首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
The ability of Pseudomonas syringae pv. phaseolicola to cause halo blight of bean is dependent on its ability to translocate effector proteins into host cells via the hypersensitive response and pathogenicity (Hrp) type III secretion system (T3SS). To identify genes encoding type III effectors and other potential virulence factors that are regulated by the HrpL alternative sigma factor, we used a hidden Markov model, weight matrix model, and type III targeting-associated patterns to search the genome of P. syringae pv. phaseolicola 1448A, which recently was sequenced to completion. We identified 44 high-probability putative Hrp promoters upstream of genes encoding the core T3SS machinery, 27 candidate effectors and related T3SS substrates, and 10 factors unrelated to the Hrp system. The expression of 13 of these candidate HrpL regulon genes was analyzed by real-time polymerase chain reaction, and all were found to be upregulated by HrpL. Six of the candidate type III effectors were assayed for T3SS-dependent translocation into plant cells using the Bordetella pertussis calmodulin-dependent adenylate cyclase (Cya) translocation reporter, and all were translocated. PSPPH1855 (ApbE-family protein) and PSPPH3759 (alcohol dehydrogenase) have no apparent T3SS-related function; however, they do have homologs in the model strain P. syringae pv. tomato DC3000 (PSPTO2105 and PSPTO0834, respectively) that are similarly upregulated by HrpL. Mutations were constructed in the DC3000 homologs and found to reduce bacterial growth in host Arabidopsis leaves. These results establish the utility of the bioinformatic or candidate gene approach to identifying effectors and other genes relevant to pathogenesis in P. syringae genomes.  相似文献   

3.
Pseudomonas syringae translocates virulence effector proteins into plant cells via a type III secretion system (T3SS) encoded by hrp (for hypersensitive response and pathogenicity) genes. Three genes coregulated with the Hrp T3SS system in P. syringae pv. tomato DC3000 have predicted lytic transglycosylase domains: PSPTO1378 (here designated hrpH), PSPTO2678 (hopP1), and PSPTO852 (hopAJ1). hrpH is located between hrpR and avrE1 in the Hrp pathogenicity island and is carried in the functional cluster of P. syringae pv. syringae 61 hrp genes cloned in cosmid pHIR11. Strong expression of DC3000 hrpH in Escherichia coli inhibits bacterial growth unless the predicted catalytic glutamate at position 148 is mutated. Translocation tests involving C-terminal fusions with a Cya (Bordetella pertussis adenylate cyclase) reporter indicate that HrpH and HopP1, but not HopAJ1, are T3SS substrates. Pseudomonas fluorescens carrying a pHIR11 derivative lacking hrpH is poorly able to translocate effector HopA1, and this deficiency can be restored by HopP1 and HopAJ1, but not by HrpH(E148A) or HrpH1-241. DC3000 mutants lacking hrpH or hrpH, hopP1, and hopAJ1 combined are variously reduced in effector translocation, elicitation of the hypersensitive response, and virulence. However, the mutants are not reduced in secretion of T3SS substrates in culture. When produced in wild-type DC3000, the HrpH(E148A) and HrpH1-241 variants have a dominant-negative effect on the ability of DC3000 to elicit the hypersensitive response in nonhost tobacco and to grow and cause disease in host tomato. The three Hrp-associated lytic transglycosylases in DC3000 appear to have overlapping functions in contributing to T3SS functions during infection.  相似文献   

4.

Background

The phytohormone indole-3-acetic acid (IAA) is widely distributed among plant-associated bacteria. Certain strains of the Pseudomonas syringae complex can further metabolize IAA into a less biologically active amino acid conjugate, 3-indole-acetyl-ε-L-lysine, through the action of the iaaL gene. In P. syringae and Pseudomonas savastanoi strains, the iaaL gene is found in synteny with an upstream gene, here called matE, encoding a putative MATE family transporter. In P. syringae pv. tomato (Pto) DC3000, a pathogen of tomato and Arabidopsis plants, the HrpL sigma factor controls the expression of a suite of virulence-associated genes via binding to hrp box promoters, including that of the iaaL gene. However, the significance of HrpL activation of the iaaL gene in the virulence of Pto DC3000 is still unclear.

Results

A conserved hrp box motif is found upstream of the iaaL gene in the genomes of P. syringae strains. However, although the promoter region of matE is only conserved in genomospecies 3 of this bacterial group, we showed that this gene also belongs to the Pto DC3000 HrpL regulon. We also demonstrated that the iaaL gene is transcribed both independently and as part of an operon with matE in this pathogen. Deletion of either the iaaL or the matE gene resulted in reduced fitness and virulence of Pto DC3000 in tomato plants. In addition, we used multicolor fluorescence imaging to visualize the responses of tomato plants to wild-type Pto DC3000 and to its ΔmatE and ΔiaaL mutants. Activation of secondary metabolism prior to the development of visual symptoms was observed in tomato leaves after bacterial challenges with all strains. However, the observed changes were strongest in plants challenged by the wild-type strain, indicating lower activation of secondary metabolism in plants infected with the ΔmatE or ΔiaaL mutants.

Conclusions

Our results provide new evidence for the roles of non-type III effector genes belonging to the Pto DC3000 HrpL regulon in virulence.
  相似文献   

5.
The Type III secretion system (TTSS) is a protein secretion machinery used by certain gram-negative bacterial pathogens of plants and animals to deliver effector molecules to the host and is at the core of the ability to cause disease. Extensive molecular and biochemical study has revealed the components and their interactions within this system but reductive approaches do not consider the dynamical properties of the system as a whole. In order to gain a better understanding of these dynamical behaviours and to create a basis for the refinement of the experimentally derived knowledge we created a Boolean model of the regulatory interactions within the hrp regulon of Pseudomonas syringae pathovar tomato strain DC3000 Pseudomonas syringae. We compared simulations of the model with experimental data and found them to be largely in accordance, though the hrpV node shows some differences in state changes to that expected. Our simulations also revealed interesting dynamical properties not previously predicted. The model predicts that the hrp regulon is a biologically stable two-state system, with each of the stable states being strongly attractive, a feature indicative of selection for a tightly regulated and responsive system. The model predicts that the state of the GacS/GacA node confers control, a prediction that is consistent with experimental observations that the protein has a role as master regulator. Simulated gene “knock out” experiments with the model predict that HrpL is a central information processing point within the network.  相似文献   

6.
Pseudomonas syringae pv. tomato DC3000 is a model pathogen of tomato and Arabidopsis that uses a hypersensitive response and pathogenicity (Hrp) type III secretion system (T3SS) to deliver virulence effector proteins into host cells. Expression of the Hrp system and many effector genes is activated by the HrpL alternative sigma factor. Here, an open reading frame-specific whole-genome microarray was constructed for DC3000 and used to comprehensively identify genes that are differentially expressed in wild-type and deltahrpL strains. Among the genes whose differential regulation was statistically significant, 119 were upregulated and 76 were downregulated in the wild-type compared with the deltahrpL strain. Hierarchical clustering revealed a subset of eight genes that were upregulated particularly rapidly. Gibbs sampling of regions upstream of HrpL-activated operons revealed the Hrp promoter as the only identifiable regulatory motif and supported an iterative refinement involving real-time polymerase chain reaction testing of additional HrpL-activated genes and refinements in a hidden Markov model that can be used to predict Hrp promoters in P. syringae strains. This iterative bioinformatic-experimental approach to a comprehensive analysis of the HrpL regulon revealed a mix of genes controlled by HrpL, including those encoding most type III effectors, twin-arginine transport (TAT) substrates, other regulatory proteins, and proteins involved in the synthesis or metabolism of phytohormones, phytotoxins, and myo-inositol. This analysis provides an extensively verified, robust method for predicting Hrp promoters in P. syringae genomes, and it supports subsequent identification of effectors and other factors that likely are important to the host-specific virulence of P. syringae.  相似文献   

7.
8.
9.
10.
Although chemically defined media have been developed and widely used to study the expression of virulence factors in the model plant pathogen Pseudomonas syringae, it has been difficult to link specific medium components to the induction response. Using a chemostat system, we found that iron is the limiting nutrient for growth in the standard hrp-inducing minimal medium and plays an important role in inducing several virulence-related genes in Pseudomonas syringae pv. tomato DC3000. With various concentrations of iron oxalate, growth was found to follow Monod-type kinetics for low to moderate iron concentrations. Observable toxicity due to iron began at 400 μM Fe3+. The kinetics of virulence factor gene induction can be expressed mathematically in terms of supplemented-iron concentration. We conclude that studies of induction of virulence-related genes in P. syringae should control iron levels carefully to reduce variations in the availability of this essential nutrient.The type III secretion system (T3SS) is used by diverse plant and animal pathogens to invade and colonize their hosts (1). This secretion system translocates bacterial proteins (effectors) from the bacterial cytoplasm directly into the eukaryotic host cell cytosol, where the effectors subvert host cell processes to the advantage of the pathogen. In Pseudomonas syringae pv. tomato DC3000, the T3SS is responsible for the elicitation of hypersensitive reactions of nonhost plants and is essential for disease on host plants (14). Many T3SS genes in plant pathogens are denoted hrp, for hypersensitive response and pathogenicity. We know of several regulatory elements that control T3SS genes in P. syringae pv. tomato DC3000 (7, 27), including HrpL, an alternative sigma factor. However, the exact environmental signals that the bacteria respond to are unknown.The expression of avrB, a T3SS effector, varies depending on the carbon source in Pseudomonas syringae pv. glycinea race 0 (9). Other environmental factors affecting the expression of virulence-related genes have also been studied. Nitrogen and osmolarity are important for the expression of the Pseudomonas syringae pv. syringae 61 hrp genes (28). Osmotic strength, pH, and carbon source differentially affected the expression of T3SS genes in Pseudomonas syringae pv. phaseolicola (18). These results imply that catabolite repression by the tricarboxylic acid cycle intermediates may be involved in the induction process. With other pathogenic bacteria, nutritional conditions are reported to be an important factor for the induction of virulence. For example, the Xanthomonas hrp genes are induced by sucrose and sulfur-containing amino acids (21). The optimal condition for hrp gene expression may simulate leaf apoplast environmental factors, including hypo-osmotic pressure, low pH, and limited nutrient concentration (18).Iron is a micronutrient (required in concentrations less than 10−4 M) for in vitro cultures (22), and the typical concentration needed for optimal bacterial growth is 0.3 to 1.8 μM (24). Iron is an essential element for bacteria due to its participation in the tricarboxylic acid cycle, electron transport, amino acid and pyrimidine biosynthesis, DNA synthesis, and other critical functions (3). Iron uptake must also be regulated due to its lethal effect through the Fenton reaction (2). The effect of iron limitation on bacterial growth has been documented for Escherichia coli cultures (6, 19, 20). Two studies have shown that production of the phytotoxins, syringomycin, and syringotoxin from P. syringae responds in batch culture to iron supplementation (5, 15). Iron is known to alter the physiology of other pseudomonads in both batch and chemostat cultures (11, 16). Although iron is the fourth most abundant element in the earth''s crust, its availability is very low due to its low solubility in aqueous solution ([Fe3+] at pH 7, 10−18 μM) (24). Bacteria have evolved complex mechanisms to ensure that iron requirements are met but not exceeded. Siderophore-mediated transport of iron is one of the mechanisms used by bacteria to uptake iron from their environment (17).In this study, medium components in hrp-inducing minimal medium were evaluated systematically with a chemostat culture. Iron was found to be both a growth-limiting nutrient in hrp-inducing minimal medium and a mediator of virulence gene expression in the model plant pathogen P. syringae pv. tomato DC3000.  相似文献   

11.
12.
The diversity of regulatory systems encoded by bacteria provides an indication of the variety of stresses and interactions that these organisms encounter in nature. We have been investigating how the plant pathogen Pseudomonas syringae pv. tomato DC3000 responds to iron limitation and have focused on the iron starvation (IS) sigma factors to identify regulon members and to explore the mechanistic details of genetic control for this class of regulators. In the study described in this report, we used chromatin immunoprecipitation paired with high-throughput sequencing (ChIP-Seq) to screen the genome for locations associated with binding of the P. syringae IS sigma factor PSPTO_1203. We used multiple methods to demonstrate differential regulation of two genes identified in the ChIP-Seq screen and characterize the promoter elements that facilitate PSPTO_1203-dependent regulation. The genes regulated by PSPTO_1203 encode a TonB-dependent transducer (PSPTO_1206) and a cytoplasmic membrane protein (PSPTO_2145), which is located in the P. syringae pyoverdine cluster. Additionally, we identified siderophores that induce the activity of PSPTO_1203 and used this information to investigate the functional components of the signal transduction cascade.  相似文献   

13.
14.
The hypersensitive response and pathogenicity (hrp) genes of Dickeya dadantii 3937 encode a type III secretion system (T3SS) which is essential for its full virulence. Previous studies of the T3SS regulation in D. dadantii 3937 revealed that the expression of the hrp genes is regulated by a master regulator, HrpL, through the HrpX-HrpY-HrpS-HrpL and GacS-GacA-rsmB-RsmA pathways. In this work, we identified a novel regulator of the SlyA/MarR family, SlyA, which regulates hrp genes of the HrpL regulon in parallel with HrpL in D. dadantii. SlyA regulates the T3SS in a two-tier manner. It negatively regulates the expression of hrpL by downregulating hrpS and upregulating rsmA. Interestingly, concomitant with its downregulation of the hrpL, SlyA positively regulates the expression of hrpA and hrpN, two hrp genes located in the HrpL regulon. In contrast to Pectobacterium carotovorum, the expression of slyA is not controlled by ExpR and ExpI in D. dadantii 3937. We further show that SlyA is involved in controlling swimming motility and pellicle formation in D. dadantii 3937.  相似文献   

15.
When analyzing the secretome of the plant pathogen Pseudomonas syringae pv. tomato DC3000, we identified hemolysin-coregulated protein (Hcp) as one of the secreted proteins. Hcp is assumed to be an extracellular component of the type VI secretion system (T6SS). Two copies of hcp genes are present in the P. syringae pv. tomato DC3000 genome, hcp1 (PSPTO_2539) and hcp2 (PSPTO_5435). We studied the expression patterns of the hcp genes and tested the fitness of hcp knockout mutants in host plant colonization and in intermicrobial competition. We found that the hcp2 gene is expressed most actively at the stationary growth phase and that the Hcp2 protein is secreted via the T6SS and appears in the culture medium as covalently linked dimers. Expression of hcp2 is not induced in planta and does not contribute to virulence in or colonization of tomato or Arabidopsis plants. Instead, hcp2 is required for survival in competition with enterobacteria and yeasts, and its function is associated with the suppression of the growth of these competitors. This is the first report on bacterial T6SS-associated genes functioning in competition with yeast. Our results suggest that the T6SS of P. syringae may play an important role in bacterial fitness, allowing this plant pathogen to survive under conditions where it has to compete with other microorganisms for resources.  相似文献   

16.
17.
18.
19.
20.
Pseudomonas syringae delivers virulence effector proteins into plant cells via an Hrp1 type III secretion system (T3SS). P. syringae pv. tomato DC3000 HrpP has a C-terminal, putative T3SS substrate specificity switch domain, like Yersinia YscP. A ΔhrpP DC3000 mutant could not cause disease in tomato or elicit a hypersensitive response (HR) in tobacco, but the HR could be restored by expression of HrpP in trans. Though HrpP is a relatively divergent protein in the T3SS of different P. syringae pathovars, hrpP from P. syringae pv. syringae 61 and P. syringae pv. phaseolicola 1448A restored HR elicitation and pathogenicity to DC3000 ΔhrpP. HrpP was translocated into Nicotiana benthamiana cells via the DC3000 T3SS when expressed from its native promoter, but it was not secreted in culture. N- and C-terminal truncations of HrpP were tested for their ability to be translocated and to restore HR elicitation activity to the ΔhrpP mutant. No N-terminal truncation completely abolished translocation, implying that HrpP has an atypical T3SS translocation signal. Deleting more than 20 amino acids from the C terminus abolished the ability to restore HR elicitation. HrpP fused to green fluorescent protein was no longer translocated but could restore HR elicitation activity to the ΔhrpP mutant, suggesting that translocation is not essential for the function of HrpP. No T3SS substrates were detectably secreted by DC3000 ΔhrpP except the pilin subunit HrpA, which unexpectedly was secreted poorly. HrpP may function somewhat differently than YscP because the P. syringae T3SS pilus likely varies in length due to differing plant cell walls.Many proteobacterial pathogens use a type III secretion system (T3SS) as their primary mechanism to overcome and infect eukaryotic hosts. T3SSs are complex macromolecular machines that span both the bacterial cell envelope and host cell barriers to deliver proteins, commonly termed effectors, from the bacterial cytoplasm into the host cytoplasm (13, 19). After delivery into the host, effector proteins manipulate host cell function and suppress host defenses, allowing bacterial proliferation and disease development (6, 20). Bacteria that rely on T3SS to cause disease include plant pathogens such as Pseudomonas syringae, Ralstonia solanacearum, Erwinia and Xanthomonas species and animal pathogens in the genera Yersinia, Salmonella, Shigella, Escherichia, and Pseudomonas. While the repertoire of effectors delivered by a given T3SS is unique, the T3SS machinery is more universal (13). T3SS includes a core set of eight conserved proteins. These proteins, which are also conserved in bacterial flagellar biogenesis machines, make up the multiringed base structure, or basal body, that spans the bacterial membranes and cell wall. T3SS machines are also comprised of less-conserved and unique proteins that vary between systems. These include regulatory proteins that orchestrate construction of the machine and the extracellular components that function to translocate effectors across host barriers.The extracellular portion of the T3SS is comprised of the pilus or needle appendage (in plant or animal pathogens, respectively), which acts as a conduit for effector delivery, and the translocon complex, which creates the pore in the host cell membrane. These substructures vary between different T3SSs; presumably these external structures have adapted to allow different bacteria to infect different types of host cells. For Yersinia enterocolitica to infect macrophage cells, the T3SS needle must be a particular length (∼58 nm) to bridge the lipopolysaccharides extending from the bacterial outer membrane and reach the host cell membrane (35). Several other animal pathogens have T3SS needles of a defined length (48). Enteropathogenic Escherichia coli also has an additional extension beyond the needle called the EspA filament that functions to span the mucous layer found outside enterocyte cells (13). In plant pathogens, however, the extracellular gap between a bacterium and a plant cell includes a thick plant cell wall that is variable in width between plant species. Consequently, plant pathogenic Pseudomonas syringae has a pilus that can measure over 1 μm in vitro (25).Another major difference between the T3SS machineries of animal and plant pathogens is their translocon complexes. In animal pathogens, these are typically comprised of three essential proteins, but there is growing evidence that plant pathogen translocons employ diverse, functionally redundant components (28). There is growing interest in understanding the regulatory players that orchestrate the construction of diverse machinery. It is hypothesized that the assembly of the T3SS must involve several tightly regulated steps that allow secretion of the required components, followed by that of effectors upon completion. Of particular interest here is the control of pilus/needle subunit secretion, which is necessary when the pilus/needle is being constructed but would presumably compete with translocon and effector secretion after the T3SS is complete.We study the model plant pathogen P. syringae pv. tomato (Pto) DC3000, the causal agent of bacterial speck of tomato and Arabidopsis thaliana (8). DC3000 has a T3SS that delivers ca. 28 effectors and is essential for pathogenesis (11, 12, 30, 43). The P. syringae T3SS is encoded by hrp and hrc genes (hypersensitive response and pathogenicity/conserved), which are located in a pathogenicity island on the chromosome (4). hrc genes encode the conserved core components present in every T3SS. hrp genes encode T3SS components that are divergent or unique to P. syringae and enterobacterial plant pathogens, which also possess Hrp1 class T3SS (13). In contrast, plant pathogenic Ralstonia and Xanthomonas spp. have Hrp2 class T3SS, as indicated by several different Hrp proteins and distinct regulatory systems.To better understand the T3SS machinery, we previously conducted a survey of the hrp genes of P. syringae pv. syringae (Psy) 61 to complete the inventory of all those encoding proteins capable of traveling the T3SS into plant cells when expressed from a constitutive promoter (39). We hypothesized that these proteins might aid in pilus or translocon construction or regulate the construction process. HrpP was one protein found to be a T3SS substrate and important for secretion and translocation of the model effector AvrPto. Importantly, HrpP is related to a well-studied protein from Yersinia enterocolitica, YscP, which is a T3SS-secreted protein and a regulator responsible for switching the T3SS from secreting needle subunits to secreting effector proteins (15, 38, 47). It has also been shown that secretion of YscP into the culture medium is not essential for the switch function and that there may be two type III secretion signals embedded in YscP (2).The phenotype of a yscP mutant is unregulated secretion of the needle subunit, no secretion of effectors, and production of needles of indeterminate length. The switching phenotype requires a domain at the C terminus of YscP called the type III secretion substrate specificity switch (T3S4) domain, which is a conserved feature unifying its homologs (1). YscP has been proposed to act as a molecular ruler because the length of the YscP protein is directly correlated with the length of the Ysc needle (26). According to this model, when the needle has reached its proper length, YscP signals to the T3SS machinery to stop secreting needle subunits and begin secreting effector proteins. However, other functional models have been hypothesized for homologs of YscP. A recent study of the Salmonella enterica serovar Typhimurium YscP homolog InvJ showed that an invJ mutant lacked an inner rod. When the inner rod protein PrgJ was overexpressed, the length of the needle decreased relative to that of the wild type, leading the researchers to conclude that InvJ controls the inner rod, which in turn controls needle length (33). Recent evidence in Yersinia has lent more support to this model. YscP was found to negatively control secretion of YscI, the inner rod protein (51). Also, certain YscI mutations affected needle assembly but not effector secretion, implying that YscI may be a key player in substrate switching. Little is known about HrpB, the inner rod homolog in P. syringae (22), other than that the protein can be translocated into plant cells and is essential for T3SS function (39).Other models for length control/substrate switching have been proposed, such as the “C-ring cup model” in flagella, which was based on the observation that certain mutations in proteins that make up the inner membrane C ring of the basal body lead to shorter hooks (the flagellar equivalent of the needle), thus suggesting that C-ring capacity controls hook length (32). A more recent, flagellar “molecular-clock” model suggests that because overexpression of hook subunits leads to longer hooks and hook polymerization-defective mutants make shorter hooks, hook polymerization initiates a countdown, and the timing, in cooperation with the YscP homolog FliK, determines final hook length (34).HrpP is considered a member of the YscP/FliK family due mostly to the presence of a T3S4 domain at its C terminus. HrpP is also proline rich (10.6%), which is considered a characteristic of the family. The most striking feature of HrpP is its small size; the protein is 189 amino acids, compared with YscP from Y. enterocolitica, which is 453 amino acids and 8.4% proline. We were intrigued by how HrpP functions in P. syringae to regulate a pilus that can measure several hundred nanometers in length. Also, unlike animal pathogen needles and flagellar hooks, the pilus of P. syringae is predicted to be indeterminate in length, based on the fact that plant cell walls vary in width between species (40).We hypothesized that HrpP would be a main player in regulating pilus construction in P. syringae by allowing the system to make the transition between secretion of pilus subunits and secretion of translocon or effector proteins, though perhaps by a novel mechanism. In this study, we more precisely define the role of HrpP in the P. syringae T3SS. We show that HrpP is a T3SS substrate in DC3000, is translocated into plant cells at levels equivalent to those of effectors, and is essential for the function of the T3SS. Though it is highly translocated and variable, we found that HrpP from different P. syringae pathovars could complement the DC3000 hrpP mutant. Analysis of truncations of HrpP and an impassible HrpP-green fluorescent protein (GFP) fusion suggests that it has structural similarities to YscP, but surprisingly, HrpP was found to be required for full secretion of the pilus subunit HrpA as well as for translocation of HrpB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号