.  相似文献   

13.
Using a mouse neuroblastoma cell line, we have demonstrated that vaccination of tumor-free mice with a cell-based vaccine leads to productive immunity and resistance to tumor challenge, while vaccination of tumor-bearing mice does not. The T cell immunity induced by this vaccine, as measured by in vitro assays, is amplified by the depletion of Treg. Our goal is to understand this barrier to the development of protective cellular immunity. mRNA microarray analyses of CD8+ T cells from naïve or tumor-bearing mice undergoing vaccination were carried out with or without administering anti-CD25 antibody. Gene-expression pathway analysis revealed the presence of CD8+ T cells expressing stem cell-associated genes early after induction of productive anti-tumor immunity in tumor-free mice, prior to any phenotypic changes, but not in tumor-bearing mice. These data demonstrate that early after the induction of productive immune response, cells within the CD8+ T cell compartment adopt a stem cell-related genetic phenotype that correlates with increased anti-tumor function.  相似文献   

14.
Regulatory T (Treg) cells are fundamental in the control of immunity and excessive tissue pathology. In paracoccidioidomycosis, an endemic mycosis of Latin America, the immunoregulatory mechanisms that control the progressive and regressive forms of this infection are poorly known. Due to its modulatory activity on Treg cells, we investigated the effects of anti-CD25 treatment over the course of pulmonary infection in resistant (A/J) and susceptible (B10.A) mice infected with Paracoccidioides brasiliensis. We verified that the resistant A/J mice developed higher numbers and more potent Treg cells than susceptible B10.A mice. Compared to B10.A cells, the CD4+CD25+Foxp3+ Treg cells of A/J mice expressed higher levels of CD25, CTLA4, GITR, Foxp3, LAP and intracellular IL-10 and TGF-β. In both resistant and susceptible mice, anti-CD25 treatment decreased the CD4+CD25+Foxp3+ Treg cell number, impaired indoleamine 2,3-dioxygenase expression and resulted in decreased fungal loads in the lungs, liver and spleen. In A/J mice, anti-CD25 treatment led to an early increase in T cell immunity, demonstrated by the augmented influx of activated CD4+ and CD8+ T cells, macrophages and dendritic cells to the lungs. At a later phase, the mild infection was associated with decreased inflammatory reactions and increased Th1/Th2/Th17 cytokine production. In B10.A mice, anti-CD25 treatment did not alter the inflammatory reactions but increased the fungicidal mechanisms and late secretion of Th1/Th2/Th17 cytokines. Importantly, in both mouse strains, the early depletion of CD25+ cells resulted in less severe tissue pathology and abolished the enhanced mortality observed in susceptible mice. In conclusion, this study is the first to demonstrate that anti-CD25 treatment is beneficial to the progressive and regressive forms of paracoccidioidomycosis, potentially due to the anti-CD25-mediated reduction of Treg cells, as these cells have suppressive effects on the early T cell response in resistant mice and the clearance mechanisms of fungal cells in susceptible mice.  相似文献   

15.
Recent studies have demonstrated the importance of CD40/CD154 (CD40L) interactions for the generation of cell-mediated antitumor immune responses. Here we show that signaling via CD40 (through the use of the activating anti-CD40 mAb, 1C10) can actually promote the in vitro generation of CTL activity by CD8+ splenic T cells from mice bearing a large MOPC-315 tumor. Anti-CD40 mAb had to be added at the initiation of the stimulation cultures of tumor-bearing splenic cells in order to realize fully its potentiating activity for cytotoxic T lymphocyte (CTL) generation, suggesting that signaling through CD40 is important at the inductive stage of antitumor cytotoxicity. Moreover, anti-CD40 mAb was found to enhance the expression of the B7-2 (CD86) and, to a lesser extent, the B7-1 (CD80) costimulatory molecules on B220+ cells (i.e., B cells), and B7-2 and, to a lesser extent, B7-1 molecules played an important role in the potentiating effect of anti-CD40 mAb for CTL generation by tumor-bearer splenic cells. Furthermore, B220+ cells were found to be essential for the potentiating effect of anti-CD40 mAb, as depletion of B220+ cells at the inductive stage completely abrogated the ability of anti-CD40 mAb to enhance CTL generation. Thus, signaling through CD40 enhances CTL generation by CD8+ T cells from tumor-bearing mice by a mechanism that involves the up-regulation of B7-2 and, to a lesser extent, B7-1 expression on B220+ cells. Received: 23 December 1998 / Accepted: 22 February 1999  相似文献   

16.
Reactive oxygen intermediates (ROI) generated in response to receptor stimulation play an important role in cellular responses. However, the effect of increased H2O2 on an antigen-specific CD8+ T cell response was unknown. Following T cell receptor (TCR) stimulation, the expression and oxidation of peroxiredoxin II (PrdxII), a critical antioxidant enzyme, increased in CD8+ T cells. Deletion of PrdxII increased ROI, S phase entry, division, and death during in vitro division. During primary acute viral and bacterial infection, the number of effector CD8+ T cells in PrdxII-deficient mice was increased, while the number of memory cells were similar to those of the wild-type cells. Adoptive transfer of P14 TCR transgenic cells demonstrated that the increased expansion of effector cells was T cell autonomous. After rechallenge, effector CD8+ T cells in mutant animals were more skewed to memory phenotype than cells from wild-type mice, resulting in a larger secondary memory CD8+ T cell pool. During chronic viral infection, increased antigen-specific CD8+ T cells accumulated in the spleens of PrdxII mutant mice, causing mortality. These results demonstrate that PrdxII controls effector CD8+ T cell expansion, secondary memory generation, and immunopathology.  相似文献   

17.
Listeria monocytogenes infection induces a strong inflammatory response characterized by the production of IL-12 and IFN-γ and protective immunity against this pathogen is dependent on CD8+ T cells (CTL). Recent studies have suggested that these inflammatory cytokines affect the rate of memory CD8+ T cell generation as well as the number of short-lived effector cells generated. The role of the closely related cytokine, IL-23, in this response has not been examined. We hypothesized that IL-12 and IL-23 produced by dendritic cells collectively enhance the generation and function of memory cells. To test this hypothesis, we employed a DC vaccination approach. Mice lacking IL-12 and IL-23 were vaccinated with wild-type (WT), IL-12−/−, or IL-12/23−/− DC and protection to Lm was monitored. Mice vaccinated with WT and IL-12−/− DC were resistant to lethal challenge with Lm. Surprisingly, mice vaccinated with IL-12/23−/− DC exhibited significantly reduced protection when challenged. Protection correlated with the relative size of the memory pools generated. In summary, these data indicate that IL-23 can partially compensate for the lack of IL-12 in the generation protective immunity against Lm.  相似文献   

18.
Respiratory syncytial virus (RSV) can cause bronchiolitis and viral pneumonia in young children and the elderly. Lack of vaccines and recurrence of RSV infection indicate the difficulty in eliciting protective memory immune responses. Tissue resident memory T cells (TRM) can confer protection from pathogen re-infection and, in human experimental RSV infection, the presence of lung CD8+ TRM cells correlates with a better outcome. However, the requirements for generating and maintaining lung TRM cells during RSV infection are not fully understood. Here, we use mouse models to assess the impact of innate immune response determinants in the generation and subsequent expansion of the TRM cell pool during RSV infection. We show that CD8+ TRM cells expand independently from systemic CD8+ T cells after RSV re-infection. Re-infected MAVS and MyD88/TRIF deficient mice, lacking key components involved in innate immune recognition of RSV and induction of type I interferons (IFN-α/β), display impaired expansion of CD8+ TRM cells and reduction in antigen specific production of granzyme B and IFN-γ. IFN-α treatment of MAVS deficient mice during primary RSV infection restored TRM cell expansion upon re-challenge but failed to recover TRM cell functionality. Our data reveal how innate immunity, including the axis controlling type I IFN induction, instructs and regulates CD8+ TRM cell responses to RSV infection, suggesting possible mechanisms for therapeutic intervention.  相似文献   

19.
Trypanosoma cruzi infection is controlled but not eliminated by host immunity. The T. cruzi trans-sialidase (TS) gene superfamily encodes immunodominant protective antigens, but expression of altered peptide ligands by different TS genes has been hypothesized to promote immunoevasion. We molecularly defined TS epitopes to determine their importance for protection versus parasite persistence. Peptide-pulsed dendritic cell vaccination experiments demonstrated that one pair of immunodominant CD4+ and CD8+ TS peptides alone can induce protective immunity (100% survival post-lethal parasite challenge). TS DNA vaccines have been shown by us (and others) to protect BALB/c mice against T. cruzi challenge. We generated a new TS vaccine in which the immunodominant TS CD8+ epitope MHC anchoring positions were mutated, rendering the mutant TS vaccine incapable of inducing immunity to the immunodominant CD8 epitope. Immunization of mice with wild type (WT) and mutant TS vaccines demonstrated that vaccines encoding enzymatically active protein and the immunodominant CD8+ T cell epitope enhance subdominant pathogen-specific CD8+ T cell responses. More specifically, CD8+ T cells from WT TS DNA vaccinated mice were responsive to 14 predicted CD8+ TS epitopes, while T cells from mutant TS DNA vaccinated mice were responsive to just one of these 14 predicted TS epitopes. Molecular and structural biology studies revealed that this novel costimulatory mechanism involves CD45 signaling triggered by enzymatically active TS. This enhancing effect on subdominant T cells negatively regulates protective immunity. Using peptide-pulsed DC vaccination experiments, we have shown that vaccines inducing both immunodominant and subdominant epitope responses were significantly less protective than vaccines inducing only immunodominant-specific responses. These results have important implications for T. cruzi vaccine development. Of broader significance, we demonstrate that increasing breadth of T cell epitope responses induced by vaccination is not always advantageous for host immunity.  相似文献   

20.
IL-21 is an immune-enhancing cytokine, which showed promising results in cancer immunotherapy. We previously observed that the administration of anti-CD4 cell-depleting antibody strongly enhanced the anti-tumor effects of an IL-21-engineered neuroblastoma (NB) cell vaccine. Here, we studied the therapeutic effects of a combination of recombinant (r) IL-21 and anti-CD4 monoclonal antibodies (mAb) in a syngeneic model of disseminated NB. Subcutaneous rIL-21 therapy at 0.5 or 1 μg/dose (at days 2, 6, 9, 13 and 15 after NB induction) had a limited effect on NB development. However, coadministration of rIL-21 at the two dose levels and a cell-depleting anti-CD4 mAb cured 28 and 70 % of mice, respectively. Combined immunotherapy was also effective if started 7 days after NB implant, resulting in a 30 % cure rate. Anti-CD4 antibody treatment efficiently depleted CD4+ CD25high Treg cells, but alone had limited impact on NB. Combination immunotherapy by anti-CD4 mAb and rIL-21 induced a CD8+ cytotoxic T lymphocyte response, which resulted in tumor eradication and long-lasting immunity. CD4+ T cells, which re-populated mice after combination immunotherapy, were required for immunity to NB antigens as indicated by CD4+ T cell depletion and re-challenge experiments. In conclusion, these data support a role for regulatory CD4+ T cells in a syngeneic NB model and suggest that rIL-21 combined with CD4+ T cell depletion reprograms CD4+ T cells from immune regulatory to anti-tumor functions. These observations open new perspectives for the use of IL-21-based immunotherapy in conjunction with transient CD4+ T cell depletion, in human metastatic NB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号