首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrostatic nature of plant plasma membrane (PM) plays significant roles in the ion uptake and toxicity. Electrical potential at the PM exterior surface (ψ0o) influences ion distribution at the PM exterior surface, and the depolarization of ψ0o negativity increases the electrical driving force for cation transport, but decreases the driving force for anion transport across the PMs. Assessing environmental risks of toxic ions has been a difficult task because the ion concentration (activity) in medium is not directly corrected to its potential effects. Medium characteristics like the content of major cations have important influences on the bioavailability and toxicity of ions in natural waters and soils. Models such as the Free Ion Activity Model (FIAM) and the Biotic Ligand Model (BLM), as usually employed, neglect the ψ0o and hence often lead to false conclusions about interaction mechanisms between toxic ions and major cations for biology. The neglect of ψ0o is not inconsistent with its importance, and possibly reflects the difficulty in the measurement of ψ0o. Based on the dual effects of the ψ0o, electrostatic models were developed to better predict the uptake and toxicity of metallic and metalloid ions. These results suggest that the electrostatic models provides a more robust mechanistic framework to assess metal(loid) ecotoxicity and predict critical metal(loid) concentrations linked to a biological effect, indicating its potential utility in risk assessment of metal(loid)s in water and terrestrial ecosystems.Key words: electrostatic models, plasma membrane, surface electric potential, ion uptake, toxicity, risk assessment  相似文献   

2.
We have systematically explored the Hofmeister effects of cations and anions (0.3-1.75 M range) for acidic Desulfovibrio desulfuricans apoflavodoxin (net charge −19, pH 7) and basic horse heart cytochrome c (net charge +17, pH 4.5). The Hofmeister effect of the ions on protein thermal stability was assessed by the parameter dTtrs/d[ion] (Ttrs; thermal midpoint). We show that dTtrs/d[ion] correlates with ion partition coefficients between surface and bulk water and ion surface tension effects: this suggests direct interactions between ions and proteins. Surprisingly, the stability effects of the different ions on the two model proteins are similar, implying a major role of the peptide backbone, instead of charged groups, in mediation of the interactions. Upon assessing chemical/physical properties of the ions responsible for the Hofmeister effects on protein stability, ion charge density was identified as most important. Taken together, our study suggests key roles for ion hydration and the peptide group in facilitating interactions between Hofmeister ions and proteins.  相似文献   

3.
Evaluation of antioxidant capacities of green microalgae   总被引:2,自引:0,他引:2  
Three strains of green microalgae, Chlorococcum sp.C53, Chlorella sp. E53, and Chlorella sp.ED53 were studied for their antioxidant activities. Crude extracts of these microalgae in hot water and in ethanol were examined for their total phenolic contents and for their antioxidant capacities. In order to determine their phenolic contents, the Folin–Ciocalteu method was used. As for the determination of their antioxidant capacities, four different assays were used: (1) total antioxidant capacity determination; (2) DPPH radical scavenging assay; (3) ferrous ion chelating ability assay; and (4) inhibition of lipid peroxidation (using thiobarbituric acid reactive substance). For all the strains we have studied, their ethanolic extract showed more antioxidant activities than their hot water extract. Categorically, the ethanolic extract of Chlorella sp.E53 exhibited both the highest total phenolic content of 35.5?±?0.14 mg gallic acid equivalent (GAE) g?1 dry weight and the highest DPPH radical scavenging of 68.18?±?0.38 % at 1.4 mg mL?1 (IC50 0.81 mg mL?1), whereas Chlorella sp.ED53 showed both the highest ferrous ion chelation activity of 42.78?±?1.48 % at 1 mg mL?1 (IC50 1.23 mg mL?1) and the highest inhibition of lipid peroxidation of 87.96?±?0.59 % at 4 mg mL?1. This high level of inhibition is comparable to 94.42?±?1.39 % of butylated hydroxytoluene, a commercial synthetic antioxidant, at the same concentration.  相似文献   

4.
《农业工程》2021,41(6):499-511
IntroductionIn this study, physicochemical, genotoxic, and mutagenic properties of water samples from 10 rivers of the Almaty region (Kazakhstan) were evaluated.ResultsThe results of the study demonstrated an increased level  of mineralization and electrical conductivity that might be caused by the high concentration of dissolved mineral salts and ions such as Na+, K+, Ca2 +, Cl, SO42−, HCO3. The excess of Maximum Allowable Concentrations (MACs) for various heavy metals was revealed. The results of tests using the pXen7-lux biosensor showed toxic effects of river waters. At the same time, the studies involved lux biosensors pRecA-lux, pColD-lux, pSoxS-lux, pKatG-lux did not find any genotoxic and oxidative effects. However, toxicity and mutagenicity of the studied water samples was detected by using plant test (Allium cepa and Hordeum vulgare). Phytotoxic, cytotoxic (decrease in the mitotic index) and mutagenic (increase in the frequency of chromosomal aberrations) activity of the water samples was observed. The data of in vivo tests (Danio rerio) showed the high toxicity and teratogenicity of river waters for fish embryos at all stages of development.ConclusionsThe results of this comprehensive study indicate that the contamination of the surface natural waters poses a threat to rivers dwellers and the human population in the rivers areas.  相似文献   

5.
In order to analyze the salt transport affected by roots and its effects on soil salinity in an experimental irrigated field newly established in an alluvial valley of the Yellow River in China, spatial distribution of ions contained in waters, soils and crops relevant to these phenomena were evaluated there. During the intensive surveys conducted in year 2007–2008, the Yellow River water, irrigation canal water, groundwater, field soils and crops, etc. were sampled and their chemical characteristics such as electrical conductivity, concentrations of ions Na+, Ca2+, Mg2+, K+, Cl, SO42−and NO3 were measured. Irrigation seemed to cause increases in the concentrations of ions Na+, Cl and SO42− in the groundwater. Although those were also major ions contained in the field soil, the soil was classed as saline but not sodic according to the standard classification. On the other hand, K+, which is one of the major essential nutrients for plant growth, was highly concentrated in the crops, while Na+ was not concentrated because of crop’s poor ability to absorb it. The ion concentration within the plant body seemed to be reflected by the active and selective ion uptake by roots and the transpiration stream. Furthermore, salt accumulation in the surface-irrigated field largely depended on the upward transport of water and ions in the soil profile affected by root absorption capacity. The information obtained in this study will contribute to the development of scientific methods for sustainable and effective plant production in irrigated fields.  相似文献   

6.
Most inland saline waters in southern Australia predominantly contain Na+ and Cl as major ions. The proportions of Ca2+, Mg2+, SO4 2−, HCO3 and CO3 2− in these waters somewhat vary and might influence salinity tolerance of freshwater organisms. Here the salinity stress of five ionic compositions to the freshwater snail Physa acuta Draparnaud (Gastropoda: Physidae) was compared: commercial sea salt Ocean Nature (ON), synthetic Ocean Nature (ONS) and three saline water types that are common in southern Australia (ONS but without [1]: SO4 2−, HCO3 and CO3 2−, [2]: Ca2+, HCO3 and CO3 2−, [3]: Ca2+, Mg2+), Milli-Q water was used as a negative control. The 96-h LC50 values for all treatments did not differ. However in prolonged sub-lethal exposures, results varied depending on the ionic composition. Growth was negative and shell strength reduced in treatments lacking Ca. Though the content of major cationic elements (Ca, Mg, Na and K) did not differ per unit dry weight of snail across the treatments, the total load of these elements per individual snail varied among treatments. Furthermore, at the sub-lethal salinities tested, 1 and 5 mS cm−1, ionic compositions had more effect on the snail’s growth than salinity. The long-term effects on freshwater animals, especially taxa with calcium-based exoskeletons, from exposure to common saline water types with low calcium concentrations will likely be greater than from exposure to saline waters with an ionic composition similar to seawater.  相似文献   

7.
Microalgae are extensively used in the remediation of heavy metals like iron. However, factors like toxicity, bioavailability and iron speciation play a major role in its removal by microalgae. Thus, in this study, toxicity of three different iron salts (FeSO4, FeCl3 and Fe(NO3)3) was evaluated towards three soil microalgal isolates, Chlorella sp. MM3, Chlamydomonas sp. MM7 and Chlorococcum sp. MM11. Interestingly, all the three iron salts gave different EC50 concentrations; however, ferric nitrate was found to be significantly more toxic followed by ferrous sulphate and ferric chloride. The EC50 analysis revealed that Chlorella sp. was significantly resistant to iron compared to other microalgae. However, almost 900 μg g?1 iron was accumulated by Chlamydomonas sp. grown with 12 mg L?1 ferric nitrate as an iron source when compared to other algae and iron salts. The time-course bioaccumulation confirmed that all the three microalgae adsorb the ferric salts such as ferric nitrate and ferric chloride more rapidly than ferrous salt, whereas intracellular accumulation was found to be rapid for ferrous salts. However, the amount of iron accumulated or adsorbed by algae, irrespective of species, from ferrous sulphate medium is comparatively lower than ferric chloride and ferric nitrate medium. The Fourier transform infrared spectroscopy (FTIR) analysis shows that the oxygen atom and P?=?O group of polysaccharides present in the cell wall of algae played a major role in the bioaccumulation of iron ions by algae.  相似文献   

8.
Measurement by two nuclear magnetic resonance (NMR) techniques of the mean residence time τa of water molecules inside Chlorella vulgaris (Beijerinck) var. “viridis” (Chodot) is reported. The first is the Conlon and Outhred (1972 Biochim Biophys Acta 288: 354-361) technique in which extracellular water is doped with paramagnetic Mn2+ ions. Some complications in application of this technique are identified as being caused by the affinity of Chlorella cell walls for Mn2+ ions which shortens the NMR relaxation times of intra- and extracellular water. The second is based upon observations of effects of diffusion on the spin echo of intra- and extracellular water. Echo attenuation of intracellular water is distinguished from that of extracellular water by the extent to which diffusive motion is restricted. Intracellular water, being restricted to the cell volume, suffers less echo attenuation. From the dependence of echo amplitude upon gradient strength at several values of echo time, the mean residence time of intracellular water can be determined. From the mean residence time of intracellular water, the diffusional water permeability coefficient of the Chlorella membrane is calculated to be 2.1 ± 0.4 × 10−3 cm sec−1.  相似文献   

9.
This study investigated the effects of pH, salinity, biomass concentration, and algal organic matter (AOM) on the efficiency of four commercial cationic flocculants. The tannin-based biopolymers Tanfloc SG and SL and the polyacrylamide polymers Flopam FO 4800 SH and FO 4990 SH were tested for flocculation of two microalgae models, the freshwater Chlorella vulgaris and the marine Nannochloropsis oculata. Both biomass concentration and AOM presence affected all polymers evaluated, whereas salinity and pH affected only Flopam and Tanfloc, respectively. A restabilization effect due to overdosing was only observed for Flopam polymers and increasing Tanfloc dose resulted in improved efficiency. Flopam polymers showed a significant decrease in the maximum quantum yield of photosystem II as function of polymer dose for Chlorella, which supported the need for toxicological studies to assess the potential toxicity of Flopam. In overall, Tanfloc was not affected by salinity nor presented potential toxicity therefore being recommended for the flocculation of both freshwater and marine species.  相似文献   

10.
In this study we investigated the spatial and temporal variation in soil solution chemistry and of water and ion fluxes through the soil in a forest ecosystem. Our aim was to evaluate the relevance of these variations for the accuracy of average areal soil solution concentrations and ion fluxes with seepage at 90 cm depth.Twenty spatially distinct subcompartments of approximately 1 m2 were established within a mature stand of Norway spruce and ceramic suction lysimeters were installed at depths of 20, 35 and 90 cm. A tensiometer was placed close to each suction lysimeter, and one throughfall sampler was established for each subcompartment.Soil solution samples were analysed for major ions (H+, Na+, K+, Ca2+, Mg2+, Mn2+, Fe3+, Al3+, Cl-, NO 3 - , SO 4 2- . We calculated water fluxes for each subcompartment separately by a numeric simulation of the soil water flux close to the lysimeters. The ion fluxes at each lysimeter were calculated by multiplying the simulated water fluxes with the ion concentrations on a fortnightly base. Averaging these 20 independent ion fluxes gave the areal average flux and an estimate of its statistical accuracy. The spatial variation of ion concentrations in the soil solution was high with coefficients of variance ranging from 5% to 128%. Part of the spatial variation was related to stem distance. Temporal variation of the concentrations was less than spatial for most ions. The spatial variation of water and ion fluxes with seepage was also substantial; for example the fluxes of SO 4 2- -S calculated for each subcompartment ranged from 21 to 119 kg ha-1 yr-1, with an arithmetic average of 47 kg ha-1 yr-1. For H2O, Mg2+, Cl-, and SO 4 2- , the spatial heterogeneity of seepage fluxes was largely explained by the heterogeneity of throughfall fluxes. No such relationship was found for nitrogen.Despite using 20 replicates, the 95% confidence intervals of the average annual areal fluxes with seepage were found to be 20–30% for most ions.  相似文献   

11.
Total ion (Na+, K+, Ca2+, SO4 2? and Cl?) accumulation by plants, ion contents in plant tissues and ion secretion by salt glands on the surface of shoots of Tamarix ramosissima adapted to different soil salinity, namely low (0.06 mmol Na+/g soil), moderate (3.14–4.85 mmol Na+/g soil) and strong (7.56 mmol Na+/g soil) were analyzed. There are two stages of interrelated and complementary regulation of ion homeostasis in whole T. ramosissima plants: (1) regulation of ion influx into the plant from the soil and (2) changing the secretion efficiency of salt glands on shoots. The secretion efficiency of salt glands was appraised by the ratio of ion secretion to tissue ion content. Independent of soil salinity, the accumulation of K+ and Ca2+ was higher than the contents of these ions in the soil. Furthermore, the accumulation of K+, Ca2+ and SO4 2? ions by plants was maintained within a narrow range of values. Under low soil salinity, Na+ was accumulated, whereas under moderate and strong salinity, the influxes of Na+ were limited. However, under strong salinity, the accumulation of Na+ was threefold higher than that under low soil salinity. This led to a change in the Na+/K+ ratio (tenfold), an increase in the activity of salt glands (tenfold) and a reduction in plant growth (fivefold). An apparently high Na+/K+ ratio was the main factor determining over-active functioning of salt glands under strong salinity. Principal component analysis showed that K+ ions played a key role in ion homeostasis at all levels of salinity. Ca2+ played a significant role at low salinity, whereas Cl? and interrelated regulatory components (K+ and proline) played a role under strong salinity. Proline, despite its low concentration under strong salinity, was involved in the regulation of secretion by salt glands. Different stages and mechanisms of ion homeostasis were dominant in T. ramosissima plants adapted to different levels of salinity. These mechanisms facilitated the accumulation of Na+ in plants under low soil salinity, the limitation of Na+ under moderate salinity and the over-activation of Na+ secretion by salt glands under strong salinity, which are all necessary for maintaining ion homeostasis and water potential in the whole plant.  相似文献   

12.
The diversity of microorganisms active within sedimentary rocks provides important controls on the geochemistry of many subsurface environments. In particular, biodegradation of organic matter in sedimentary rocks contributes to the biogeochemical cycling of carbon and other elements and strongly impacts the recovery and quality of fossil fuel resources. In this study, archaeal diversity was investigated along a salinity gradient spanning 8 to 3,490 mM Cl in a subsurface shale rich in CH4 derived from biodegradation of sedimentary hydrocarbons. Shale pore waters collected from wells in the main CH4-producing zone lacked electron acceptors such as O2, NO3, Fe3+, or SO42−. Acetate was detected only in high-salinity waters, suggesting that acetoclastic methanogenesis is inhibited at Cl concentrations above ~1,000 mM. Most-probable-number series revealed differences in methanogen substrate utilization (acetate, trimethylamine, or H2/CO2) associated with chlorinity. The greatest methane production in enrichment cultures was observed for incubations with salinity at or close to the native pore water salinity of the inoculum. Restriction fragment length polymorphism analyses of archaeal 16S rRNA genes from seven wells indicated that there were links between archaeal communities and pore water salinity. Archaeal clone libraries constructed from sequences from 16S rRNA genes isolated from two wells revealed phylotypes similar to a halophilic methylotrophic Methanohalophilus species and a hydrogenotrophic Methanoplanus species at high salinity and a single phylotype closely related to Methanocorpusculum bavaricum at low salinity. These results show that several distinct communities of methanogens persist in this subsurface, CH4-producing environment and that each community is adapted to particular conditions of salinity and preferential substrate use and each community induces distinct geochemical signatures in shale formation waters.  相似文献   

13.
Constructed wetland systems are used to reduce pollutants and pathogens in wastewater effluent, but comparatively little is known about pathogen transport through natural wetland habitats. Fecal protozoans, including Cryptosporidium parvum, Giardia lamblia, and Toxoplasma gondii, are waterborne pathogens of humans and animals, which are carried by surface waters from land-based sources into coastal waters. This study evaluated key factors of coastal wetlands for the reduction of protozoal parasites in surface waters using settling column and recirculating mesocosm tank experiments. Settling column experiments evaluated the effects of salinity, temperature, and water type (“pure” versus “environmental”) on the vertical settling velocities of C. parvum, G. lamblia, and T. gondii surrogates, with salinity and water type found to significantly affect settling of the parasites. The mesocosm tank experiments evaluated the effects of salinity, flow rate, and vegetation parameters on parasite and surrogate counts, with increased salinity and the presence of vegetation found to be significant factors for removal of parasites in a unidirectional transport wetland system. Overall, this study highlights the importance of water type, salinity, and vegetation parameters for pathogen transport within wetland systems, with implications for wetland management, restoration efforts, and coastal water quality.  相似文献   

14.

Background

Freshwater anostracans inhabit ephemeral water bodies in which as the water level decreases due to evaporation the salt concentration increases. Thus, for most anostracans salinity becomes the major stress factor.

Results

We tested five concentrations of NaCl (0 to 8 g/l) on the life table demography of Branchipus schaefferi fed Chlorella (alga). Age-specific survivorship curves of male and female B. schaefferi showed nearly a similar pattern in that increased salt concentration resulted in decreased survivorship. The age-specific reproduction (mx) of females showed several peaks of cyst production at 0 and 1 g/l salinity while in treatments containing salt at 4 or 8 g/l, there were fewer peaks. Average lifespan, life expectancy at birth, gross and net reproductive rates, generation time and the rate of population increase were all significantly influenced by the salt concentration in the medium. The highest value of net reproductive rate (970 cysts/female) was in treatments containing 0 g/l of salt, while the lowest was 13 cysts/female at 8 g/l. The rate of population increase (r) varied from 0.52 to 0.32 per day depending on the salt concentration in the medium.

Conclusion

The low survival and offspring production of B. schaefferi at higher salinity levels suggests that this species is unlikely to colonize inland saline water bodies. Therefore, the temporary ponds in which it is found, proper conservative measures must be taken to protect this species.  相似文献   

15.
Salinization of freshwater ecosystems as a result of human activities has markedly increased in recent years. Much attention is currently directed at evaluating the effects of increased salinity on freshwater biota. In the Central Appalachian region of the eastern United States, specific conductance from alkaline discharges associated with mountain top mining practices has been implicated in macroinvertebrate community declines in streams receiving coal mining discharges. Whole effluent toxicity testing of receiving stream water was used to test the hypothesis that mine discharges are toxic to laboratory test organisms and further, that toxicity is related to ionic concentrations as indicated by conductivity. Chronic toxicity testing using Ceriodaphnia dubia was conducted by contract laboratories at 72 sites with a total of 129 tests over a 3.5 year period. The database was evaluated to determine the ionic composition of mine effluent dominated streams and whether discharge constituents were related to toxicity in C. dubia. As expected, sulfate was found to be the dominant anion in streams receiving mining discharges with bicarbonate variable and sometimes a substantial component of the dissolved solids. Overall, the temporal variability in conductance was low at each site which would indicate fairly stable water quality conditions. Results of the toxicity tests show no relationship between conductance and survival of C. dubia in the mining influenced streams with the traditional toxicity test endpoints. However, consideration of the entire dataset revealed a significant inverse relationship between conductivity and neonate production. While conductivity explained very little of the high variability in the offspring production (r2 = 0.1304), the average numbers of offspring were consistently less than 20 neonates at the highest conductivities.  相似文献   

16.
Chlorella autotrophica (Clone 580) grows over the external salinity range of 1 to 400% artificial sea water (ASW), can photosynthesize over the range from 1 to 600% ASW, and survives the complete evaporation of seawater. The alga grown at high salinities shows an increase in cell volume and a small decrease in cell water content. Measurements of ion content were made by neutron activation analysis on cells washed in isoosmotic sorbitol solutions which contained a few millimolar of major ions to prevent ion leakage. Cells grown at various ASW concentrations contain large quantities of sodium, potassium, and chloride ions. Measurements of cations associated with cell wall and intracellular macromolecules were made to determine intracellular concentration of free ions. The proline content of cells increases in response to increases in external salinity. Cells in 300% ASW contain 1500 to 1600 millimolar proline.  相似文献   

17.
This study was aimed at obtaining detailed information about the interaction of NaCl-salinity and elevated atmospheric CO2 concentration in the potential cash crop halophyte Aster tripolium. Plants were irrigated with 5 different salinity levels (0, 25, 50, 75 and 100% sws) under ambient and elevated (520 ppm) CO2. Under saline conditions leaf water potential decreased to a value below the one of the nutrient solution. Osmotic adjustment was mainly due to the accumulation of sodium and chloride (includer type). However, the salt was unequally distributed within the plants. K/Na selectivity was high in the lateral roots and low in the petioles, so that these organs served as “salt filters” which prevented an excessive salt accumulation and ion toxicity in the leaf blades and in the main root, the storage organ for organic substances. Despite some signs of ion toxicity and nutrial imbalance, these factors do not seem to be predominantly responsible for the limited salinity tolerance of A. tripolium. In order to maintain a positive water balance the salt treated plants increased stomatal resistance. But at the same time stomata closure led to a significant decrease in photosynthesis and thus in WUE. The impaired assimilation rate contributed to the significant growth depression (50% reduction of the maximum yield between 50% and 75% sws), together with the higher energy consumption needed for various salinity tolerance mechanisms, e.g. for an enhanced synthesis of compatible solutes (proline, carbohydrates) and stress-induced proteins. Elevated atmospheric CO2 concentration led to a significant increase in photosynthesis and in WUE. The latter indicates, together with a higher water potential, that the water relations of the plants had improved. By reducing stomatal resistance energy gain was maximized. The additional supply with energy-rich organic substances was not employed for producing more biomass but for increasing the investment in salinity tolerance mechanisms, e.g. for an enhanced synthesis of proline, carbohydrates and proteins. These mechanisms led to a higher survival rate under saline conditions, i.e. to an improved salt tolerance. The results of the study indicate that A. tripolium is a promising cash crop halophyte which will probably benefit from rising atmospheric CO2 concentrations in future.  相似文献   

18.
A biosorption process has been developed for the bioremediation of heavy metal-contaminated acid drainages from Merladet and Faith open-cast mines, located in western Spain. The process is based on the physico-chemical properties for the adsorption, ion exchange, and complexation of metal ions by biopolymers (chitin and α (1,3) β-D-glucan) from industrial biowaste exhausted brewer’s yeast (Saccharomyces cerevisiae L.). Firstly, the chemical composition (U, Mn, Al, Fe, Cu, Zn, and Ni) and the physico-chemical and ecological states of these acid mine drainages were characterised. Furthermore, the selectivity for Zn, Cu, Mn, Ni, and Al the first order kinetics and the performance of the metals biosorption process by exhausted brewer’s yeast were evaluated with polluted acid synthetic waters and mine drainages. The biosorption equilibria were reached in 10 ∼ 15 min following Langmuir type isotherms with higher affinity constants for metal-biosorbent binding for synthetic waters than for acid mine drainages. The efficiency of the process with real water samples was markedly lower for the case of Mn, and zero for Zn and Al. An antagonistic interference on the biosorption of a metal due to the presence of other metals is proposed. Finally, the ecotoxicity of the acid mine drainage was removed when it was incubated with brewer’s yeast trapped in polyurethane foam.  相似文献   

19.
Percent respiration was measured in over 1,100 arctic and subarctic marine water and sediment samples using14C-labeled glucose and glutamate. These measurements were made at different times of the year in 4 regions. Percent respiration values were typically lower in regions where the waters of large rivers mixed with seawater. They were also lower in sediments and in waters collected near the bottom than in surface waters. They were higher in winter arctic waters than water samples collected in the summer; however, a similar seasonal trend was not observed in subarctic waters. There were a number of studies in which there were significant positive rank correlations between percent respiration and salinity and between percent respiration and temperature. From what is known about the range of temperature and salinity encountered in samples collected during these studies and the results of temperature and salinity effects experiments, it was concluded that changes in these 2 variables did not explain the variation observed in percent respiration. Correlations between percent respiration and the inorganic nutrients PO4 –3, NH4 + and NO3 showed that of the 3 variables, only NO3 showed relatively high correlations with all the same sign. From this it was concluded that there may be situations in which NO3 levels may influence percent respiration in nearshore marine waters. It is also likely that qualitative characteristics of the available organic nutrients may also influence percent respiration levels. Although no organic nutrient data is available for statistical analysis, the patterns of percent respiration near river plumes and the relatively strong negative correlation often observed between uptake rates (heterotrophic activity) and percent respiration suggests that organic nutrients may be a factor in controlling percent respiration. It is suggested that there are situations in which percent respiration measurements may be used to document stress in natural microbial populations due to nutrient deficiencies.  相似文献   

20.
Using response surface methods 4-day old larvae of Serpula vermicularis L. were shown to be more euryplastic with respect to salinity and temperature than were gastrulae and 1-day old larvae. Significant interaction was found between the effects of temperature and reduced salinity on mortality of the larvae at each age tested. Four-day old trocophore larvae were more resistant to reduced salinity at low temperatures than were gastrulae and 1-day old larvae. The change in tolerance with age was in resistance rather than capacity adaptation and, since the larvae were acclimated at 16 °C, this change was genetic.Mercuric ions did not show synergistic effects with reduced salinity but merely acted additively. The concentrations of mercury found to be toxic were much higher than those that are likely to be found in coastal waters where S. vermicularis occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号