共查询到20条相似文献,搜索用时 0 毫秒
1.
Airlane P. Alencar Julio M. Singer Francisco Marcelo M. Rocha 《Biometrical journal. Biometrische Zeitschrift》2012,54(2):214-229
The choice of an appropriate family of linear models for the analysis of longitudinal data is often a matter of concern for practitioners. To attenuate such difficulties, we discuss some issues that emerge when analyzing this type of data via a practical example involving pretest–posttest longitudinal data. In particular, we consider log‐normal linear mixed models (LNLMM), generalized linear mixed models (GLMM), and models based on generalized estimating equations (GEE). We show how some special features of the data, like a nonconstant coefficient of variation, may be handled in the three approaches and evaluate their performance with respect to the magnitude of standard errors of interpretable and comparable parameters. We also show how different diagnostic tools may be employed to identify outliers and comment on available software. We conclude by noting that the results are similar, but that GEE‐based models may be preferable when the goal is to compare the marginal expected responses. 相似文献
2.
3.
4.
5.
Guan Y 《Biometrics》2011,67(3):730-739
A typical recurrent event dataset consists of an often large number of recurrent event processes, each of which contains multiple event times observed from an individual during a follow-up period. Such data have become increasingly available in medical and epidemiological studies. In this article, we introduce novel procedures to conduct second-order analysis for a flexible class of semiparametric recurrent event processes. Such an analysis can provide useful information regarding the dependence structure within each recurrent event process. Specifically, we will use the proposed procedures to test whether the individual recurrent event processes are all Poisson processes and to suggest sensible alternative models for them if they are not. We apply these procedures to a well-known recurrent event dataset on chronic granulomatous disease and an epidemiological dataset on meningococcal disease cases in Merseyside, United Kingdom to illustrate their practical value. 相似文献
6.
We derive semiparametric methods for estimating and testing treatment effects when censored recurrent event data are available over multiple periods. These methods are based on estimating functions motivated by a working "mixed-Poisson" assumption under which conditioning can eliminate subject-specific random effects. Robust pseudoscore test statistics are obtained via "sandwich" variance estimation. The relative efficiency of conditional versus marginal analyses is assessed analytically under a mixed time-homogeneous Poisson model. The robustness and empirical power of the semiparametric approach are assessed through simulation. Adaptations to handle recurrent events arising in crossover trials are described and these methods are applied to data from a two-period crossover trial of patients with bronchial asthma. 相似文献
7.
8.
Summary . This article concerns a new joint modeling approach for correlated data analysis. Utilizing Gaussian copulas, we present a unified and flexible machinery to integrate separate one-dimensional generalized linear models (GLMs) into a joint regression analysis of continuous, discrete, and mixed correlated outcomes. This essentially leads to a multivariate analogue of the univariate GLM theory and hence an efficiency gain in the estimation of regression coefficients. The availability of joint probability models enables us to develop a full maximum likelihood inference. Numerical illustrations are focused on regression models for discrete correlated data, including multidimensional logistic regression models and a joint model for mixed normal and binary outcomes. In the simulation studies, the proposed copula-based joint model is compared to the popular generalized estimating equations, which is a moment-based estimating equation method to join univariate GLMs. Two real-world data examples are used in the illustration. 相似文献
9.
Liang Zhu Hui Zhao Jianguo Sun Stanley Pounds Hui Zhang 《Biometrical journal. Biometrische Zeitschrift》2013,55(1):5-16
This paper discusses regression analysis of longitudinal data in which the observation process may be related to the longitudinal process of interest. Such data have recently attracted a great deal of attention and some methods have been developed. However, most of those methods treat the observation process as a recurrent event process, which assumes that one observation can immediately follow another. Sometimes, this is not the case, as there may be some delay or observation duration. Such a process is often referred to as a recurrent episode process. One example is the medical cost related to hospitalization, where each hospitalization serves as a single observation. For the problem, we present a joint analysis approach for regression analysis of both longitudinal and observation processes and a simulation study is conducted that assesses the finite sample performance of the approach. The asymptotic properties of the proposed estimates are also given and the method is applied to the medical cost data that motivated this study. 相似文献
10.
11.
Gap time hazard estimation is of particular interest in recurrent event data. This article proposes a fully nonparametric approach for estimating the gap time hazard. Smoothing spline analysis of variance (ANOVA) decompositions are used to model the log gap time hazard as a joint function of gap time and covariates, and general frailty is introduced to account for between-subject heterogeneity and within-subject correlation. We estimate the nonparametric gap time hazard function and parameters in the frailty distribution using a combination of the Newton-Raphson procedure, the stochastic approximation algorithm (SAA), and the Markov chain Monte Carlo (MCMC) method. The convergence of the algorithm is guaranteed by decreasing the step size of parameter update and/or increasing the MCMC sample size along iterations. Model selection procedure is also developed to identify negligible components in a functional ANOVA decomposition of the log gap time hazard. We evaluate the proposed methods with simulation studies and illustrate its use through the analysis of bladder tumor data. 相似文献
12.
In recent years there has been considerable research devoted to the development of methods for the analysis of incomplete data in longitudinal studies. Despite these advances, the methods used in practice have changed relatively little, particularly in the reporting of pharmaceutical trials. In this setting, perhaps the most widely adopted strategy for dealing with incomplete longitudinal data is imputation by the "last observation carried forward" (LOCF) approach, in which values for missing responses are imputed using observations from the most recently completed assessment. We examine the asymptotic and empirical bias, the empirical type I error rate, and the empirical coverage probability associated with estimators and tests of treatment effect based on the LOCF imputation strategy. We consider a setting involving longitudinal binary data with longitudinal analyses based on generalized estimating equations, and an analysis based simply on the response at the end of the scheduled follow-up. We find that for both of these approaches, imputation by LOCF can lead to substantial biases in estimators of treatment effects, the type I error rates of associated tests can be greatly inflated, and the coverage probability can be far from the nominal level. Alternative analyses based on all available data lead to estimators with comparatively small bias, and inverse probability weighted analyses yield consistent estimators subject to correct specification of the missing data process. We illustrate the differences between various methods of dealing with drop-outs using data from a study of smoking behavior. 相似文献
13.
14.
Summary Recurrent events data are commonly seen in longitudinal follow‐up studies. Dependent censoring often occurs due to death or exclusion from the study related to the disease process. In this article, we assume flexible marginal regression models on the recurrence process and the dependent censoring time without specifying their dependence structure. The proposed model generalizes the approach by Ghosh and Lin (2003, Biometrics 59, 877–885). The technique of artificial censoring provides a way to maintain the homogeneity of the hypothetical error variables under dependent censoring. Here we propose to apply this technique to two Gehan‐type statistics. One considers only order information for pairs whereas the other utilizes additional information of observed censoring times available for recurrence data. A model‐checking procedure is also proposed to assess the adequacy of the fitted model. The proposed estimators have good asymptotic properties. Their finite‐sample performances are examined via simulations. Finally, the proposed methods are applied to analyze the AIDS linked to the intravenous experiences cohort data. 相似文献
15.
Structured additive regression for categorical space-time data: a mixed model approach 总被引:1,自引:0,他引:1
Motivated by a space-time study on forest health with damage state of trees as the response, we propose a general class of structured additive regression models for categorical responses, allowing for a flexible semiparametric predictor. Nonlinear effects of continuous covariates, time trends, and interactions between continuous covariates are modeled by penalized splines. Spatial effects can be estimated based on Markov random fields, Gaussian random fields, or two-dimensional penalized splines. We present our approach from a Bayesian perspective, with inference based on a categorical linear mixed model representation. The resulting empirical Bayes method is closely related to penalized likelihood estimation in a frequentist setting. Variance components, corresponding to inverse smoothing parameters, are estimated using (approximate) restricted maximum likelihood. In simulation studies we investigate the performance of different choices for the spatial effect, compare the empirical Bayes approach to competing methodology, and study the bias of mixed model estimates. As an application we analyze data from the forest health survey. 相似文献
16.
Fitzmaurice GM Lipsitz SR Ibrahim JG Gelber R Lipshultz S 《Biostatistics (Oxford, England)》2006,7(3):469-485
In many observational studies, individuals are measured repeatedly over time, although not necessarily at a set of pre-specified occasions. Instead, individuals may be measured at irregular intervals, with those having a history of poorer health outcomes being measured with somewhat greater frequency and regularity. In this paper, we consider likelihood-based estimation of the regression parameters in marginal models for longitudinal binary data when the follow-up times are not fixed by design, but can depend on previous outcomes. In particular, we consider assumptions regarding the follow-up time process that result in the likelihood function separating into two components: one for the follow-up time process, the other for the outcome measurement process. The practical implication of this separation is that the follow-up time process can be ignored when making likelihood-based inferences about the marginal regression model parameters. That is, maximum likelihood (ML) estimation of the regression parameters relating the probability of success at a given time to covariates does not require that a model for the distribution of follow-up times be specified. However, to obtain consistent parameter estimates, the multinomial distribution for the vector of repeated binary outcomes must be correctly specified. In general, ML estimation requires specification of all higher-order moments and the likelihood for a marginal model can be intractable except in cases where the number of repeated measurements is relatively small. To circumvent these difficulties, we propose a pseudolikelihood for estimation of the marginal model parameters. The pseudolikelihood uses a linear approximation for the conditional distribution of the response at any occasion, given the history of previous responses. The appeal of this approximation is that the conditional distributions are functions of the first two moments of the binary responses only. When the follow-up times depend only on the previous outcome, the pseudolikelihood requires correct specification of the conditional distribution of the current outcome given the outcome at the previous occasion only. Results from a simulation study and a study of asymptotic bias are presented. Finally, we illustrate the main results using data from a longitudinal observational study that explored the cardiotoxic effects of doxorubicin chemotherapy for the treatment of acute lymphoblastic leukemia in children. 相似文献
17.
18.
In clinical and observational studies, recurrent event data (e.g., hospitalization) with a terminal event (e.g., death) are often encountered. In many instances, the terminal event is strongly correlated with the recurrent event process. In this article, we propose a semiparametric method to jointly model the recurrent and terminal event processes. The dependence is modeled by a shared gamma frailty that is included in both the recurrent event rate and terminal event hazard function. Marginal models are used to estimate the regression effects on the terminal and recurrent event processes, and a Poisson model is used to estimate the dispersion of the frailty variable. A sandwich estimator is used to achieve additional robustness. An analysis of hospitalization data for patients in the peritoneal dialysis study is presented to illustrate the proposed method. 相似文献
19.
Guan Y 《Biometrics》2006,62(1):126-134
A convenient assumption while modeling a marked point process is that the observations (i.e., marks) and the locations (i.e., points) are independent. We propose new graphical and formal testing approaches to test for this assumption. The proposed graphical procedures are easy to obtain and can be used to diagnose the nature and range of dependence between marks and points. The formal testing procedures require only minimal conditions on marks and thus can be applied to a variety of settings. We illustrate these procedures through a simulation study and an application to some real data. 相似文献