首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Introduction

Excessive mechanical loading of intervertebral discs (IVDs) is thought to alter matrix properties and influence disc cell metabolism, contributing to degenerative disc disease and development of discogenic pain. However, little is known about how mechanical strain induces these changes. This study investigated the cellular and molecular changes as well as which inflammatory receptors and cytokines were upregulated in human intervertebral disc cells exposed to high mechanical strain (HMS) at low frequency. The impact of these metabolic changes on neuronal differentiation was also explored to determine a role in the development of disc degeneration and discogenic pain.

Methods

Isolated human annulus fibrosus (AF) and nucleus pulposus (NP) cells were exposed to HMS (20% cyclical stretch at 0.001 Hz) on high-extension silicone rubber dishes coupled to a mechanical stretching apparatus and compared to static control cultures. Gene expression of Toll-like receptors (TLRs), neuronal growth factor (NGF) and tumour necrosis factor α (TNFα) was assessed. Collected conditioned media were analysed for cytokine content and applied to rat pheocromocytoma PC12 cells for neuronal differentiation assessment.

Results

HMS caused upregulation of TLR2, TLR4, NGF and TNFα gene expression in IVD cells. Medium from HMS cultures contained elevated levels of growth-related oncogene, interleukin 6 (IL-6), IL-8, IL-15, monocyte chemoattractant protein 1 (MCP-1), MCP-3, monokine induced by γ interferon, transforming growth factor β1, TNFα and NGF. Exposure of PC12 cells to HMS-conditioned media resulted in both increased neurite sprouting and cell death.

Conclusions

HMS culture of IVD cells in vitro drives cytokine and inflammatory responses associated with degenerative disc disease and low-back pain. This study provides evidence for a direct link between cellular strain, secretory factors, neoinnervation and potential degeneration and discogenic pain in vivo.  相似文献   

2.
3.

Objective

To investigate the effect of CoenzymeQ10 (CoQ10) on pain severity and cartilage degeneration in an experimental model of rat osteoarthritis (OA).

Materials and Methods

OA was induced in rats by intra-articular injection of monosodium iodoacetate (MIA) to the knee. Oral administration of CoQ10 was initiated on day 4 after MIA injection. Pain severity was assessed by measuring secondary tactile allodynia using the von Frey assessment test. The degree of cartilage degradation was determined by measuring cartilage thickness and the amount of proteoglycan. The mankin scoring system was also used. Expressions of matrix metalloproteinase-13 (MMP-13), interleukin-1β (IL-1β), IL-6, IL-15, inducible nitric oxide synthase (iNOS), nitrotyrosine and receptor for advanced glycation end products (RAGE) were analyzed using immunohistochemistry.

Results

Treatment with CoQ10 demonstrated an antinociceptive effect in the OA animal model. The reduction in secondary tactile allodynia was shown by an increased pain withdrawal latency and pain withdrawal threshold. CoQ10 also attenuated cartilage degeneration in the osteoarthritic joints. MMP-13, IL-1β, IL-6, IL-15, iNOS, nitrotyrosine and RAGE expressions were upregulated in OA joints and significantly reduced with CoQ10 treatment.

Conclusion

CoQ10 exerts a therapeutic effect on OA via pain suppression and cartilage degeneration by inhibiting inflammatory mediators, which play a vital role in OA pathogenesis.  相似文献   

4.
5.

Introduction

Respiratory insufficiency due to severe respiratory syncytial virus (RSV) infection is the most frequent cause of paediatric intensive care unit admission in infants during the winter season. Previous studies have shown increased levels of inflammatory mediators in airways of mechanically ventilated children compared to spontaneous breathing children with viral bronchiolitis. In this prospective observational multi-center study we aimed to investigate whether this increase was related to disease severity or caused by mechanical ventilation.

Materials and Methods

Nasopharyngeal aspirates were collected <1 hour before intubation and 24 hours later in RSV bronchiolitis patients with respiratory failure (n = 18) and non-ventilated RSV bronchiolitis controls (n = 18). Concentrations of the following cytokines were measured: interleukin (IL)-1α, IL-1β, IL-6, monocyte chemotactic protein (MCP)-1 and macrophage inflammatory protein (MIP)-1α.

Results

Baseline cytokine levels were comparable between ventilated and non-ventilated infants. After 24 hours of mechanical ventilation mean cytokine levels, except for MIP-1α, were elevated compared to non-ventilated infected controls: IL-1α (159 versus 4 pg/ml, p<0.01), IL-1β (1068 versus 99 pg/ml, p<0.01), IL-6 (2343 versus 958 pg/ml, p<0.05) and MCP-1 (174 versus 26 pg/ml, p<0.05).

Conclusions

Using pre- and post-intubation observations, this study suggests that endotracheal intubation and subsequent mechanical ventilation cause a robust pulmonary inflammation in infants with RSV bronchiolitis.  相似文献   

6.

Introduction

The inherent low oxygen tension in normal cartilage has implications on inflammatory conditions associated with osteoarthritis (OA). Biomechanical signals will additionally contribute to changes in tissue remodelling and influence the inflammatory response. In this study, we investigated the combined effects of oxygen tension and fibronectin fragment (FN-f) on the inflammatory response of chondrocytes subjected to biomechanical signals.

Methods

Chondrocytes were cultured under free-swelling conditions at 1%, 5% and 21% oxygen tension or subjected to dynamic compression in an ex vivo 3D/bioreactor model with 29 kDa FN-f, interleukin-1beta (IL-1β) and/or the nitric oxide synthase (NOS) inhibitor for 6 and 48 hours. Markers for catabolic activity (NO, PGE2), tissue remodelling (GAG, MMPs) and cytokines (IL-1β, IL-6 and TNFα) were quantified by biochemical assay. Aggrecan, collagen type II, iNOS and COX-2 gene expression were examined by real-time quantitative PCR. Two-way ANOVA and a post hoc Bonferroni-corrected t-test were used to analyse data.

Results

Both FN-fs and IL-1β increased NO, PGE2 and MMP production (all P < 0.001). FN-f was more active than IL-1β with greater levels of NO observed at 5% than 1% or 21% oxygen tension (P < 0.001). Whilst FN-f reduced GAG synthesis at all oxygen tension, the effect of IL-1β was significant at 1% oxygen tension. In unstrained constructs, treatment with FN-f or IL-1β increased iNOS and COX-2 expression and reduced aggrecan and collagen type II (all P < 0.001). In unstrained constructs, FN-f was more effective than IL-1β at 5% oxygen tension and increased production of NO, PGE2, MMP, IL-1β, IL-6 and TNFα. At 5% and 21% oxygen tension, co-stimulation with compression and the NOS inhibitor abolished fragment or cytokine-induced catabolic activities and restored anabolic response.

Conclusions

The present findings revealed that FN-fs are more potent than IL-1β in exerting catabolic effects dependent on oxygen tension via iNOS and COX-2 upregulation. Stimulation with biomechanical signals abolished catabolic activities in an oxygen-independent manner and NOS inhibitors supported loading-induced recovery resulting in reparative activities. Future investigations will utilize the ex vivo model as a tool to identify key targets and therapeutics for OA treatments.  相似文献   

7.

Background

Prolonged psychosocial stress is a condition assessed through self-reports. Here we aimed to identify biochemical markers for screening and early intervention in women.

Methods

Plasma concentrations of interleukin (IL) 1-α, IL1-β, IL-2, IL-4, IL-6, IL-8, IL-10, interferon-γ (INF-γ), tumor necrosis factor-α (TNF-α), monocyte chemotactic protein-1 (MCP-1), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), thyroid stimulating hormone (TSH), total tri-iodothyronine (TT3), total thyroxine (TT4), prolactin, and testosterone were measured in: 195 women on long-term sick-leave for a stress-related affective disorder, 45 women at risk for professional burnout, and 84 healthy women.

Results

We found significantly increased levels of MCP-1, VEGF and EGF in women exposed to prolonged psychosocial stress. Statistical analysis indicates that they independently associate with a significant risk for being classified as ill.

Conclusions

MCP-1, EGF, and VEGF are potential markers for screening and early intervention in women under prolonged psychosocial stress.  相似文献   

8.

Introduction

Nerve growth factor (NGF) level is increased in osteoarthritis (OA) joints and is involved in pain associated with OA. Stimuli responsible for NGF stimulation in chondrocytes are unknown. We investigated whether mechanical stress and proinflammatory cytokines may influence NGF synthesis by chondrocytes.

Methods

Primary cultures of human OA chondrocytes, newborn mouse articular chondrocytes or cartilage explants were stimulated by increasing amounts of IL-1β, prostaglandin E2 (PGE2), visfatin/nicotinamide phosphoribosyltransferase (NAMPT) or by cyclic mechanical compression (0.5 Hz, 1 MPa). Before stimulation, chondrocytes were pretreated with indomethacin, Apo866, a specific inhibitor of NAMPT enzymatic activity, or transfected by siRNA targeting visfatin/NAMPT. mRNA NGF levels were assessed by real-time quantitative PCR and NGF released into media was determined by ELISA.

Results

Unstimulated human and mouse articular chondrocytes expressed low levels of NGF (19.2 ± 8.7 pg/mL, 13.5 ± 1.0 pg/mL and 4.4 ± 0.8 pg/mL/mg tissue for human and mouse articular chondrocytes and costal explants, respectively). Mechanical stress induced NGF release in conditioned media. When stimulated by IL-1β or visfatin/NAMPT, a proinflammatory adipokine produced by chondocytes in response to IL-1β, a dose-dependent increase in NGF mRNA expression and NGF release in both human and mouse chondrocyte conditioned media was observed. Visfatin/NAMPT is also an intracellular enzyme acting as the rate-limiting enzyme of the generation of NAD. The expression of NGF induced by visfatin/NAMPT was inhibited by Apo866, whereas IL-1β-mediated NGF expression was not modified by siRNA targeting visfatin/NAMPT. Interestingly, PGE2, which is produced by chondrocytes in response to IL-1β and visfatin/NAMPT, did not stimulate NGF production. Consistently, indomethacin, a cyclooxygenase inhibitor, did not counteract IL-1β-induced NGF production.

Conclusions

These results show that mechanical stress, IL-1β and extracellular visfatin/NAMPT, all stimulated the expression and release of NGF by chondrocytes and thus suggest that the overexpression of visfatin/NAMPT and IL-1β in the OA joint and the increased mechanical loading of cartilage may mediate OA pain via the stimulation of NGF expression and release by chondrocytes.  相似文献   

9.

Purpose

To investigate the efficacy and mechanism of tacrolimus(FK506), which is a novel macrolide immunosuppressant, in inhibiting triggering receptor expressed on myeloid cells-1 (TREM-1) expression in a murine keratitis model induced by Aspergillus fumigatus.

Method

TREM-1 was detected in 11 fungus-infected human corneas by quantitative real-time PCR (qRT-PCR). RAW264.7 macrophages were divided into four groups, which received treatment with zymosan (100 µg/ml), zymosan (100 µg/ml) + mTREM-1/Fc protein (1 µg/ml), or zymosan (100 µg/ml) + FK506 (20 µM) or negative-control treatment. After this treatment, the expression of TREM-1, interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα) was assayed using qRT-PCR and ELISA. The mouse model of fungal keratitis was created by intrastromal injection with Aspergillus fumigatus, and the mice were divided into 2 groups: group A received vehicle eye drops 4 times each day, and group B received 4 doses of FK506 eye drops each day. Corneal damage was evaluated by clinical scoring and histologic examination,and myeloperoxidase (MPO) protein levels were also detected by ELISA. The expression of TREM-1, IL-1β and TNFα was then determined at different time points using qRT-PCR and ELISA.

Results

TREM-1 expression dramatically increased in the human corneas with fungal keratitis. In contrast, FK506 reduced the expression of TREM-1, IL-1β and TNFα in RAW264.7 macrophages stimulated with zymosan. In the mouse model, at day 1 post-infection, the corneal score of the FK506-treated group was lower than that of the control, and polymorphonuclear neutrophil (PMN) infiltration was diminished. TREM-1, IL-1β and TNFα expression was significantly reduced at the same time point. However, the statistically significant differences in cytokine expression, clinical scores and infiltration disappeared at 5 days post-infection.

Conclusions

FK506 may inhibit the inflammation induced by fungi and alleviate the severity of corneal damage at an early stage of fungal keratitis by downregulating TREM-1 expression.  相似文献   

10.

Background

IL-2 has been reported to be critical for peripheral Treg survival in mouse models. Here, we examined Treg maintenance in a series of paediatric liver transplant recipients who received basiliximab, a therapeutic anti-CD25 monoclonal antibody.

Methodology/Principal Findings

FoxP3+ CD4 T cells were analyzed by flow cytometry before liver grafting and more than 9 months later. We found that in vivo CD25 blockade did not lead to Treg depletion: the proportion of FoxP3+ cells among CD4 T cells and the level of FoxP3 expression were both unchanged. IL-2Rβ expression was enhanced in FoxP3+ cells both before and after basiliximab treatment, while the level of IL-2Rγ expression was similar in Tregs and non-Tregs. No significant change in the weak or absent expression of IL-7Rα and IL-15Rα expression on FoxP3+ cells was observed. Although the proportion of FoxP3+ cells among CD4 T cells did not vary, food allergies occurred more rapidly after liver grafting in patients who received basiliximab, raising questions as to Treg functionality in vivo in the absence of functional CD25.

Conclusions

CD25 appears non essential for human Treg peripheral maintenance in vivo. However, our results raise questions as to Treg functionality after therapeutic CD25 targeting.  相似文献   

11.

Background

Many advances have been recently made focused on the valuable help of dietary polyphenols in chronic inflammatory diseases. On the other hand, current treatment options for intestinal bowel disease patients are unsatisfying and, for this reason, it is estimated that many patients use dietary supplements to achieve extra benefits.

Aim

The aim of this work was to analyze under a mechanistic perspective the anti-inflammatory potential of resveratrol, a natural polyphenolic compound, and to compare it with a pharmaceutical agent, 5-aminosalicylic acid, using the intestinal HT-29 cell line, as a cellular model.

Methodology and Principal Findings

In the present study, HT-29 colon epithelial cells were pre-treated with 25 µM resveratrol and/or 500 µM 5-aminosalicylic acid and then exposed to a combination of cytokines (IL-1α, TNF-α, IFN-γ) for a certain period of time. Our data showed that resveratrol, used in a concentration 20 times lower than 5-aminosalicylic acid, was able to significantly reduce NO and PGE2 production, iNOS and COX-2 expression and reactive oxidant species formation induced by the cytokine challenge. However, as already verified with 5-aminosalicylic acid, in spite of not exhibiting any effect on IkB-α degradation, resveratrol down-regulated JAK-STAT pathway, decreasing the levels of activated STAT1 in the nucleus. Additionally, resveratrol decreased the cytokine-stimulated activation of SAPK/JNK pathway but did not counteract the cytokine-triggered negative feedback mechanism of STAT1, through p38 MAPK.

Conclusion/Significance

Taken together, our results show that resveratrol may be considered a future nutraceutical approach, promoting remission periods, limiting the inflammatory process and preventing colorectal cancer, which is common in these patients.  相似文献   

12.

Background

Multiple sclerosis (MS) has been mainly attributed to white matter (WM) pathology. However, recent evidence indicated the presence of grey matter (GM) lesions. One of the principal mediators of inflammatory processes is interleukin-1β (IL-1β), which is known to play a role in MS pathogenesis. It is unknown whether IL-1β is solely present in WM or also in GM lesions. Using an experimental MS model, we questioned whether IL-1β and the IL-1 receptor antagonist (IL-1ra) are present in GM in addition to affected WM regions.

Methods

The expression of IL-1β and IL-1ra in chronic-relapsing EAE (cr-EAE) rats was examined using in situ hybridization, immunohistochemistry and real-time PCR. Rats were sacrificed at the peak of the first disease phase, the trough of the remission phase, and at the peak of the relapse. Histopathological characteristics of CNS lesions were studied using immunohistochemistry for PLP, CD68 and CD3 and Oil-Red O histochemistry.

Results

IL-1β and IL-ra expression appears to a similar extent in affected GM and WM regions in the brain and spinal cord of cr-EAE rats, particularly in perivascular and periventricular locations. IL-1β and IL-1ra expression was dedicated to macrophages and/or activated microglial cells, at sites of starting demyelination. The time-dependent expression of IL-1β and IL-1ra revealed that within the spinal cord IL-1β and IL-1ra mRNA remained present throughout the disease, whereas in the brain their expression disappeared during the relapse.

Conclusions

The appearance of IL-1β expressing cells in GM within the CNS during cr-EAE may explain the occurrence of several clinical deficits present in EAE and MS which cannot be attributed solely to the presence of IL-1β in WM. Endogenously produced IL-1ra seems not capable to counteract IL-1β-induced effects. We put forward that IL-1β may behold promise as a target to address GM, in addition to WM, related pathology in MS.  相似文献   

13.

Background

PUMA (p53-up-regulated modulator of apoptosis), an apoptosis regulated gene, increased during endoplasmic reticulum stress. However, the expression of PUMA in cardiomyocytes under mechanical stress is little known. We aimed to investigate the regulation mechanism of PUMA expression and apoptosis induced by mechanical stress in cardiomyocytes.

Methods

Aorta-caval (AV) shunt was performed in adult Wistar rats to induce volume overload. Rat neonatal cardiomyocytes were stretched by vacuum to 20% of maximum elongation at 60 cycles/min.

Results

PUMA protein and mRNA were up-regulated in the shunt group as compared with sham group. The increased PUMA protein expression and apoptosis induced by shunt was reversed by treatment with atorvastatin at 30 mg/kg/ day orally for 7 days. TUNEL assay showed that treatment with atorvastatin inhibited the apoptosis induced by volume overload. Cyclic stretch significantly enhanced PUMA protein and gene expression. Addition of c-jun N-terminal kinase (JNK) inhibitor SP600125, JNK small interfering RNA (siRNA) and interferon-γ (INF-γ) antibody 30 min before stretch reduced the induction of PUMA protein. Gel shift assay demonstrated that stretch increased the DNA binding activity of interferon regulatory factor-1. Stretch increased, while PUMA-Mut plasmid, SP600125 and INF-γ antibody abolished the PUMA promoter activity induced by stretch. PUMA mediated apoptosis induced by stretch was reversed by PUMA siRNA and atorvastatin.

Conclusions

Mechanical stress enhanced apoptosis and PUMA expression in cardiomyocytes. Treatment with atorvastatin reversed both PUMA expression and apoptosis induced by mechanical stress in cardiomyocytes.  相似文献   

14.

Introduction

Arthritic diseases are characterized by the degradation of collagenous and noncollagenous extracellular matrix (ECM) components in articular cartilage. The increased expression and activity of matrix metalloproteinases (MMPs) is partly responsible for cartilage degradation. This study used proteomics to identify inflammatory proteins and catabolic enzymes released in a serum-free explant model of articular cartilage stimulated with the pro-inflammatory cytokine interleukin 1β (IL-1β). Western blotting was used to quantify the release of selected proteins in the presence or absence of the cyclooxygenase-2 specific nonsteroidal pro-inflammatory drug carprofen.

Methods

Cartilage explant cultures were established by using metacarpophalangeal joints from horses euthanized for purposes other than research. Samples were treated as follows: no treatment (control), IL-1β (10 ng/ml), carprofen (100 μg/ml), and carprofen (100 μg/ml) + IL-1β (10 ng/ml). Explants were incubated (37°C, 5% CO2) over twelve day time courses. High-throughput nano liquid chromatography/mass spectrometry/mass spectrometry uncovered candidate proteins for quantitative western blot analysis. Proteoglycan loss was assessed by using the dimethylmethylene blue (DMMB) assay, which measures the release of sulfated glycosaminoglycans (GAGs).

Results

Mass spectrometry identified MMP-1, -3, -13, and the ECM constituents thrombospondin-1 (TSP-1) and fibronectin-1 (FN1). IL-1β stimulation increased the release of all three MMPs. IL-1β also stimulated the fragmentation of FN1 and increased chondrocyte cell death (as assessed by β-actin release). Addition of carprofen significantly decreased MMP release and the appearance of a 60 kDa fragment of FN1 without causing any detectable cytotoxicity to chondrocytes. DMMB assays suggested that carprofen initially inhibited IL-1β-induced GAG release, but this effect was transient. Overall, during the two time courses, GAG release was 58.67% ± 10.91% (SD) for IL-1β versus 52.91% ± 9.35% (SD) with carprofen + IL-1β.

Conclusions

Carprofen exhibits beneficial anti-inflammatory and anti-catabolic effects in vitro without causing any detectable cytotoxicity. Combining proteomics with this explant model provides a sensitive screening system for anti-inflammatory compounds.  相似文献   

15.

Background

Chronic obstructive pulmonary disease (COPD) is an inflammatory disorder marked by relative resistance to steroids. The IL-17 superfamily, which mediates cross-talk between the adaptive and innate immune systems, has been associated with diminished responses to steroids. Increasing evidence supports elevated IL-17 expression in the lung of COPD subjects. However, whether cells of the immune system (systemic) and/or local lung cells are contributing to the elevated IL-17 remains unclear. To address this issue, we utilized a human parenchymal lung tissue explant culture system with cigarette smoke exposure to investigate the expression of IL-17 and the mechanisms involved.

Methods

Parenchymal lung tissue removed from 10 non-COPD and 8 COPD patients was sectioned and cultured with different concentrations of cigarette smoke extract (CSE) for 3 or 6 hours. Tissue viability was evaluated by LDH (lactate dehydrogenase) in culture supernatants. Western blot and real-time PCR were performed to evaluate IL-17A/F expression. To investigate the mechanisms, pharmacological inhibitors for MAPK p38, ERK1/2, NF-κB and PI3K pathways were added into the culture media.

Results

No tissue damage was observed after the cigarette smoke exposure for 3 h or 6 h compared with the control media. At the protein level, the expression of both IL-17A (2.4 ± 0.6 fold) and IL-17 F (3.7 ± 0.7 fold) in the tissue from non-COPD subjects was significantly increased by 5% of CSE at 3 h. For COPD subjects, IL-17A/F expression were significantly increased only at 6 h with 10% of CSE (IL-17A: 4.2 ± 0.8 fold; IL-17 F: 3.3 ± 0.8 fold). The increased expression of IL-17A/F is also regulated at the mRNA level. The inhibitors for NF-κB and PI3K pathways significantly inhibited CSE-induced IL-17A/F expression from lung tissue of non-COPD subjects.

Conclusions

We found the evidence that the expression of both IL-17A and IL-17 F is increased by the cigarette smoke exposure in explants from both non-COPD and COPD subjects, supporting that local lung cells contribute IL-17 production. The elevated IL-17A/F expression is dependent on NF-κB and PI3K pathways. These observations add to the growing evidence which suggests that Th17 cytokines play a significant role in COPD.  相似文献   

16.

Objective

To prepare arginine-glycine-aspartate (RGD)-targeted ultrasound contrast microbubbles (MBs) and explore the feasibility of their use in assessing dynamic changes in αvβ3 integrin expression in a murine model of tumor angiogenesis.

Methods

RGD peptides were conjugated to the surfaces of microbubbles via biotin-avidin linkage. Microbubbles bearing RADfK peptides were prepared as controls. The RGD-MBs were characterized using an Accusizer 780 and optical microscopy. The binding specificity of the RGD-MBs for ανβ3-expressing endothelial cells (bEnd.3) was demonstrated in vitro by a competitive inhibition experiment. In an in vivo study, mice bearing tumors of three different stages were intravenously injected with RGD-MBs and subjected to targeted, contrast-enhanced, high-frequency ultrasound. Subsequently, tumors were harvested and sectioned for immunofluorescence analysis of ανβ3 expression.

Results

The mean size of the RGD-MBs was 2.36 ± 1.7 μm. The RGD-MBs showed significantly higher adhesion levels to bEnd.3 cells compared to control MBs (P < 0.01). There was rarely binding of RGD-MBs to αvβ3-negative MCF-7 cells. Adhesion of the RGD-MBs to the bEnd.3 cells was significantly inhibited following treatment with anti-alpha(v) antibodies. The quantitative acoustic video intensity for high-frequency, contrast-enhanced ultrasound imaging of subcutaneous human laryngeal carcinoma (Hep-2) tumor xenografts was significantly higher in small tumors (19.89 ± 2.49) than in medium tumors (11.25 ± 2.23) and large tumors (3.38 ± 0.67) (P < 0.01).

Conclusions

RGD-MBs enable noninvasive in vivo visualization of changes in tumor angiogenesis during tumor growth in subcutaneous cancer xenografts.  相似文献   

17.

Introduction

Inflammation plays a key role in the progression of intervertebral disc degeneration, a condition strongly implicated as a cause of lower back pain. The objective of this study was to investigate the therapeutic potential of poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with interleukin-1 receptor antagonist (IL-1ra) for sustained attenuation of interleukin-1 beta (IL-1β) mediated degradative changes in the nucleus pulposus (NP), using an in vitro model.

Methods

IL-1ra was encapsulated in PLGA microspheres and release kinetics were determined over 35 days. NP agarose constructs were cultured to functional maturity and treated with combinations of IL-1β and media conditioned with IL-1ra released from microspheres at intervals for up to 20 days. Construct mechanical properties, glycosaminoglycan content, nitrite production and mRNA expression of catabolic mediators were compared to properties for untreated constructs using unpaired Student''s t-tests.

Results

IL-1ra release kinetics were characterized by an initial burst release reducing to a linear release over the first 10 days. IL-1ra released from microspheres attenuated the degradative effects of IL-1β as defined by mechanical properties, glycosaminoglycans (GAG) content, nitric oxide production and mRNA expression of inflammatory mediators for 7 days, and continued to limit functional degradation for up to 20 days.

Conclusions

In this study, we successfully demonstrated that IL-1ra microspheres can attenuate the degradative effects of IL-1β on the NP for extended periods. This therapeutic strategy may be appropriate for treating early-stage, cytokine-mediated disc degeneration. Ongoing studies are focusing on testing IL-1ra microspheres in an in vivo model of disc degeneration, as a prelude to clinical translation.  相似文献   

18.
19.

Rationale

Replication deficient adenoviruses (Ad) vectors are common tools in gene therapy. Since Ad vectors are known to activate innate and adaptive immunity, we investigated whether intratracheal administration of Ad vectors alone is sufficient to induce lung injury and pulmonary fibrosis.

Methods

We instilled Ad viruses ranging from 107 to 1.625×109 ifu/mouse as well as the same volume of PBS and bleomycin. 14 and 21 days after administration, we collected bronchoalveolar lavage fluid (BALF) and mouse lung tissues. We measured the protein concentration, total and differential cell counts, and TGF-β1 production, performed Trichrome staining and Sircol assay, determined gene and protein levels of profibrotic cytokines, MMPs, and Wnt signaling proteins, and conducted TUNEL staining and co-immunofluorescence for GFP and α-SMA staining.

Results

Instillation of high dose Ad vectors (1.625×109 ifu/mouse) into mouse lungs induced high levels of protein content, inflammatory cells, and TGF-β1 in BALF, comparable to those in bleomycin-instilled lungs. The collagen content and mRNA levels of Col1a1, Col1a2, PCNA, and α-SMA were also increased in the lungs. Instillation of both bleomycin and Ad vectors increased expression levels of TNFα and IL-1β but not IL-10. Instillation of bleomycin but not Ad increased the expression of IL-1α, IL-13 and IL-16. Treatment with bleomycin or Ad vectors increased expression levels of integrin α1, α5, and αv, MMP9, whereas treatment with bleomycin but not Ad vectors induced MMP2 expression levels. Both bleomycin and Ad vectors induced mRNA levels of Wnt2, 2b, 5b, and Lrp6. Intratracheal instillation of Ad viruses also induced DNA damages and Ad viral infection-mediated fibrosis is not limited to the infection sites.

Conclusions

Our results suggest that administration of Ad vectors induces an inflammatory response, lung injury, and pulmonary fibrosis in a dose dependent manner.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号