首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Obesity-related renal lipotoxicity and chronic kidney disease (CKD) are prevalent pathologies with complex aetiologies. One hallmark of renal lipotoxicity is the ectopic accumulation of lipid droplets in kidney podocytes and in proximal tubule cells. Renal lipid droplets are observed in human CKD patients and in high-fat diet (HFD) rodent models, but their precise role remains unclear. Here, we establish a HFD model in Drosophila that recapitulates renal lipid droplets and several other aspects of mammalian CKD. Cell type–specific genetic manipulations show that lipid can overflow from adipose tissue and is taken up by renal cells called nephrocytes. A HFD drives nephrocyte lipid uptake via the multiligand receptor Cubilin (Cubn), leading to the ectopic accumulation of lipid droplets. These nephrocyte lipid droplets correlate with endoplasmic reticulum (ER) and mitochondrial deficits, as well as with impaired macromolecular endocytosis, a key conserved function of renal cells. Nephrocyte knockdown of diglyceride acyltransferase 1 (DGAT1), overexpression of adipose triglyceride lipase (ATGL), and epistasis tests together reveal that fatty acid flux through the lipid droplet triglyceride compartment protects the ER, mitochondria, and endocytosis of renal cells. Strikingly, boosting nephrocyte expression of the lipid droplet resident enzyme ATGL is sufficient to rescue HFD-induced defects in renal endocytosis. Moreover, endocytic rescue requires a conserved mitochondrial regulator, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC1α). This study demonstrates that lipid droplet lipolysis counteracts the harmful effects of a HFD via a mitochondrial pathway that protects renal endocytosis. It also provides a genetic strategy for determining whether lipid droplets in different biological contexts function primarily to release beneficial or to sequester toxic lipids.

A high-fat diet model of chronic kidney disease in Drosophila reveals that boosting triglyceride lipolysis in renal cells is sufficient to rescue renal cell function via a pathway involving PGC1 alpha and mitochondria.  相似文献   

2.
AimsLeptin resistance has been associated with cardiac lipotoxicity; however, whether leptin resistance is a risk factor associated with cardiac lipotoxicity at different time points in diet-induced obesity is unclear. The objective of this study was to evaluate this relationship.Main methodsMale Wistar rats were fed a normal chow diet (12% from fat) or a high-fat diet (49% from fat) for 15 and 45 weeks, respectively. The adiposity index, body weight and co-morbidities were evaluated. Heart lipotoxicity was assessed by analyzing cardiac function and morphological changes as well as cardiac triglyceride, ceramide and lipid hydroperoxide accumulations. Cardiac apoptosis was examined using the TUNEL method. Leptin function was determined by examining plasma leptin levels, cardiac leptin receptors (OB-R) and related phosphorylations of AMP-activated kinase protein (AMPK) and Acetyl CoA carboxylase (ACC).Key findingsThe diet-induced obesity was characterized by an elevated adiposity index, body weight and leptin levels at both 15 and 45 weeks. There was no difference between groups in the cardiac triglyceride or lipid hydroperoxide levels. Interestingly, ceramide levels decreased in obese animals in both experimental periods. The cardiac morphological and functional parameters were not altered. Although down-regulation of OB-R has occurred in chronic obesity, it did not adversely affect AMPK or ACC phosphorylation.SignificanceThe development of obesity via long-term feeding of a high-fat diet to rats does not result in cardiac lipotoxicity but promotes the down-regulation of OB-R. However, this does not result in altered levels of AMPK or ACC phosphorylations in this animal model.  相似文献   

3.
PURPOSE OF REVIEW: Nonalcoholic fatty liver disease is a spectrum of diseases ranging from simple steatosis to cirrhosis. The hallmark of nonalcoholic fatty liver disease is hepatocyte accumulation of triglycerides. We will review the role of triglyceride synthesis in nonalcoholic fatty liver disease progression and summarize recent findings about triglyceride synthesis inhibition and prevention of progressive disease. RECENT FINDINGS: Attempts to inhibit triglyceride synthesis in animal models have resulted in improvement in hepatic steatosis. Studies in animal models of nonalcoholic fatty liver disease demonstrate that inhibition of acyl-coenzyme A:diacylglycerol acyltransferase, the enzyme that catalyzes the final step in triglyceride synthesis, results in improvement in hepatic steatosis and insulin sensitivity. We recently confirmed that hepatic specific inhibition of acyl-coenzyme A:diacylglycerol acyltransferase with antisense oligonucleotides improves hepatic steatosis in obese, diabetic mice but, unexpectedly, exacerbated injury and fibrosis in that model of progressive nonalcoholic fatty liver disease. When hepatocyte triglyceride synthesis was inhibited, free fatty acids accumulated in the liver, leading to induction of fatty acid oxidizing systems that increased hepatic oxidative stress and liver damage. These findings suggest that the ability to synthesize triglycerides may, in fact, be protective in obesity. SUMMARY: Nonalcoholic fatty liver disease is strongly associated with obesity and peripheral insulin resistance. Peripheral insulin resistance increases lipolysis in adipose depots, promoting increased free fatty acid delivery to the liver. In states of energy excess, such as obesity, the latter normally triggers hepatic triglyceride synthesis. When hepatic triglyceride synthesis is unable to accommodate increased hepatocyte free fatty acid accumulation, however, lipotoxicity results. Thus, rather than being hepatotoxic, liver triglyceride accumulation is actually hepato-protective in obese, insulin-resistant individuals.  相似文献   

4.
In the last few decades a change in lifestyle has led to an alarming increase in the prevalence of obesity and obesity-associated complications. Obese patients are at increased risk of developing hypertension, heart disease, insulin resistance (IR), dyslipidemia, type 2 diabetes and renal disease. The excess calories are stored as triglycerides in adipose tissue, but also may accumulate ectopically in other organs, including the kidney, which contributes to the damage through a toxic process named lipotoxicity. Recently, the evidence suggests that renal lipid accumulation leads to glomerular damage and, more specifically, produces dysfunction in podocytes, key cells that compose and maintain the glomerular filtration barrier. Our aim was to analyze the early mechanisms underlying the development of renal disease associated with the process of lipotoxicity in podocytes. Our results show that treatment of podocytes with palmitic acid produced intracellular accumulation of lipid droplets and abnormal glucose and lipid metabolism. This was accompanied by the development of inflammation, oxidative stress and endoplasmic reticulum stress and insulin resistance. We found specific rearrangements of the actin cytoskeleton and slit diaphragm proteins (Nephrin, P-Cadherin, Vimentin) associated with this insulin resistance in palmitic-treated podocytes. We conclude that lipotoxicity accelerates glomerular disease through lipid accumulation and inflammation. Moreover, saturated fatty acids specifically promote insulin resistance by disturbing the cytoarchitecture of podocytes. These data suggest that renal lipid metabolism and cytoskeleton rearrangements may serve as a target for specific therapies aimed at slowing the progression of podocyte failure during metabolic syndrome.  相似文献   

5.
DNA断裂因子相似蛋白(cell-death-inducing DNA-fragmentation-factor-like effector,CIDE)家族包括三个成员:CIDE-A、CIDE-B和CIDE-C。小鼠中CIDE-C被称为脂肪特异性蛋白27(fat special protein27,FSP27),以前都作为细胞凋亡因子加以研究。近年来研究显示,敲除了CIDE-A、CIDE-B、FSP27的动物都表现出了能量释放增多,且能够抵抗食物导致的肥胖以及对胰岛素敏感性增强。CIDE家族定位于内质网、脂滴和线粒体,参与甘油三酯储存、降解以及分泌代谢,与肥胖、高血脂、糖尿病、脂肪肝等脂类代谢相关疾病也有着密切关系,在调控机体脂质代谢平衡方面扮演着重要的角色。该文对CIDE家族在甘油三酯代谢方面的作用及其调控的分子机制进行综述。  相似文献   

6.
Non-alcoholic fatty liver disease is prevalent in human obesity and type 2 diabetes, and is characterized by increases in both hepatic triglyceride accumulation (denoted as steatosis) and expression of pro-inflammatory cytokines such as IL-1β. We report here that the development of hepatic steatosis requires IL-1 signaling, which upregulates Fatty acid synthase to promote hepatic lipogenesis. Using clodronate liposomes to selectively deplete liver Kupffer cells in ob/ob mice, we observed remarkable amelioration of obesity-induced hepatic steatosis and reductions in liver weight, triglyceride content and lipogenic enzyme expressions. Similar results were obtained with diet-induced obese mice, although visceral adipose tissue macrophage depletion also occurred in response to clodronate liposomes in this model. There were no differences in the food intake, whole body metabolic parameters, serum β-hydroxybutyrate levels or lipid profiles due to clodronate-treatment, but hepatic cytokine gene expressions including IL-1β were decreased. Conversely, treatment of primary mouse hepatocytes with IL-1β significantly increased triglyceride accumulation and Fatty acid synthase expression. Furthermore, the administration of IL-1 receptor antagonist to obese mice markedly reduced obesity-induced steatosis and hepatic lipogenic gene expression. Collectively, our findings suggest that IL-1β signaling upregulates hepatic lipogenesis in obesity, and is essential for the induction of pathogenic hepatic steatosis in obese mice.  相似文献   

7.

Objective

The relationship between obesity and cardiovascular disease (CVD) remains unclear. This study aims to describe the relationship between arterial stiffness and obesity in order to investigate the effects of obesity on CVD.

Methods

We collected data from 5,158 individuals over 40 years of age from a cross-sectional study in Nanjing, China. Anthropometric, demographic, hemodynamic measurements and arterial stiffness measured through brachial-ankle pulse wave velocity (baPWV) were obtained. Subjects were grouped by body mass index (BMI), waist circumference (WC) and visceral adiposity index (VAI), a sex-specific index based on BMI, WC, triglyceride (TG) and high-density lipoprotein cholesterol (HDL-C).

Results

The multivariate regression analysis revealed a negative but weak effect of BMI (β = −0.047, P<0.001) on baPWV, but failed to demonstrate any significant effect of WC on baPWV while VAI was a positive independent indicator of baPWV (β = 0.023, P = 0.022). The unadjusted baPWV significantly increased across groups with higher obesity categories (P<0.01). Although the positive association was lost after adjustments for confounding factors in the BMI or WC categories (P>0.05), it was still obtained between baPWV and VAI quartile (P<0.01). No differences were observed among the metabolically healthy groups or the metabolically abnormal groups in the BMI and WC categories (P>0.05). However, baPWV significantly increased across groups with higher VAI categories even in the same metabolic category (P<0.01).

Conclusions

This study supports the concept of heterogeneity of metabolic status among individuals within the same obesity range. Obese individuals are at an increased risk of arterial stiffness regardless of their metabolic conditions. VAI may be a surrogate marker for the assessment of obesity and the effects of obesity on arterial stiffness.  相似文献   

8.
Kidney fibrosis is a hallmark of chronic kidney disease (CKD) progression that is caused by tubular injury and dysregulated lipid metabolism. Genetic abolition fatty acid-binding protein 4 (FABP4), a key lipid transporter, has been reported to suppress kidney interstitial fibrosis. However, the role and underlying mechanism of chemical inhibition of FABP4 in fibrotic kidney have not been well-documented. Here, we examined preemptive the effect of a FABP4 inhibitor, BMS309403, on lipid metabolism of tubular epithelial cells (TECs) and progression of kidney fibrosis. The expression of FABP4 was significantly elevated, concomitated with the accumulation of lipid droplets in TECs during kidney fibrosis. Treatment with BMS309403 alleviated lipid deposition of TECs, as well as interstitial fibrotic responses both in unilateral ureteral obstruction (UUO)-engaged mice and TGF-β-induced TECs. Moreover, BMS309403 administration enhanced fatty acid oxidation (FAO) in TECs by regulating peroxisome proliferator-activated receptor γ (PPARγ) and restoring FAO-related enzyme activities; In addition, BMS309403 markedly reduced cell lipotoxicity, such as endoplasmic reticulum (ER) stress and apoptosis in fibrotic kidney. Taken together, our results suggest that preemptive pharmacological inhibition of FABP4 by BMS309403 rebalances abnormal lipid metabolism in TECs and attenuates the progression of kidney fibrosis, thus may hold therapeutic potential for the treatment of fibrotic kidney diseases.Subject terms: Metabolism, Chronic kidney disease  相似文献   

9.
The lipotoxic effects of obesity are important contributing factors in cancer, diabetes, and cardiovascular disease (CVD), but the genetic mechanisms, by which lipotoxicity influences the initiation and progression of CVD are poorly understood. Hearts, of obese and diabetic individuals, exhibit several phenotypes in common, including ventricular remodeling, prolonged QT intervals, enhanced frequency of diastolic and/or systolic dysfunction, and decreased fractional shortening. High systemic lipid concentrations are thought to be the leading cause of lipid-related CVD in obese or diabetic individuals. However, an alternative possibility is that obesity leads to cardiac-specific steatosis, in which lipids and their metabolites accumulate within the myocardial cells themselves and thereby disrupt normal cardiovascular function. Drosophila has recently emerged as an excellent model to study the fundamental genetic mechanisms of metabolic control, as well as their relationship to heart function. Two recent studies of genetic and diet-induced cardiac lipotoxicity illustrate this. One study found that alterations in genes associated with membrane phospholipid metabolism may play a role in the abnormal lipid accumulation associated with cardiomyopathies. The second study showed that Drosophila fed a diet high in saturated fats, developed obesity, dysregulated insulin and glucose homeostasis, and severe cardiac dysfunction. Here, we review the current understanding of the mechanisms that contribute to the detrimental effects of dysregulated lipid metabolism on cardiovascular function. We also discuss how the Drosophila model could help elucidate the basic genetic mechanisms of lipotoxicity- and metabolic syndrome-related cardiomyopathies in mammals.  相似文献   

10.
The biochemical differences between simple steatosis, a benign liver disease, and non-alcoholic steatohepatitis, which leads to cirrhosis, are unclear. Fat aussie is an obese mouse strain with a truncating mutation (foz) in the Alms1 gene. Chow-fed female foz/foz mice develop obesity, diabetes, and simple steatosis. We fed foz/foz and wildtype mice a high-fat diet. Foz/foz mice developed serum ALT elevation and severe steatohepatitis with hepatocyte ballooning, inflammation, and fibrosis; wildtype mice showed simple steatosis. Biochemical pathways favoring hepatocellular lipid accumulation (fatty acid uptake; lipogenesis) and lipid disposal (fatty acid beta-oxidation; triglyceride egress) were both induced by high-fat feeding in wildtype but not foz/foz mice. The resulting extremely high hepatic triglyceride levels were associated with induction of mitochondrial uncoupling protein-2 and adipocyte-specific fatty acid binding protein-2, but not cytochrome P4502e1 or lipid peroxidation. In this model of metabolic syndrome, transition of steatosis to steatohepatitis was associated with hypoadiponectinemia, a mediator of hepatic fatty acid disposal pathways.  相似文献   

11.
The lipotoxic effects of obesity are important contributing factors in cancer, diabetes, and cardiovascular disease (CVD), but the genetic mechanisms, by which lipotoxicity influences the initiation and progression of CVD are poorly understood. Hearts, of obese and diabetic individuals, exhibit several phenotypes in common, including ventricular remodeling, prolonged QT intervals, enhanced frequency of diastolic and/or systolic dysfunction, and decreased fractional shortening. High systemic lipid concentrations are thought to be the leading cause of lipid-related CVD in obese or diabetic individuals. However, an alternative possibility is that obesity leads to cardiac-specific steatosis, in which lipids and their metabolites accumulate within the myocardial cells themselves and thereby disrupt normal cardiovascular function. Drosophila has recently emerged as an excellent model to study the fundamental genetic mechanisms of metabolic control, as well as their relationship to heart function. Two recent studies of genetic and diet-induced cardiac lipotoxicity illustrate this. One study found that alterations in genes associated with membrane phospholipid metabolism may play a role in the abnormal lipid accumulation associated with cardiomyopathies. The second study showed that Drosophila fed a diet high in saturated fats, developed obesity, dysregulated insulin and glucose homeostasis, and severe cardiac dysfunction. Here, we review the current understanding of the mechanisms that contribute to the detrimental effects of dysregulated lipid metabolism on cardiovascular function. We also discuss how the Drosophila model could help elucidate the basic genetic mechanisms of lipotoxicity- and metabolic syndrome-related cardiomyopathies in mammals.  相似文献   

12.
《Journal of lipid research》2017,58(6):1132-1142
Lipid accumulation is a pathological feature of every type of kidney injury. Despite this striking histological feature, physiological accumulation of lipids in the kidney is poorly understood. We studied whether the accumulation of lipids in the fasted kidney are derived from lipoproteins or NEFAs. With overnight fasting, kidneys accumulated triglyceride, but had reduced levels of ceramide and glycosphingolipid species. Fasting led to a nearly 5-fold increase in kidney uptake of plasma [14C]oleic acid. Increasing circulating NEFAs using a β adrenergic receptor agonist caused a 15-fold greater accumulation of lipid in the kidney, while mice with reduced NEFAs due to adipose tissue deficiency of adipose triglyceride lipase had reduced triglycerides. Cluster of differentiation (Cd)36 mRNA increased 2-fold, and angiopoietin-like 4 (Angptl4), an LPL inhibitor, increased 10-fold. Fasting-induced kidney lipid accumulation was not affected by inhibition of LPL with poloxamer 407 or by use of mice with induced genetic LPL deletion. Despite the increase in CD36 expression with fasting, genetic loss of CD36 did not alter fatty acid uptake or triglyceride accumulation. Our data demonstrate that fasting-induced triglyceride accumulation in the kidney correlates with the plasma concentrations of NEFAs, but is not due to uptake of lipoprotein lipids and does not involve the fatty acid transporter, CD36.  相似文献   

13.
《PloS one》2013,8(2)
Acetyl coenzyme A carboxylase B gene (ACACB) single nucleotide polymorphism (SNP) rs2268388 is reproducibly associated with type 2 diabetes (T2DM)-associated nephropathy (DN). ACACB knock-out mice are also protected from obesity. This study assessed relationships between rs2268388, body mass index (BMI) and gene expression in multiple populations, with and without T2DM. Among subjects without T2DM, rs2268388 DN risk allele (T) associated with higher BMI in Pima Indian children (n = 2021; p-additive = 0.029) and African Americans (AAs) (n = 177; p-additive = 0.05), with a trend in European Americans (EAs) (n = 512; p-additive = 0.09), but not Germans (n = 858; p-additive = 0.765). Association with BMI was seen in a meta-analysis including all non-T2DM subjects (n = 3568; p-additive = 0.02). Among subjects with T2DM, rs2268388 was not associated with BMI in Japanese (n = 2912) or EAs (n = 1149); however, the T allele associated with higher BMI in the subset with BMI≥30 kg/m2 (n = 568 EAs; p-additive = 0.049, n = 196 Japanese; p-additive = 0.049). Association with BMI was strengthened in a T2DM meta-analysis that included an additional 756 AAs (p-additive = 0.080) and 48 Hong Kong Chinese (p-additive = 0.81) with BMI≥30 kg/m2 (n = 1575; p-additive = 0.0033). The effect of rs2268388 on gene expression revealed that the T risk allele associated with higher ACACB messenger levels in adipose tissue (41 EAs and 20 AAs with BMI>30 kg/m2; p-additive = 0.018) and ACACB protein levels in the liver tissue (mixed model p-additive = 0.03, in 25 EA bariatric surgery patients with BMI>30 kg/m2 for 75 exams). The T allele also associated with higher hepatic triglyceride levels. These data support a role for ACACB in obesity and potential roles for altered lipid metabolism in susceptibility to DN.  相似文献   

14.
Steatosis is a frequent complication of hepatitis C virus infection. In mice, this condition is recapitulated by the expression of a single viral protein, the nucleocapsid core. Core localizes to the surface of lipid droplets (LDs) in infected liver cells through a process dependent on host diacylglycerol acyltransferase 1 (DGAT1), an enzyme that synthesizes triglycerides in the endoplasmic reticulum. Whether DGAT1 also plays a role in core-induced steatosis is uncertain. Here, we show that mouse embryonic fibroblasts isolated from DGAT1(-/-) mice are protected from core-induced steatosis, as are livers of DGAT1(-/-) mice expressing core, demonstrating that the steatosis is DGAT1-dependent. Surprisingly, core expression did not increase DGAT1 activity or triglyceride synthesis, thus excluding the possibility that core activates DGAT1 to cause steatosis. Instead, we find that DGAT1-dependent localization of core to LDs is a prerequisite for the steatogenic properties of the core. Using biochemical and immunofluorescence microscopy techniques, we show that the turnover of lipids in core-coated droplets is decreased, providing a physiological mechanism for core-induced steatosis. Our results support a bipartite model in which core first requires DGAT1 to gain access to LDs, and then LD-localized core interferes with triglyceride turnover, thus stabilizing lipid droplets and leading to steatosis.  相似文献   

15.

Objective

Several studies have reported the existence of a subgroup of obese individuals with normal metabolic profiles. It remains unclear what factors are responsible for this phenomenon. We proposed that adipocyte size might be a key factor in the protection of metabolically healthy obese (MHO) individuals from the adverse effects of obesity.

Subjects

Thirty-five patients undergoing bariatric surgery were classified as MHO (n = 15) or metabolically unhealthy obese (MUO, n = 20) according to cut-off points adapted from the International Diabetes Federation definition of the metabolic syndrome. Median body mass index (BMI) was 48 (range 40–71).

Results

There was a moderate correlation between omental adipocyte size and subcutaneous adipocyte size (r = 0.59, p<0.05). The MHO group had significantly lower mean omental adipocyte size (80.9±10.9 µm) when compared with metabolically unhealthy patients (100.0±7.6 µm, p<0.0001). Mean subcutaneous adipocyte size was similar between the two groups (104.1±8.5 µm versus 107.9±7.1 µm). Omental, but not subcutaneous adipocyte size, correlated with the degree of insulin resistance as measured by HOMA-IR (r = 0.73, p<0.0005), as well as other metabolic parameters including triglyceride/HDL-cholesterol ratio and HbA1c. Twenty-eight patients consented to liver biopsy. Of these, 46% had steatohepatitis and fibrosis. Fifty percent (including all the MHO patients) had steatosis only. Both omental and subcutaneous adipocyte size were significantly associated with the degree of steatosis (r = 0.66, p<0.0001 and r = 0.63, p<0.005 respectively). However, only omental adipocyte size was an independent predictor of the presence or absence of fibrosis.

Conclusion

Metabolically healthy individuals are a distinct subgroup of the severely obese. Both subcutaneous and omental adipocyte size correlated positively with the degree of fatty liver, but only omental adipocyte size was related to metabolic health, and possibly progression from hepatic steatosis to fibrosis.  相似文献   

16.

Objectives

We examined whether arginase inhibition influences hepatic metabolic pathways and whole body adiposity in diet-induced obesity.

Methods and Results

After obesity induction by a high fat diet (HFD), mice were fed either the HFD or the HFD with an arginase inhibitor, Nω-hydroxy-nor-L-arginine (nor-NOHA). Nor-NOHA significantly prevented HFD-induced increases in body, liver, and visceral fat tissue weight, and ameliorated abnormal lipid profiles. Furthermore, nor-NOHA treatment reduced lipid accumulation in oleic acid-induced hepatic steatosis in vitro. Arginase inhibition increased hepatic nitric oxide (NO) in HFD-fed mice and HepG2 cells, and reversed the elevated mRNA expression of hepatic genes in lipid metabolism. Expression of phosphorylated 5′ AMPK-activated protein kinase α was increased by arginase inhibition in the mouse livers and HepG2 cells.

Conclusions

Arginase inhibition ameliorated obesity-induced hepatic lipid abnormalities and whole body adiposity, possibly as a result of increased hepatic NO production and subsequent activation of metabolic pathways involved in hepatic triglyceride metabolism and mitochondrial function.  相似文献   

17.
Lower skeletal muscle mitochondrial oxidative phosphorylation capacity (OXPHOS) and intramyocellular lipid (IMCL) accumulation have been implicated in the etiology of insulin resistance (IR) in obesity. The purpose of this study was to examine the impact of endurance exercise on biochemical and morphological measures of IMCL and mitochondrial content, and their relationship to IR in obese individuals. We examined mitochondrial content (subunit protein abundance and maximal activity of electron transport chain enzymes), IMCL/mitochondrial morphology in both subsarcolemmal (SS) and intermyofibrillar (IMF) regions by transmission electron microscopy, and intracellular lipid metabolites (diacylglycerol and ceramide) in vastus lateralis biopsies, as well as, the homeostasis model assessment index of IR (HOMA-IR) prior to and following twelve weeks of an endurance exercise regimen in healthy age- and physical activity-matched lean and obese men. Obese men did not show evidence of mitochondrial OXPHOS dysfunction, disproportionate IMCL content in sub-cellular regions, or diacylglycerol/ceramide accretion despite marked IR vs. lean controls. Endurance exercise increased OXPHOS and mitochondrial size and density, but not number of individual mitochondrial fragments, with moderate improvements in HOMA-IR. Exercise reduced SS IMCL content (size, number and density), increased IMF IMCL content, while increasing IMCL/mitochondrial juxtaposition in both regions. HOMA-IR was inversely associated with SS (r = −0.34; P = 0.051) and IMF mitochondrial density (r = −0.29; P = 0.096), IMF IMCL/mitochondrial juxtaposition (r = −0.30; P = 0.086), and COXII (r = −0.32; P = 0.095) and COXIV protein abundance (r = −0.35; P = 0.052); while positively associated with SS IMCL size (r = 0.28; P = 0.119) and SS IMCL density (r = 0.25; P = 0.152). Our findings suggest that once physical activity and cardiorespiratory fitness have been controlled for, skeletal muscle mitochondrial and IMCL profile in obesity may only partially contribute to the development of IR.  相似文献   

18.
Apolipoprotein A5 (apoA5) has an important role in lipid metabolism, specifically for triglyceride‐rich lipoproteins. Recently, evidence has emerged for an association between genetic variability at the APOA5 locus and increased risk of obesity and metabolic syndrome. However, its mechanism of action remains to be fully elucidated. Importantly, an intracellular role of apoA5 has been indicated since apoA5 is associated with cytoplasmic lipid droplets and affects intrahepatic triglyceride accumulation, as well as affecting intravascular triglyceride metabolism. Given that adipocytes provide the largest storage depot for energy in the form of triglyceride within the lipid droplets, and play a crucial role in the development of obesity, we highlight recent findings discussing the interaction of apoA5 with adipocytes or adipose tissue, indicating that apoA5 may act as a novel regulator to modulate triglyceride storage in adipocytes. We review the association of APOA5 gene polymorphisms with obesity and metabolic syndrome, and propose potential mechanisms by which apoA5 may increase susceptibility to these conditions. This review provides new insights into the physiological role of apoA5 and identifies a potential therapeutic target for obesity and associated disorders.  相似文献   

19.

Background

Perilipin 2 (Plin2) is a lipid droplet protein that has roles in both lipid and glucose homeostasis. An increase in Plin2 in liver is associated with the development of steatosis, glucose intolerance, and ceramide accumulation in alcoholic liver disease. We investigated the role of Plin2 on energy balance and glucose and lipid homeostasis in wildtype and Plin2 knockout (Plin2KO) mice chronically fed a Lieber-DeCarli liquid ethanol or control diet for six weeks.

Methods

We performed in vivo measurements of energy intake and expenditure; body composition; and glucose tolerance. After sacrifice, liver was dissected for histology and lipid analysis.

Results

We found that neither genotype nor diet had a significant effect on final weight, body composition, or energy intake between WT and Plin2KO mice fed alcohol or control diets. Additionally, alcohol feeding did not affect oxygen consumption or carbon dioxide production in Plin2KO mice. We performed glucose tolerance testing and observed that alcohol feeding failed to impair glucose tolerance in Plin2KO mice. Most notably, absence of Plin2 prevented hepatic steatosis and ceramide accumulation in alcohol-fed mice. These changes were related to downregulation of genes involved in lipogenesis and triglyceride synthesis.

Conclusions

Plin2KO mice chronically fed alcohol are protected from hepatic steatosis, glucose intolerance, and hepatic ceramide accumulation, suggesting a critical pathogenic role of Plin2 in experimental alcoholic liver disease.  相似文献   

20.
Ceramide is among a number of potential lipotoxic molecules that are thought to modulate cellular energy metabolism. The heart is one of the tissues thought to become dysfunctional due to excess lipid accumulation. Dilated lipotoxic cardiomyopathy, thought to be the result of diabetes and severe obesity, has been modeled in several genetically altered mice, including animals with cardiac-specific overexpression of glycosylphosphatidylinositol (GPI)-anchored human lipoprotein lipase (LpL(GPI)). To test whether excess ceramide was implicated in cardiac lipotoxicity, de novo ceramide biosynthesis was inhibited pharmacologically by myriocin and genetically by heterozygous deletion of LCB1, a subunit of serine palmitoyltransferase (SPT). Inhibition of SPT, a rate-limiting enzyme in ceramide biosynthesis, reduced fatty acid and increased glucose oxidation in isolated perfused LpL(GPI) hearts, improved systolic function, and prolonged survival rates. Our results suggest a critical role for ceramide accumulation in the pathogenesis of lipotoxic cardiomyopathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号