首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
将HIV-1中国株42(B亚型)gag基因及gag与gp120 V3区的嵌合基因gag V3插入腺病毒伴随病毒(AAV)表达载体(pSNAV)质粒中,构建重组质粒pSNAV-gag及pSNAV-gagV3;采用脂质体转染的方法分别将重组质粒转入BHK细胞,G418筛选得到转入重组质粒并能表达外源基因的细胞系,命名为BHK-gag及BHK-gagV3。用具有重组腺病毒伴随病毒(rAAV)包装功能的一种重组单纯疱疹病毒(rHSV)分析感染这两株细胞系,纯化后得到rAAV,电镜观察可见到大量实心病毒颗粒,核酸杂交检测重组病毒滴度达到10^12病毒颗粒/ml,重组病毒感染293细胞,ELISA检测有gag及gagV3基因的表达。用重组病毒免疫Balb/C小鼠,检测抗体及细胞免疫水平,证明重组病毒可以在小鼠体内诱导产生细胞及体液免疫。  相似文献   

2.
The mature human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) comprises the non-covalently associated gp120 and gp41 subunits generated from the gp160 precursor. Recent structural analyses have provided quaternary structural models for gp120/gp41 trimers, including the variable loops (V1–V5) of gp120. In these models, the V3 loop is located under V1/V2 at the apical center of the Env trimer, and the V4 and V5 loops project outward from the trimeric protomers. In addition, the V4 and V5 loops are predicted to have less movement upon receptor binding during membrane fusion events. We performed insertional mutagenesis using a GFP variant, GFPOPT, placed into the variable loops of HXB2 gp120. This allowed us to evaluate the current structural models and to simultaneously generate a GFP-tagged HIV-1 Env, which was useful for image analyses. All GFP-inserted mutants showed similar levels of whole-cell expression, although certain mutants, particularly V3 mutants, showed lower levels of cell surface expression. Functional evaluation of their fusogenicities in cell-cell and virus-like particle-cell fusion assays revealed that V3 was the most sensitive to the insertion and that the V1/V2 loops were less sensitive than V3. The V4 and V5 loops were the most tolerant to insertion, and certain tag proteins other than GFPOPT could also be inserted without functional consequences. Our results support the current structural models and provide a GFPOPT-tagged Env construct for imaging studies.  相似文献   

3.
Escherichia coli (E. coli) is the most widely used expression system for the production of recombinant proteins for structural and functional studies. However, purifying proteins is sometimes challenging since many proteins are expressed in an insoluble form. When working with difficult or multiple targets it is therefore recommended to use high throughput (HTP) protein expression screening on a small scale (1-4 ml cultures) to quickly identify conditions for soluble expression. To cope with the various structural genomics programs of the lab, a quantitative (within a range of 0.1-100 mg/L culture of recombinant protein) and HTP protein expression screening protocol was implemented and validated on thousands of proteins. The protocols were automated with the use of a liquid handling robot but can also be performed manually without specialized equipment.Disulfide-rich venom proteins are gaining increasing recognition for their potential as therapeutic drug leads. They can be highly potent and selective, but their complex disulfide bond networks make them challenging to produce. As a member of the FP7 European Venomics project (www.venomics.eu), our challenge is to develop successful production strategies with the aim of producing thousands of novel venom proteins for functional characterization. Aided by the redox properties of disulfide bond isomerase DsbC, we adapted our HTP production pipeline for the expression of oxidized, functional venom peptides in the E. coli cytoplasm. The protocols are also applicable to the production of diverse disulfide-rich proteins. Here we demonstrate our pipeline applied to the production of animal venom proteins. With the protocols described herein it is likely that soluble disulfide-rich proteins will be obtained in as little as a week. Even from a small scale, there is the potential to use the purified proteins for validating the oxidation state by mass spectrometry, for characterization in pilot studies, or for sensitive micro-assays.  相似文献   

4.
我国HIV-1B'/C重组流行株Tat蛋白的表达、纯化及功能分析   总被引:7,自引:0,他引:7  
根据全国HIV分子流行病学研究发现,B'和C亚型HIV-1在我国发生了重组,并以优势株形式在我国广泛流行.为了探讨这种HIV-1B'/C重组毒株tat基因的变异与其表型之间的关系,利用pET表达系统在大肠杆菌中高效表达了三种不同基因变异类型的Tat蛋白,重组蛋白占菌体总蛋白的26%,Western blot显示较好的反应原性,并通过金属鏊合层析纯化了目的蛋白.荧光素酶活性检测表明:体外表达的Tat蛋白具有明显的生物学活性,可以反式激活HIV LTR引导的报告基因的表达;三种Tat蛋白在激活活性上的差异与流行现场检测的病毒载量的高低存在明显的对应关系,说明tat基因的变异可以引起病毒生物学特性的改变,进而影响病毒的流行特征.此结果为进一步研究我国HIV重组毒株的基因变异特征及变异规律奠定了基础.  相似文献   

5.
6.
Adenoviral, adeno-associated viral, and retroviral particles are chosen as gene delivery shuttles in more than 50% of all gene therapy clinical trials. Bulk availability of clinical-grade viral particles and their efficiency to transduce the therapeutic cargo into specific target cells remain the most critical bottlenecks in gene therapy applications to date. Capitalizing on the flame-spray technology for the reproducible economic large-scale production of amorphous tricalcium phosphate nanoparticulate powders (ATCP), we designed a scalable ready-to-use gravity-flow column set-up for the straightforward concentration and purification of transgenic adenoviral, adeno-associated viral, and lentiviral particles. Specific elution buffers enabled rapid release of viral particles from the ATCP matrix of the column and provided high-titer virus preparations in an unsurpassed period of time. The interaction of ATCP with adenoviral, adeno-associated viral, and lentiviral particles in solution increased the transduction kinetics of several mammalian cell lines in culture. The nanoparticles were also able to modify the tropism of murine leukemia virus (MLV) towards transduction of human cells. Based on these findings, we believe that the use of flame-spray tricalcium phosphate nanoparticles will lead to important progress in the development of future gene therapy initiatives.  相似文献   

7.
Abstract

The effect of pH and temperature on the apparent association equilibrium constant (Ka) for the binding of the recombinant proteinase inhibitor eglin c (eglin c), of the soybean Bowman-Birk proteinase inhibitor (BBI) and of its chymotrypsin and trypsin inhibiting fragments (F-C and F-T, respetively) to Leuproteinase, the leucine specific serine proteinase from spinach (Spinacia oleracea L.) leaves, has been investigated. On lowering the pH from 9.5 to 4.5, values of Ka (at 21°C) for complex formation decrease thus reflecting the acidic pK-shift of the hystidyl catalytic residue from ~6.9, in the free Leu-proteinase, to ~5.1, in the enzyme: inhibitor adducts. At pH 8.0, values of the apparent thermodynamic parameters for the proteinase:inhibitor complex formation are: Leu-proteinase:eglin c - Ka = 2.2 × 1011 M-1, δG°= - 64kJ/mol, δH° = + 5.9kJ/mol, and δS° = + 240J/molK; Leu-proteinase:BBI - Ka = 3.2 × 1010 M-1, δG° = - 59kJ/mol, δH°= + 8.8kJ/mol, and δS° = + 230J/molK; and Leu-proteinase:F-C - Ka = 1.1 × 106 M-1, δG°= - 34kJ/mol, δH° = + 18J/mol, and δS° = + 180J/molK (values of Ka, δG° and δS° were obtained at 21.0°C; values of δH° were temperature-independent over the range explored, i.e. between 10.0°C and 40.0°C). F-T does not inhibit Leu-proteinase up to an inhibitor concentration of 1.0 × 10-3 M, suggesting that the upper limit of Ka is 1 × 102 M-1. Considering the known molecular models, the observed binding behaviour of eglin c, BBI, F-C and F-T to Leu-proteinase has been related to the inferred stereochemistry of the enzyme/inhibitor contact region  相似文献   

8.
Examples of ring-expanded nucleosides (RENs), represented by general structures 1 and 2, exhibited dual anti-HCV and anti-HIV activities in both cell culture systems and the respective target enzyme assays, including HCV NTPase/helicase and human RNA helicase DDX3. Since HCV is a leading co-infection in late stage HIV AIDS patients, often leading to liver cirrhosis and death, the observed dual inhibition of HCV and HIV by the target nucleoside analogues has potentially beneficial implications in treating HIV patients infected with HCV.  相似文献   

9.
10.
S-1360, a 1,3-diketone derivative, was the first HIV integrase inhibitor to enter human trials. Clinical data suggested involvement of non-cytochrome P450 clearance pathways, including reduction and glucuronidation. Reduction of S-1360 generates a key metabolite in humans, designated HP1, and constitutes a major clearance pathway. For characterization of subcellular location and cofactor dependence of HP1 formation, [(14)C]-S-1360 was incubated with commercially available pooled human liver fractions, including microsomes, cytosol, and mitochondria, followed by HPLC analysis with radiochemical detection. Incubations were performed in the presence and absence of the cofactors NADH or NADPH. Results showed that the enzyme system responsible for generation of HP1 in vitro is cytosolic and NADPH-dependent, implicating aldo-keto reductases (AKRs) and/or short-chain dehydrogenases/reductases (SDRs). A validated LC/MS/MS method was developed for investigating the reduction of S-1360 in detail. The reduction reaction exhibited sigmoidal kinetics with a K(m,app) of 2 microM and a Hill coefficient of 2. The ratio of V(max)/K(m) was approximately 1 ml/(min mg cytosolic protein). The S-1360 kinetic data were consistent with positive cooperativity and a single enzyme system. The relative contributions of AKRs and SDRs were examined through the use of chemical inhibitors. For these experiments, non-radiolabeled S-1360 was incubated with pooled human liver cytosol and NADPH in the presence of inhibitors, followed by quantitation of HP1 by LC/MS/MS. Quercetin and menadione produced approximately 30% inhibition at a concentration of 100 microM. Enzymes sensitive to these inhibitors include the carbonyl reductases (CRs), a subset of the SDR enzyme family predominantly located in the cytosol. Flufenamic acid and phenolphthalein were the most potent inhibitors, with > 67% inhibition at a concentration of 20 microM, implicating the AKR enzyme family. The cofactor dependence, subcellular location, and chemical inhibitor results implicated the aldo-keto reductase family of enzymes as the most likely pathway for generation of the major metabolite HP1 from S-1360.  相似文献   

11.
Neutralizing effects of antibodies targeting the C-terminal stalk (S2) subunit of the spike protein of severe acute respiratory syndrome coronavirus have previously been reported, although its mechanism remained elusive. In this study, high titered mouse antisera against the N-terminal globular (S1) and S2 subunits of the S protein were generated and total immunoglobulin G (IgG) was purified from these antisera. The efficiency of these purified IgGs in virus neutralization and blocking of receptor binding were compared quantitatively using virus neutralization assay and a previously developed cell-based receptor binding assay, respectively. We demonstrated that anti-S1 IgG neutralizes the virus and binds to the membrane associated S protein more efficiently than anti-S2 IgG does. Moreover, both anti-S1 and anti-S2 IgGs were able to abolish the binding between S protein and its cellular receptor(s), although anti-S1 IgG showed a significantly higher blocking efficiency. The unexpected blocking ability of anti-S2 IgG towards the receptor binding implied a possible role of the S2 subunit in virus docking process and argues against the current hypothesis of viral entry. On the other hand, the functional roles of the previously reported neutralizing epitopes within S2 subunit were investigated using an antigen specific antibody depletion assay. Depletion of antibodies against these regions significantly diminished, though not completely abolished, the neutralizing effects of anti-S2 IgG. It suggests the absence of a major neutralizing domain on S2 protein. The possible ways of anti-S2 IgGs to abolish the receptor binding and the factors restricting anti-S2 IgGs to neutralize the virus are discussed.  相似文献   

12.
Fusion between viral and host cell membranes is the initial step of human immunodeficiency virus infection and is mediated by the gp41 protein, which is embedded in the viral membrane. The ∼ 20-residue N-terminal fusion peptide (FP) region of gp41 binds to the host cell membrane and plays a critical role in fusion catalysis. Key gp41 fusion conformations include an early pre-hairpin intermediate (PHI) characterized by extended coiled-coil structure in the region C-terminal of the FP and a final hairpin state with compact six-helix bundle structure. The large “N70” (gp41 1-70) and “FP-Hairpin” constructs of the present study contained the FP and respectively modeled the PHI and hairpin conformations. Comparison was also made to the shorter “FP34” (gp41 1-34) fragment. Studies were done in membranes with physiologically relevant cholesterol content and in membranes without cholesterol. In either membrane type, there were large differences in fusion function among the constructs with little fusion induced by FP-Hairpin, moderate fusion for FP34, and very rapid fusion for N70. Overall, our findings support acceleration of gp41-induced membrane fusion by early PHI conformation and fusion arrest after folding to the final six-helix bundle structure. FP secondary structure at Leu7 of the membrane-associated constructs was probed by solid-state nuclear magnetic resonance and showed populations of molecules with either β-sheet or helical structure with greater β-sheet population observed for FP34 than for N70 or FP-Hairpin. The large differences in fusion function among the constructs were not obviously correlated with FP secondary structure. Observation of cholesterol-dependent FP structure for fusogenic FP34 and N70 and cholesterol-independent structure for non-fusogenic FP-Hairpin was consistent with membrane insertion of the FP for FP34 and N70 and with lack of insertion for FP-Hairpin. Membrane insertion of the FP may therefore be associated with the early PHI conformation and FP withdrawal with the final hairpin conformation.  相似文献   

13.
Bacteriophage T4 capsid is a prolate icosahedron composed of the major capsid protein gp23*, the vertex protein gp24*, and the portal protein gp20. Assembled on its surface are 810 molecules of the non-essential small outer capsid protein, Soc (10 kDa), and 155 molecules of the highly antigenic outer capsid protein, Hoc (39 kDa). In this study Soc, a "triplex" protein that stabilizes T4 capsid, is targeted for molecular engineering of T4 particle surface. Using a defined in vitro assembly system, anthrax toxins, protective antigen, lethal factor and their domains, fused to Soc were efficiently displayed on the capsid. Both the N and C termini of the 80 amino acid Soc polypeptide can be simultaneously used to display antigens. Proteins as large as 93 kDa can be stably anchored on the capsid through Soc-capsid interactions. Using both Soc and Hoc, up to 1662 anthrax toxin molecules are assembled on the phage T4 capsid under controlled conditions. We infer from the binding data that a relatively high affinity capsid binding site is located in the middle of the rod-shaped Soc, with the N and C termini facing the 2- and 3-fold symmetry axes of the capsid, respectively. Soc subunits interact at these interfaces, gluing the adjacent capsid protein hexamers and generating a cage-like outer scaffold. Antigen fusion does interfere with the inter-subunit interactions, but these interactions are not essential for capsid binding and antigen display. These features make the T4-Soc platform the most robust phage display system reported to date. The study offers insights into the architectural design of bacteriophage T4 virion, one of the most stable viruses known, and how its capsid surface can be engineered for novel applications in basic molecular biology and biotechnology.  相似文献   

14.
The fusion peptides of HIV and influenza virus are crucial for viral entry into a host cell. We report the membrane-perturbing and structural properties of fusion peptides from the HA fusion protein of influenza virus and the gp41 fusion protein of HIV. Our goals were to determine: 1), how fusion peptides alter structure within the bilayers of fusogenic and nonfusogenic lipid vesicles and 2), how fusion peptide structure is related to the ability to promote fusion. Fluorescent probes revealed that neither peptide had a significant effect on bilayer packing at the water-membrane interface, but both increased acyl chain order in both fusogenic and nonfusogenic vesicles. Both also reduced free volume within the bilayer as indicated by partitioning of a lipophilic fluorophore into membranes. These membrane ordering effects were smaller for the gp41 peptide than for the HA peptide at low peptide/lipid ratio, suggesting that the two peptides assume different structures on membranes. The influenza peptide was predominantly helical, and the gp41 peptide was predominantly antiparallel beta-sheet when membrane bound, however, the depths of penetration of Trps of both peptides into neutral membranes were similar and independent of membrane composition. We previously demonstrated: 1), the abilities of both peptides to promote fusion but not initial intermediate formation during PEG-mediated fusion and 2), the ability of hexadecane to compete with this effect of the fusion peptides. Taken together, our current and past results suggest a hypothesis for a common mechanism by which these two viral fusion peptides promote fusion.  相似文献   

15.
16.
Given their high alanine and glycine levels, plaque formation, α-helix to β-sheet interconversion and fusogenicity, FP (i.e., the N-terminal fusion peptide of HIV-1 gp41; 23 residues) and amyloids were proposed as belonging to the same protein superfamily. Here, we further test whether FP may exhibit ‘amyloid-like’ characteristics, by contrasting its structural and functional properties with those of Aβ(26-42), a 17-residue peptide from the C-terminus of the amyloid-beta protein responsible for Alzheimer's. FTIR spectroscopy, electron microscopy, light scattering and predicted amyloid structure aggregation (PASTA) indicated that aqueous FP and Aβ(26-42) formed similar networked β-sheet fibrils, although the FP fibril interactions were weaker. FP and Aβ(26-42) both lysed and aggregated human erythrocytes, with the hemolysis-onsets correlated with the conversion of α-helix to β-sheet for each peptide in liposomes. Congo red (CR), a marker of amyloid plaques in situ, similarly inhibited either FP- or Aβ(26-42)-induced hemolysis, and surface plasmon resonance indicated that this may be due to direct CR-peptide binding. These findings suggest that membrane-bound β-sheets of FP may contribute to the cytopathicity of HIV in vivo through an amyloid-type mechanism, and support the classification of HIV-1 FP as an ‘amyloid homolog’ (or ‘amylog’).  相似文献   

17.
The epithelial and endothelial barriers of the human body are major obstacles for drug delivery to the systemic circulation and to organs with unique environment and homeostasis, like the central nervous system. Several transport routes exist in these barriers, which potentially can be exploited for enhancing drug permeability. Beside the transcellular pathways via transporters, adsorptive and receptor-mediated transcytosis, the paracellular flux for cells and molecules is very limited. While lipophilic molecules can diffuse across the cellular plasma membranes, the junctional complexes restrict or completely block the free passage of hydrophilic molecules through the paracellular clefts. Absorption or permeability enhancers developed in the last 40 years for modifying intercellular junctions and paracellular permeability have unspecific mode of action and the effective and toxic doses are very close. Recent advances in barrier research led to the discovery of an increasing number of integral membrane, adaptor, regulator and signalling proteins in tight and adherens junctions. New tight junction modulators are under development, which can directly target tight or adherens junction proteins, the signalling pathways regulating junctional function, or tight junction associated lipid raft microdomains. Modulators acting directly on tight junctions include peptides derived from zonula occludens toxin, or Clostridium perfringens enterotoxin, peptides selected by phage display that bind to integral membrane tight junction proteins, and lipid modulators. They can reversibly increase paracellular transport and drug delivery with less toxicity than previous absorption enhancers, and have a potential to be used as pharmaceutical excipients to improve drug delivery across epithelial barriers and the blood-brain barrier.  相似文献   

18.
Keyword index     
《Journal of neurochemistry》2003,87(6):1579-1582
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号