首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Aims

Alterations in properties of the bladder with maturation are relevant physiologically and pathophysiologically. The aim of this study was to investigate alterations in bladder properties with maturation in juvenile vs. adult pig, focussing on differences between layers of the bladder wall (mucosa vs. detrusor) and the presence and functional contribution of interstitial cells (ICs).

Methods

Basal and cholinergic-induced phasic contractions (PCs) in mucosal and denuded-detrusor strips from juvenile and adult pigs were assessed. Expression of c-kit, a marker of ICs, was investigated in the mucosa and the detrusor layers of the pig bladder. The functional role of ICs in mediating PCs was examined using imatinib.

Results

Mucosal strips from juvenile and adult pig bladders demonstrated basal PCs whilst denuded-detrusor strips did not. PCs of mucosal strips from juvenile pigs were significantly greater than those from adult bladders. Immunoreactivity for c-kit was detected in mucosa and detrusor layers of pig bladder. Histological studies demonstrated a distinct layer of smooth muscle between the urothelium and bladder detrusor, termed the muscularis mucosa. Imatinib was only effective in inhibiting PCs in mucosal strips from juvenile pigs. Imatinib inhibited the carbachol-induced PCs of both juvenile and adult denuded-detrusor strips, although strips from juvenile bladders demonstrated a trend towards being more sensitive to this inhibition.

Conclusions

We confirm the presence of c-kit positive ICs in pig urinary bladder. The enhanced PCs of mucosal strips from juvenile animals could be due to altered properties of ICs or the muscularis mucosa in the bladders of these animals.  相似文献   

2.
3.
4.
5.
6.

Aims/hypothesis

Diabetic voiding dysfunction has been reported in epidemiological dimension of individuals with diabetes mellitus. Animal models might provide new insights into the molecular mechanisms of this dysfunction to facilitate early diagnosis and to identify new drug targets for therapeutic interventions.

Methods

Thirty male Sprague-Dawley rats received either chow or high-fat diet for eleven weeks. Proteomic alterations were comparatively monitored in both groups to discover a molecular fingerprinting of the urinary bladder remodelling/dysfunction. Results were validated by ELISA, Western blotting and immunohistology.

Results

In the proteome analysis 383 proteins were identified and canonical pathway analysis revealed a significant up-regulation of acute phase reaction, hypoxia, glycolysis, β-oxidation, and proteins related to mitochondrial dysfunction in high-fat diet rats. In contrast, calcium signalling, cytoskeletal proteins, calpain, 14-3-3η and eNOS signalling were down-regulated in this group. Interestingly, we found increased ubiquitin proteasome activity in the high-fat diet group that might explain the significant down-regulation of eNOS, 14-3-3η and calpain.

Conclusions/interpretation

Thus, high-fat diet is sufficient to induce significant remodelling of the urinary bladder and alterations of the molecular fingerprint. Our findings give new insights into obesity related bladder dysfunction and identified proteins that may indicate novel pathophysiological mechanisms and therefore constitute new drug targets.  相似文献   

7.
8.
9.
In a previous study in frog skin (Castro et al., J. Memb. Biol. 134:15-29, 1993), it was shown that TJs experimentally disrupted by a selective deposition of BaSO4 could be re-sealed upon addition of Ca2+to the apical solution; in the absence of apical Ca2+, the normal Ca2+ activity of the Na2SO4-Ringer's bathing the basolateral side was not able to induce TJ resealing. We now show that apical Ca2+also activates the TJ sealing mechanism in frog urinary bladders. Three known procedures were utilized to increase TJ permeability, all in the absence of apical Ca2+: (i) exposure to high positive transepithelial clamping potentials; (ii) exposure of the apical surface to hypertonic solutions; and (iii) selective deposition of BaSO4 in the TJs. The resealing of the TJs was promoted by raising the concentration of Ca2+ in the apical solution. This effect of Ca2+ is not impaired by the presence of Ca2+ channel blockers (nifedipine, verapamil, Mn2+ or Cd2+) in the apical solution, indicating that junction resealing does not depend on Ca2+ entering the cells through the apical membrane. TJ resealing that occurs in response to raised apical Ca2+ most likely results from a direct effect of Ca2+, entering the disrupted TJs from the apical solution and reaching the zonula adhaerens Ca2+ receptors (E-cadherins). Protein kinase C (PKC) must play a significant role in the control of TJ assembly in this tight epithelia since the PKC inhibitor (H7) and the activator (diC8) markedly affect TJ recovery after disruption by apical hypertonicity. H7 treated tissues show marked recuperation of conductance even in the absence of apical Ca2+. In contrast, diC8 prevents tissue recuperation which normally occurs after addition of Ca2+ to the apical solution.  相似文献   

10.
In a previous study in frog skin (Castro et al., J. Memb. Biol. 134:15–29, 1993), it was shown that TJs experimentally disrupted by a selective deposition of BaSO4 could be re-sealed upon addition of Ca2+to the apical solution; in the absence of apical Ca2+, the normal Ca2+ activity of the Na2SO4-Ringer's bathing the basolateral side was not able to induce TJ resealing. We now show that apical Ca2+also activates the TJ sealing mechanism in frog urinary bladders. Three known procedures were utilized to increase TJ permeability, all in the absence of apical Ca2+: (i) exposure to high positive transepithelial clamping potentials; (ii) exposure of the apical surface to hypertonic solutions; and (iii) selective deposition of BaSO4 in the TJs. The resealing of the TJs was promoted by raising the concentration of Ca2+ in the apical solution. This effect of Ca2+ is not impaired by the presence of Ca2+ channel blockers (nifedipine, verapamil, Mn2+ or Cd2+) in the apical solution, indicating that junction resealing does not depend on Ca2+ entering the cells through the apical membrane. TJ resealing that occurs in response to raised apical Ca2+ most likely results from a direct effect of Ca2+, entering the disrupted TJs from the apical solution and reaching the zonula adhaerens Ca2+ receptors (E-cadherins). Protein kinase C (PKC) must play a significant role in the control of TJ assembly in this tight epithelia since the PKC inhibitor (H7) and the activator (diC8) markedly affect TJ recovery after disruption by apical hypertonicity. H7 treated tissues show marked recuperation of conductance even in the absence of apical Ca2+. In contrast, diC8 prevents tissue recuperation which normally occurs after addition of Ca2+ to the apical solution.  相似文献   

11.
12.
13.
14.
Anoctamin-6 (Ano6, TMEM16F) belongs to a family of putative Ca2+-activated Cl channels and operates as membrane phospholipid scramblase. Deletion of Ano6 leads to reduced skeleton size, skeletal deformities, and mineralization defects in mice. However, it remains entirely unclear how a lack of Ano6 leads to a delay in bone mineralization by osteoblasts. The Na+/Ca2+ exchanger NCX1 was found to interact with Ano6 in a two-hybrid split-ubiquitin screen. Using human osteoblasts and osteoblasts from Ano6−/− and WT mice, we demonstrate that NCX1 requires Ano6 to efficiently translocate Ca2+ out of osteoblasts into the calcifying bone matrix. Ca2+-activated anion currents are missing in primary osteoblasts isolated from Ano6 null mice. Our findings demonstrate the importance of NCX1 for bone mineralization and explain why deletion of an ion channel leads to the observed mineralization defect: Ano6 Cl currents are probably required to operate as a Cl bypass channel, thereby compensating net Na+ charge movement by NCX1.  相似文献   

15.
16.
Approximately 3-8 million people in the United States suffer from interstitial cystitis/bladder pain syndrome (IC/BPS), a debilitating condition characterized by increased urgency and frequency of urination, as well as nocturia and general pelvic pain, especially upon bladder filling or voiding. Despite years of research, the cause of IC/BPS remains elusive and treatment strategies are unable to provide complete relief to patients. In order to study nervous system contributions to the condition, many animal models have been developed to mimic the pain and symptoms associated with IC/BPS. One such murine model is urinary bladder distension (UBD). In this model, compressed air of a specific pressure is delivered to the bladder of a lightly anesthetized animal over a set period of time. Throughout the procedure, wires in the superior oblique abdominal muscles record electrical activity from the muscle. This activity is known as the visceromotor response (VMR) and is a reliable and reproducible measure of nociception. Here, we describe the steps necessary to perform this technique in mice including surgical manipulations, physiological recording, and data analysis. With the use of this model, the coordination between primary sensory neurons, spinal cord secondary afferents, and higher central nervous system areas involved in bladder pain can be unraveled. This basic science knowledge can then be clinically translated to treat patients suffering from IC/BPS.  相似文献   

17.

Background

Urological complications associated with sickle cell disease (SCD), include nocturia, enuresis, urinary infections and urinary incontinence. However, scientific evidence to ascertain the underlying cause of the lower urinary tract symptoms in SCD is lacking.

Objective

Thus, the aim of this study was to evaluate urinary function, in vivo and ex vivo, in the Berkeley SCD murine model (SS).

Methods

Urine output was measured in metabolic cage for both wild type and SS mice (25-30 g). Bladder strips and urethra rings were dissected free and mounted in organ baths. In isolated detrusor smooth muscle (DSM), relaxant response to mirabegron and isoproterenol (1nM-10μM) and contractile response to (carbachol (CCh; 1 nM-100μM), KCl (1 mM-300mM), CaCl2 (1μM-100mM), α,β-methylene ATP (1, 3 and 10 μM) and electrical field stimulation (EFS; 1-32 Hz) were measured. Phenylephrine (Phe; 10nM-100μM) was used to evaluate the contraction mechanism in the urethra rings. Cystometry and histomorphometry were also performed in the urinary bladder.

Results

SS mice present a reduced urine output and incapacity to produce typical bladder contractions and bladder emptying (ex vivo), compared to control animals. In DSM, relaxation in response to a selective β3-adrenergic agonist (mirabegron) and to a non-selective β-adrenergic (isoproterenol) agonist were lower in SS mice. Additionally, carbachol, α, β-methylene ATP, KCl, extracellular Ca2+ and electrical-field stimulation promoted smaller bladder contractions in SS group. Urethra contraction induced by phenylephrine was markedly reduced in SS mice. Histological analyses of SS mice bladder revealed severe structural abnormalities, such as reductions in detrusor thickness and bladder volume, and cell infiltration.

Conclusions

Taken together, our data demonstrate, for the first time, that SS mice display features of urinary bladder dysfunction, leading to impairment in urinary continence, which may have an important role in the pathogenesis of the enuresis and infections observed the SCD patients.  相似文献   

18.
Suprapubic aspiration of the bladder has proved a safe and reliable method of collecting urine for culture. It avoids contamination of the specimen and dispenses with the need for colony counts, because the isolation of any organism indicates bladder bacteriuria. In addition, urine collected in this way can be kept at 4°C. or at room temperature for up to 10 days before it is cultured.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号