首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Decolorization of molasses wastewater (MWW) from an ethanolic fermentation plant by Phanerochaete chrysosporium was studied. By diluting MWW properly (10%v/v) and incubating it with an appropriate concentration of the spores (2.5 × 106/ml), extensive decolorization occurred (75%) on day 5 of the incubation. The colour removal ability was found to be correlated to the activity of ligninolytic enzyme system: lignin peroxidase (LiP) activity was 185 U/l while manganese peroxidase (MnP) activity equaled 25 U/l. Effects of some selected operating variables were studied: manganese(II), veratryl alcohol (VA), glucose as a carbon source and urea and ammonium nitrate, each as a source of nitrogen. Results showed that the colour reduction and LiP activity were highest (76% and 186 U/l, respectively) either when no Mn(II) was added or added at the lowest level tested (0.16 mg/l to provide 0.3 mg/l). Activity of MnP was highest (25 U/l) when Mn(II) added to the diluted MWW at the highest level (100 ppm) while activity of LiP was lowest (7.1 U/l) at this level of added Mn(II). The colour reduction in the presence of the added VA was shown to be little less than in its absence (70 vs. 75%). When urea as an organic source of nitrogen for the fungus, was added to the MWW, the decolorizing activity of P. chrysosporium decreased significantly (15 vs. 75%) and no activities were detected for LiP and MnP. Use of ammonium nitrate as an inorganic source of nitrogen did not show such a decelerating effects, although no improvements in the metabolic behavior of the fungus (i.e., LiP and MnP activities) deaccelerating was observed. Effects of addition of glucose was also discussed.  相似文献   

2.
Summary The production of the ligninolytic enzymes by Phanerochaete chrysosporium immobilized on polyurethane foam cubes in air was investigated by adopting different sizes and amounts of the carriers, different medium C/N ratios and different glucose-feeding strategies. No lignin peroxidase (LiP) activity was observed under nitrogen limitation (C/N ratio, expressed as glucose/NH4+, 56/2.2 mM) with two sizes and three amounts of the carriers, while comparable levels of manganese peroxidase (MnP) activities were detected only in non-immersed cultures with two sizes of the carriers. A non-immersed state also stimulated LiP formation under carbon limitation (C/N ratio 28/44 mM). High peak activities of LiP, 197 and 164 U/l, were obtained in non-immersed cultures under carbon limitation at the C/N ratios of 28/44 and 56/44 mM, respectively, the occurrence of the activities coinciding with the complete consumption of glucose. A very low level of MnP was measured at the C/N ratio of 28/44 mM compared with the similar activities at 56/2.2 and 56/44 mM. An addition of 2 g glucose/l after its complete depletion improved both the production of LiP and MnP markedly in non-immersed culture at the initial C/N ratio of 28/44 mM, whereas a replenishment of 5 g/l, still enhancing the formation of MnP, inhibited the production of LiP first before the later reactivation. It is suggested that non-immersed liquid culture under carbon limitation reinforced by a suitable glucose feeding strategy is one potential way to realize high production of the ligninolytic enzymes by P. chrysosporium in air.  相似文献   

3.
Five bacterial strains were isolated and purified (CSA101 to CSA105) from the sediment core of the effluent released from the Century Pulp and Paper Mill Ltd., India. These strains were grown in minimal salt medium (MSM) containing pulp (10% as a carbon source). The production of lignin peroxidase, CMCase, Fpase, and xylanase together with protein and reducing sugar by all bacterial strains was observed. All of the bacterial isolates responded differently with respect to growth and ligninocellulolytic enzyme production. The maximum lignin peroxidase (LiP) was obtained from the cell extract of Bacillus sp. (CSA105) strain, which was used for purification, fractionation and characterization. The culture filtrate from Bacillus sp. (CSA105) was purified with ammonium sulfate precipitation. Crude protein was desalted by dialyzing with Tris buffer. The lignolytic enzyme produced in the liquid medium was fractionated by gel filtration on Sephadex G-100. In the present study, 12.4-fold purification of LiP enzyme was obtained and 35.85% yield of lignin peroxidase was achieved in the cell extract of Bacillus sp. (CSA105). Lignin peroxidase enzyme plays an important role in lignin degradation process. The ligninolytic enzymes were produced by all of the bacterial strains but maximum lignin peroxidase activity was found in cell extract of CSA105. On the basis of the results obtained, the bacterial strain (CSA105) was found most suitable for the purification of the LiP enzyme.  相似文献   

4.
A comparative study on the extracellular ligninolytic enzymatic activity of five strains of Fusarium solani in a carbon-limited medium under shaking, revealed a differential production of these enzymes. Aryl alcohol oxidase (AAO) activity was observed only in the supernatant of strain CLPS no. 568 with levels higher than 57 mU ml−1. Free extracellular laccase activity was detected in strains CLPS nos. 493, 568 and 570, strain no. 568 being the one which showed the highest activity (over 8.6 mU ml−1). Free extracellular lignin peroxidase (LiP) activity was not detected in any isolate tested, whereas low levels of manganese-dependent peroxidase (MnP) and manganese-independent peroxidase (MIP) activities were detected in certain isolates used. The AAO activity of F. solani on primary α-alcohols such as veratryl alcohol, is reported for the first time; this enzyme activity is hydrogen-peroxide independent. This is also the first report for extracellular MnP and MIP activities of F. solani. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

5.
Heterologous expression of Trametes cervina lignin peroxidase (LiP), the only basidiomycete peroxidase that has a catalytic tyrosine, was investigated. The mature LiP cDNA was cloned into the pET vector and used to transform Escherichia coli. Recombinant LiP protein accumulated in inclusion bodies as an inactive form. Refolding conditions for its in vitro activation—including incorporation of heme and structural Ca2+ ions, and formation of disulfide bridges—were optimized taking as a starting point those reported for other plant and fungal peroxidases. The absorption spectrum of the refolded enzyme was identical to that of wild LiP from T. cervina suggesting that it was properly folded. The enzyme was able to oxidize 1,4-dimethoxybenzene and ferrocytochrome c confirming its high redox potential and ability to oxidize large substrates. However, during oxidation of veratryl alcohol (VA), the physiological LiP substrate, an unexpected initial lag period was observed. Possible modification of the enzyme was investigated by incubating it with H2O2 and VA (for 30 min before dialysis). The pretreated enzyme showed normal kinetics traces for VA oxidation, without the initial lag previously observed. Steady-state kinetics of the pretreated LiP were almost the same as the recombinant enzyme before the pretreatment. Moreover, the catalytic constant (kcat) for VA oxidation was comparable to that of wild LiP from T. cervina, although the Michaelis–Menten constant (Km) was 8-fold higher. The present heterologous expression system provides a valuable tool to investigate structure–function relationships, and autocatalytic activation of the unique T. cervina LiP.  相似文献   

6.
Trametes cervina lignin peroxidase (LiP) lacks a catalytic tryptophan strictly conserved in other LiP and versatile peroxidases. It contains tyrosine181 at the potential catalytic site. This protein and the well-characterized Phanerochaete chrysosporium LiP with the catalytic tryptophan171 have been chemically modified: the tryptophan-specific modification with N-bromosuccinimide sufficiently disrupted oxidation of veratryl alcohol by P. chrysosporium LiP, whereas the activity of T. cervina LiP was not affected, suggesting no catalytic tryptophan in T. cervina LiP. On the other hand, the tyrosine-specific modification with tetranitromethane did not affect the activities of P. chrysosporium LiP lacking tyrosine but inactivated T. cervina LiP due to the nitration of tyrosine181. These results strongly suggest that tyrosine181 is at the catalytic site in T. cervina LiP.  相似文献   

7.
White-rot fungi of the Phylum Basidiomycota are quite promising in ligninolytic enzyme production and the optimization of their synthesis is of particular significance. The aim of this study was to investigate the effect of enhanced concentration of copper (Cu) ions (25–1000 μg/ml) on the activity of the ligninolytic enzyme complex (laccase, Lac; lignin peroxidase, LiP; Mn-peroxidase, MnP) in Trametes trogii 46, as well as the changes in the antioxidant cell response. All concentrations tested reduced significantly in growth and glucose consumption. Cu ions affected the ligninolytic enzyme activity in a dose dependent manner. Concentrations in the range of 25–100 μg/ml strongly stimulated Lac production (a 5–6-fold increase compared to the control). LiP activity was also induced by Cu, with the peak value being recorded following exposure to 50 μg/ml metal ions. In contrast, the addition of Cu ions had a positive effect on MnP activity at a concentration higher than 100 μg/ml. The maximum enzyme level was achieved at 1000 μg/ml. The results obtained on superoxide dismutase and catalase activities indicated that exposure of T. trogii 46 mycelia to Cu ions promoted oxidative stress. Both enzyme activities were co-ordinately produced with Lac and LiP but not co-ordinately with MnP.  相似文献   

8.
Peroxidases secreted by the white-rot basidiomycete Phanerochaete chrysosporium can oxidise a wide range of recalcitrant compounds including lignin and aromatic xenobiotics. Since low-rank coals such as brown coal and lignite retain structural features of the parent lignin, we investigated the possibility that P. chrysosporium is capable of acting on a brown coal, with the production of useful low-molecular-mass compounds. In nitrogen-limiting liquid medium containing 0.03% solubilised Morwell brown coal, P. chrysosporium was found to convert about 85% of the coal after 16 days incubation to a form not recoverable by alkali-washing and acid-precipitation. The modal molecular mass of the residual coal macromolecules was reduced from the initial 65kDa to 32 kDa. Extensive bleaching of the coal coincided with the presence of extracellular lignin peroxidase (LiP) and manganese-dependent peroxidase (MnP), although both LiP and MnP activity were lower in cultures containing coal. These reductions are accounted for by interference with the enzyme assays by solubilised coal and by binding of MnP to precipitated coal. LiP was about eight times more sensitive than MnP to inhibition by solubilised coal. In nitrogen-sufficient medium containing solubilised coal, neither coal modification nor LiP activity were observed, suggesting that LiP is an essential component of the bleaching process.  相似文献   

9.
Interspecific fungal antagonism leads to biochemical changes in competing mycelia, including up-regulation of oxidative enzymes. Laccase, manganese peroxidase (MnP), manganese-repressed peroxidase (MRP) and lignin peroxidase (LiP) gene expression and enzyme activity were compared during agar interactions between Trametes versicolor and five other wood decay fungi resulting in a range of interaction outcomes from deadlock to replacement of one fungus by another. Increased laccase and Mn-oxidising activities were detected at all interaction zones, but there were few changes in activity in regions away from the interaction zone in T. versicolor mycelia compared to self-pairings. Whilst no LiP activity was detected in any pairing, low level LiP gene expression was detected. MnP activity was detected but not expression of MnP genes; instead, MRP could explain the observed activity. No relationship was found between extent of enzyme activity increase and interaction outcome. Similarities between patterns of gene expression and enzyme activity are discussed.  相似文献   

10.
 The effects of high manganese [180 μM Mn(II)] concentration and addition of malonate (10 mM) were studied in nitrogen-limited cultures of the white-rot fungus, Phlebia radiata. High levels of manganese alone showed no systematic influence on the production of lignin peroxidase (LiP), manganese peroxidase (MnP) or laccase. In contrast, high-manganese containing cultures of P. radiata showed lower efficiency in the mineralization of 14C-ring-labelled synthetic lignin ([14C]DHP). The highest rates of mineralization, up to 30% in 18 days, were reached in low- manganese(2 μM)-containing cultures when malonate was omitted. Degradation of [14C]DHP was substantially restricted by the addition of malonate. The combination of high manganese and malonate resulted in increased levels of MnP and laccase production, whereas LiP production was repressed. Also, the profiles of expression of the MnP and LiP isozymes were affected. A new P. radiata MnP isozyme of pI 3.6 (MnP3) was found in the high-manganese cultures. Addition of malonate alone caused some repression but also stimulating effects on distinctive MnP and LiP isozymes. The results indicate that manganese and malonate are individual regulators of MnP and LiP expression and have different roles in the degradation of lignin by P. radiata. Received: 30 August 1995/Received revision: 10 January 1996/Accepted: 12 February 1996  相似文献   

11.
The present work was carried out to determine the optimum culture conditions of Phanerochaete chrysosporium (ATCC 20696) for maximizing ligninolytic enzyme production. Additionally, separation of its lignin peroxidase was conducted. After experiments, an optimized culture medium/condition was constructed (per liter of Kirk’s medium): dextrose 10 g, ammonium tartrate 0.11 g, Tween-80 0.5 g, MnSO4 7 mg, and veratryl alcohol 0.3 g in 10 mM acetic acid buffer pH 4.5. Under the optimized experimental condition, both lignin peroxidase (LiP) and manganese peroxidase (MnP) were detected and reach the highest yield at 30°C on the 8th day culture. Salt precipitation methods was used in the extraction and purification processes. Results show that salt precipitation with 60% (NH4)2SO4 yielded the best result, especially toward LiP. Enzyme separation was conducted and two fractions with LiP activity. LiP1 and LiP2 were produced using three columns sequentially: desalting column, Q FF ion exchange column and Sepharyl S-300 HR gel filtration. LiP1 and LiP2 had been purified by 9.6- and 7.6-fold with a yield of 22.9% and 18.6%, respectively. According to the data of sodium dodecyl sulfate polyacrilamide gel electrophoresis (SDS-PAGE), the molecular weights of the enzymes are 38 kDa and 40 kDa, respectively.  相似文献   

12.
Manganese and lignin peroxidase (MnP, LiP) activities were measured in straw extracts from cultures of Phanerochaete chrysosporium. Out of six MnP substrates, the MBTH/DMAB (3-methyl-2-benzothiazolinone hydrazone/3-(dimethylamino)benzoic acid), gave the highest MnP activity. Detection of LiP activity as veratryl alcohol oxidation was inhibited by phenols in the straw culture extracts. Appropriate levels of veratryl alcohol and peroxide (4 mM and 0.4 mM, respectively), and a restricted sample volume (not larger than 10%) were necessary to detect activity.  相似文献   

13.
In this work, capability of Fusarium solani F-552 of producing lignocellulose-degrading enzymes in submerged fermentation was investigated. The enzyme cocktail includes hydrolases (cellulases, xylanases, and proteinases) as well as ligninolytic enzymes: manganese-dependent peroxidase (MnP), lignin peroxidase (LiP), and laccase (Lac). To our knowledge, this is the first report on production of MnP, LiP, and Lac together by one F. solani strain. The enzyme productions were significantly influenced by application of either lignocellulosic material or chemical inducers into the fermentation medium. Among them, corn bran significantly enhanced especially productions of cellulases and xylanases (248 and 170 U/mL, respectively) as compared to control culture (11.7 and 29.2 U/mL, respectively). High MnP activity (9.43 U/mL, control 0.45 U/mL) was observed when (+)-catechin was applied into the medium, the yield of LiP was maximal (33.06 U/mL, control 2.69 U/mL) in gallic acid, and Lac was efficiently induced by, 2,2′-azino-bis-[3-ethyltiazoline-6-sulfonate] (6.74 U/mL, not detected in control). Finally, in order to maximize the ligninolytic enzymes yields, a novel strategy of introduction of mild oxidative stress conditions caused by hydrogen peroxide into the fermentation broth was tested. Hydrogen peroxide significantly increased activities of MnP, LiP, and Lac which may indicate that these enzymes could be partially involved in stress response against H2O2. The concentration of H2O2 and the time of the stress application were optimized; hence, when 10 mmol/L H2O2 was applied at the second and sixth day of cultivation, the MnP, LiP, and Lac yields reached 21.67, 77.42, and 12.04 U/mL, respectively.  相似文献   

14.
Lignin peroxidase (LiP) plays an active role in the biodegradation of lignin and phenolic structures resembling lignin. The role of other enzymes in the biodegradation of recalcitrant compounds, e.g. manganese(II)-peroxidase, is uncertain. Solid manganese(IV)oxide addition improved the production of manganese(II)-dependant peroxidase (MnP) and H2O2 and increased the rate of biodegradation of Aroclor 1254 in a nitrogen-limited medium by the white rot fungus Coriolus versicolor. MnP activity was detected 48 h after the addition of MnO2 to the cultures and was absent in cultures that did not receive MnO2. The rate of Aroclor 1254 removal by C. versicolor was influenced by the concentration of MnO2. 34.5 mM concentrations only increased the H2O2 production. Removal of Aroclor 1254 in the absence of MnO2 still took place which implied the presence of (LiP) or nonspecific absorption. The cultures containing 57.5 mM MnO2 removed ca. 84% of the initial 750 mg l−1 Aroclor in 6 days of incubation. Cultures with no MnO2 and 34.5 mM removed 79 and 76%, respectively. Cultures with MnP or LiP as the dominant enzyme species removed penta- and hexachlorobiphenyls at a slower rate than tri- and tetrachlorobiphenyl.  相似文献   

15.
Manganese peroxidase (MnP) and lignin peroxidase (LiP) were produced by growing a white-rot fungusBjerkandera adusta statically, on a wood meal/wheat bran culture in flasks. MnP and LiP reached their maximum activity after 6 and 19 days of inoculation, respectively. Both MnP and LiP are thought to be important enzymes in lignin biodegradation byB. adusta. Ion exchange chromatography showed thatB. adusta produced a single LiP and a single MnP enzyme in wood meal/wheat bran culture. These enzymes were separated and characterized. The molecular weight of MnP was 46,500 with a pl of 3.9. The molecular weight of LiP was estimated to be 47,000 with a pl of 3.5. Spectral analysis demonstrated that both enzymes are heme proteins. Production of these enzymes was also achieved using a rotarysolid culture fermenter. MnP, LiP and veratryl alcohol oxidase were produced byB. adusta in the fermenter.  相似文献   

16.
The production of manganese-dependent peroxidase (MnP) and lignin peroxidase (LiP) by the fungus Phanerochaete chrysosporium (ATCC 24725) in a new bioreactor, the Immersion Bioreactor, which grows cells under solid-state conditions, was studied. Maximum MnP and LiP activities were 987 U l–1 and 356 U l–1, respectively. The polymeric dye, Poly R-478, was degraded at 2.4 mg l–1 min–1 using the extracellular culture filtrate.  相似文献   

17.
Of seven fungal strains tested for their ability to decolourise three structurally diverse synthetic dyes, Phanerochaete sordida, Bjerkandera sp. BOS55, Phlebia radiata, and Phanerochaete chrysosporium had average values of maximum decolourisation rates higher than 0.2 [Absorbance] d–1. All seven fungi produced manganese peroxidase (MnP) but laccase activity was detected only in Phlebia radiata. No lignin peroxidase (LiP) activity was observed.  相似文献   

18.
Two families of peroxidases—lignin peroxidase (LiP) and manganese-dependent lignin peroxidase (MnP)—are formed by the lignin-degrading white rot basidiomycete Phanerochaete chrysosporium and other white rot fungi. Isoenzymes of these enzyme families carry out reactions important to the biodegradation of lignin. This research investigated the regulation of LiP and MnP production by Mn(II). In liquid culture, LiP titers varied as an inverse function of and MnP titers varied as a direct function of the Mn(II) concentration. The extracellular isoenzyme profiles differed radically at low and high Mn(II) levels, whereas other fermentation parameters, including extracellular protein concentrations, the glucose consumption rate, and the accumulation of cell dry weight, did not change significantly with the Mn(II) concentration. In the absence of Mn(II), extracellular LiP isoenzymes predominated, whereas in the presence of Mn(II), MnP isoenzymes were dominant. The release of 14CO2 from 14C-labeled dehydrogenative polymerizate lignin was likewise affected by Mn(II). The rate of 14CO2 release increased at low Mn(II) and decreased at high Mn(II) concentrations. This regulatory effect of Mn(II) occurred with five strains of P. chrysosporium, two other species of Phanerochaete, three species of Phlebia, Lentinula edodes, and Phellinus pini.  相似文献   

19.

Background

Cost-effective production of industrially important enzymes is a key for their successful exploitation on industrial scale. Keeping in view the extensive industrial applications of lignin peroxidase (LiP), this study was performed to purify and characterize the LiP from an indigenous strain of Trametes versicolor IBL-04. Xerogel matrix enzyme immobilization technique was applied to improve the kinetic and thermo-stability characteristics of LiP to fulfil the requirements of the modern enzyme consumer sector of biotechnology.

Results

A novel LiP was isolated from an indigenous T. versicolor IBL-04 strain. T. versicolor IBL-04 was cultured in solid state fermentation (SSF) medium of corn cobs and maximum LiP activity of 592?±?6 U/mL was recorded after five days of incubation under optimum culture conditions. The crude LiP was 3.3-fold purified with specific activity of 553 U/mg after passing through the DEAE-cellulose and Sephadex-G-100 chromatography columns. The purified LiP exhibited a relatively low molecular weight (30?kDa) homogenous single band on native and SDS-PAGE. The LiP was immobilized by entrapping in xerogel matrix of trimethoxysilane (TMOS) and proplytetramethoxysilane (PTMS) and maximum immobilization efficiency of 88.6% was achieved. The free and immobilized LiPs were characterized and the results showed that the free and immobilized LiPs had optimum pH 6 and 5 while optimum temperatures were 60°C and 80°C, respectively. Immobilization was found to enhance the activity and thermo-stability potential of LiP significantly and immobilized LiP remained stable over broad pH and temperature range as compare to free enzyme. Kinetic constants K m and V max were 70 and 56???M and 588 and 417 U/mg for the free and immobilized LiPs, respectively. Activity of this novel extra thermo-stable LiP was stimulated to variable extents by Cu2+, Mn2+ and Fe2+ whereas, Cystein, EDTA and Ag+ showed inhibitory effects.

Conclusions

The indigenously isolated white rot fungal strain T. versicolor IBL-04 showed tremendous potential for LiP synthesis in SSF of corncobs in high titters (592 U/mL) than other reported Trametes (Coriolus, Polyporus) species. The results obtained after dual phase characterization suggested xerogel matrix entrapment a promising tool for enzyme immobilization, hyper-activation and stabilization against high temperature and inactivating agents. The pH and temperature optima, extra thermo-stability features and kinetic characteristics of this novel LiP of T. versicolor IBL-04 make it a versatile enzyme for various industrial and biotechnological applications.  相似文献   

20.
Bjerkandera sp. strain BOS55, a newly isolated wild-type white rot fungus, produced lignin peroxidase (LiP) in nitrogen (N)-sufficient glucose-peptone medium, whereas no LiP was detectable in N-limited medium. The production of LiP was induced by the peptide-containing components of this medium and also by soy bean protein. Furthermore, the production of manganese-dependent peroxidase was stimulated by organic N sources, although lower production was also evident in N-limited medium. Further research showed that the induction of LiP depended on the combination of pH and the type of N source. An amino acid mixture and ammonium induced LiP only at either pH 6 or 7.3, respectively. Peptone induced LiP activity at all pH values tested; however, the highest activity was observed at pH 7.3. The results presented here indicate that Bjerkandera spp. are distinct from the model white rot fungus, Phanerochaete chrysosporium, which produces ligninolytic peroxidases in response to N limitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号