首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The high density lipoproteins (HDL) in human plasma are classified on the basis of apolipoprotein composition into those containing apolipoprotein (apo) A-I but not apoA-II, (A-I)HDL, and those containing both apoA-I and apoA-II, (A-I/A-II)HDL. Cholesteryl ester transfer protein (CETP) transfers core lipids between HDL and other lipoproteins. It also remodels (A-I)HDL into large and small particles in a process that generates lipid-poor, pre-beta-migrating apoA-I. Lipid-poor apoA-I is the initial acceptor of cellular cholesterol and phospholipids in reverse cholesterol transport. The aim of this study is to determine whether lipid-poor apoA-I is also formed when (A-I/A-II)rHDL are remodeled by CETP. Spherical reconstituted HDL that were identical in size had comparable lipid/apolipoprotein ratios and either contained apoA-I only, (A-I)rHDL, or (A-I/A-II)rHDL were incubated for 0-24 h with CETP and Intralipid(R). At 6 h, the apoA-I content of the (A-I)rHDL had decreased by 25% and there was a concomitant formation of lipid-poor apoA-I. By 24 h, all of the (A-I)rHDL were remodeled into large and small particles. CETP remodeled approximately 32% (A-I/A-II)rHDL into small but not large particles. Lipid-poor apoA-I did not dissociate from the (A-I/A-II)rHDL. The reasons for these differences were investigated. The binding of monoclonal antibodies to three epitopes in the C-terminal domain of apoA-I was decreased in (A-I/A-II)rHDL compared with (A-I)rHDL. When the (A-I/A-II)rHDL were incubated with Gdn-HCl at pH 8.0, the apoA-I unfolded by 15% compared with 100% for the apoA-I in (A-I)rHDL. When these incubations were repeated at pH 4.0 and 2.0, the apoA-I in the (A-I)rHDL and the (A-I/A-II)rHDL unfolded completely. These results are consistent with salt bridges between apoA-II and the C-terminal domain of apoA-I, enhancing the stability of apoA-I in (A-I/A-II)rHDL and possibly contributing to the reduced remodeling and absence of lipid poor apoA-I in the (A-I/A-II)rHDL incubations.  相似文献   

2.
Small particles of high density lipoproteins (HDL) were isolated from fresh, fasting human plasma and from the ultracentrifugally isolated high density lipoprotein fraction by means of ultrafiltration through membranes of molecular weight cutoff of 70,000. These particles were found to contain cholesterol, phospholipids, and apolipoproteins A-I and A-II; moreover, they floated at a density of 1.21 kg/l. They contained 67.5% of their mass as protein and the rest as lipid. Two populations of small HDL particles were identified: one containing apolipoprotein A-I alone [(A-I)HDL] and the other containing both apolipoproteins A-I and A-II [A-I + A-II)HDL]. The molar ratio of apoA-I to apoA-II in the latter subclass isolated from plasma or HDL was 1:1. The molecular weights of these subpopulations were determined by nondenaturing gradient polyacrylamide gel electrophoresis and found to be 70,000; 1.5% of the plasma apoA-I was recovered in the plasma ultrafiltrate.  相似文献   

3.
Stable isotope methodology was used to determine the kinetic behavior of apolipoprotein (apo) A-I within the triglyceride-rich lipoprotein (TRL) fraction and to compare TRL apoA-I kinetics with that of apoA-I in high density lipoprotein (HDL) and TRL apoB-48. Eight subjects (5 males and 3 females) over the age of 40 were placed on a baseline average American diet and after 6 weeks received a primed-constant infusion of [5,5,5-(2)H(3)]-l-leucine for 15 h while consuming small hourly meals of identical composition. HDL and TRL apoA-I and TRL apoB-48 tracer/tracee enrichment curves were obtained by gas chromatography;-mass spectrometry. Data were fitted to a compartmental model to determine the fractional secretion rates of apoA-I and apoB-48 within each lipoprotein fraction. Mean plasma apoA-I levels in TRL and HDL fractions were 0. 204 +/- 0.057 and 134 +/- 15 mg/dl, respectively. The mean fractional catabolic rate (FCR) of TRL apoA-I was 0.250 +/- 0.069 and HDL apoA-I was 0.239 +/- 0.054 pools/day, with mean estimated residence times (RT) of 4.27 and 4.37 days, respectively. The mean TRL apoB-48 FCR was 5.2 +/- 2.0 pools/day and the estimated mean RT was 5.1 +/- 1.8 h. Our results indicate that apoA-I is catabolized at a slower rate than apoB-48 within TRL, and that apoA-I within TRL and HDL fractions are catabolized at similar rates.  相似文献   

4.
Recombinant adenoviruses with cDNAs for human apolipoprotein A-I (wild type (wt) apoA-I) and three mutants, referred to as Delta4-5A-I, Delta5-6A-I, and Delta6-7A-I, that have deletions removing regions coding for amino acids 100-143, 122-165, and 144-186, respectively, were created to study structure/function relationships of apoA-I in vivo. All mutants were expressed at lower concentrations than wt apoA-I in plasma of fasting apoA-I-deficient mice. The Delta5-6A-I mutant was found primarily in the lipid-poor high density lipoprotein (HDL) pool and at lower concentrations than Delta4-5A-I and Delta6-7A-I that formed more buoyant HDL(2/3) particles. At an elevated adenovirus dose and earlier blood sampling from fed mice, both Delta5-6A-I and Delta6-7A-I increased HDL-free cholesterol and phospholipid but not cholesteryl ester. In contrast, wt apoA-I and Delta4-5A-I produced significant increases in HDL cholesteryl ester. Further analysis showed that Delta6-7A-I and native apoA-I could bind similar amounts of phospholipid and cholesterol that were reduced slightly for Delta5-6A-I and greatly for Delta4-5A-I. We conclude from these findings that amino acids (aa) 100-143, specifically helix 4 (aa 100-121), contributes to the maturation of HDL through a role in lipid binding and that the downstream sequence (aa 144-186) centered around helix 6 (aa 144-165) is responsible for the activation of lecithin-cholesterol acyltransferase.  相似文献   

5.
Recent immunoaffinity studies demonstrate two populations of high density lipoprotein (HDL) particles: one contains both apolipoprotein (apo) A-I and A-II [Lp(A-I w A-II)], and the other contains apoA-I but no A-II [Lp(A-I w/o A-II)]. To investigate whether these two populations are derived from different precursors, we applied sequential immunoaffinity chromatography to study the lipoprotein complexes in HepG2 conditioned serum-free medium. The apparent secretion rates of apoA-I, A-II, E, D, A-IV, and lecithin:cholesterol acyltransferase (LCAT) were 4013 +/- 1368, 851 +/- 217, 414 +/- 64, 171 +/- 51, 32 +/- 14, and 2.9 +/- 0.7 ng/mg cell protein per 24 h, respectively (n = 3-5). Anti-A-II removed all apoA-II but only 39 +/- 5% (n = 5) apoA-I from the medium. These HepG2 Lp(A-I w A-II) also contained 31 +/- 1% (n = 5) of the apoD and 82 +/- 2% (n = 3) of the apoE in the medium. The apoE existed both as E and E-A-II complex. Lipoproteins isolated from the apoA-II-free medium by anti-A-I contained, besides apoA-I, 60 +/- 3% of the medium apoD and trace quantities of apoE. The majority of HepG2 apoA-IV (78 +/- 4%) (n = 3) and LCAT (85 +/- 6%) (n = 3) was not associated with either apoA-I or A-II. HepG2 Lp(A-I w A-II) contained relatively more lipids than Lp(A-I w/o A-II) (45 vs. 37%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Apolipoprotein A-I (apoA-I) was liberated from human high-density lipoprotein (HDL) without exposure to organic solvents or chaotropic salts by the action of isolated insect hemolymph lipid transfer particle (LTP). LTP-catalyzed lipid redistribution results in transformation of HDL into larger, less dense particles accompanied by an overall decrease in HDL particle surface area:core volume ratio, giving rise to an excess of amphiphilic surface components. Preferential dissociation of apolipoprotein versus phospholipid and unesterified cholesterol from the particle surface results in apolipoprotein recovery in the bottom fraction following ultracentrifugation at a density = 1.23 g/mL. ApoA-I was then isolated from other contaminating HDL apolipoproteins by incubation with additional HDL in the absence of LTP, whereupon apolipoprotein A-II and the C apolipoproteins reassociate with the HDL surface by displacement of apoA-I. After a second density gradient ultracentrifugation, electrophoretically pure apoA-I was obtained. Sedimentation equilibrium experiments revealed that apoA-I isolated via this method exhibits a tendency to self-associate in an aqueous solution while its circular dichroism spectrum was indicative of a significant amount of alpha-helix. Both measurements are consistent with that observed on material prepared by denaturation/renaturation. The ability of apoA-I to activate lecithin:cholesterol acyltransferase was found to be similar to that of apoA-I isolated by conventional methods. The present results illustrate that LTP-mediated alteration in lipoprotein particle surface area leads to dissociation of substantial amounts of surface active apoprotein components, thus providing the opportunity to isolate apoA-I without the denaturation/renaturation steps common to all previous isolation procedures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Triglyceride (TG) enrichment of high density lipoprotein (HDL), which occurs in hypertriglyceridemic states, significantly enhances the rate at which HDL apolipoprotein (apo)A-I is cleared from the circulation of healthy humans. In the New Zealand White (NZW) rabbit, a species naturally deficient in hepatic lipase (HL), TG enrichment of HDL requires prior lipolytic modification to enhance apoA-I clearance. However, the effect of TG enrichment of HDL on the subsequent clearance of HDL cholesteryl ester (CE) has not previously been examined in vivo. Therefore, we investigated, in the NZW rabbit, the effect of ex vivo TG enrichment of rabbit HDL (by incubation with human very low density lipoprotein) on the clearance of HDL CE and apoA-I radiolabeled with (3)H-cholesteryl oleyl ether and with (131)I, respectively. In nine experiments, TG enrichment of rabbit HDL resulted in an 87% average increase in HDL TG and a corresponding 31% reduction in HDL CE content. The calculated apoA-I and CE fractional catabolic rates associated with TG-rich versus fasting HDL tracers were not significantly different (apoA-I: 0.119 +/- 0.017 vs. 0.107 +/- 0.024 pools per h, P = 0.68; CE: 0.147 +/- 0.014 vs. 0.114 +/- 0.019 pools per h, P = 0.20). In an animal model deficient in HL, TG enrichment of HDL did not alter the rates of HDL apoA-I or selective CE clearance. Further studies are needed to determine whether, in the presence of HL, TG enrichment of HDL alters selective HDL CE clearance.  相似文献   

8.
The effects of altered serum 3,3',5-triiodothyronine levels on rat lipoprotein metabolism were examined. Daily injections of the hormone (50 micrograms/100 g body mass) over a period of six days led to an increase of 6.4-fold in the hepatic mRNA level for apolipoprotein(apo)A-I, and a 21% increase in serum apoA-I levels. 12h after a single injection of 3,3',5-triiodothyronine the rate of [14C]leucine incorporation into apoA-I increased 2.1 fold. Conversely, in hypothyroid rats there was a decrease in hepatic mRNA levels for apoA-I and a decreased rate of [14C]leucine incorporation into apoA-I. The increase in hepatic apoA-I mRNA levels following 3,3',5-triiodothyronine treatment occurred prior to significant changes in serum triacylglycerol levels. High-density lipoprotein (HDL) particles isolated from the serum of hyperthyroid rats were smaller and enriched in apoA-I compared to apoA-IV and apoE. Similar changes in HDL composition were observed following in vitro incubations of normal rat serum with purified rat apoA-I. The results suggest that during altered thyroid status, changes in serum HDL size and composition occur in association with significant changes in apoA-I gene expression.  相似文献   

9.
While low apolipoprotein A-I (apoA-I) levels are primarily associated with increased high density lipoprotein (HDL) fractional catabolic rate (FCR), the factors that regulate the clearance of HDL from the plasma are unclear. In this study, the effect of lipid composition of reconstituted HDL particles (LpA-I) on their rate of clearance from rabbit plasma has been investigated. Sonicated LpA-I containing 1 to 2 molecules of purified human apoA-I and 5 to 120 molecules of palmitoyl-oleoyl phosphatidylcholine (POPC) exhibit similar charge and plasma FCR to that for lipid free apoA-I, 2.8 pools/day. Inclusion of 1 molecule of apoA-II to an LpA-I complex increases the FCR to 3.5 pools/day, a value similar to that observed for exchanged-labeled HDL3. In contrast, addition of 40 molecules of triglyceride, diglyceride, or cholesteryl ester to a sonicated LpA-I containing 120 moles of POPC and 2 molecules of apoA-I increases the negative charge of the particle and reduces the FCR to 1.8 pools/day. Discoidal LpA-I are the most positively charged lipoprotein particles and also have the fastest clearance rates, 4.5 pools/day. Immunochemical characterization of the different LpA-I particles shows that the exposure of an epitope at residues 98 to 121 of the apoA-I molecule is associated with an increased negative particle charge and a slower clearance from the plasma.We conclude that the charge and conformation of apoA-I are sensitive to the lipid composition of LpA-I and play a central role in regulating the clearance of these lipoproteins from plasma. conformation regulate the clearance of reconstituted high density lipoprotein in vivo.  相似文献   

10.
In this study, we propose a structure for the heterodimer between apolipoprotein A-I(Milano) and apolipoprotein A-II (apoA-I(M)-apoA-II) in a synthetic high-density lipoprotein (HDL) containing L-alpha-palmitoyloleoyl phosphatidylcholine. We applied bioinformatics/computational tools and procedures, such as molecular docking, molecular and essential dynamics, starting from published crystal structures for apolipoprotein A-I and apolipoprotein A-II. Structural and energetic analyses onto the simulated system showed that the molecular dynamics produced a stabilized synthetic HDL. The essential dynamic analysis showed a deviation from the starting belt structure. Our structural results were validated by limited proteolysis experiments on HDL from apoA-I(M) carriers in comparison with control HDL. The high sensitivity of apoA-I(M)-apoA-II to proteases was in agreement with the high root mean-square fluctuation values and the reduction in secondary structure content from molecular dynamics data. Circular dichroism on synthetic HDL containing apoA-I(M)-apoA-II was consistent with the alpha-helix content computed on the proposed model.  相似文献   

11.
Phospholipid transfer protein (PLTP) transfers phospholipids between HDL and other lipoproteins in plasma. It also remodels spherical, apolipoprotein A-I (apoA-I)-containing HDL into large and small particles in a process involving the dissociation of lipid-free/lipid-poor apoA-I. ApoE is another apolipoprotein that is mostly associated with large, spherical HDL that do not contain apoA-I. Three isoforms of apoE have been identified in human plasma: apoE2, apoE3, and apoE4. This study investigates the remodeling of spherical apoE-containing HDL by PLTP and the ability of PLTP to transfer phospholipids between apoE-containing HDL and phospholipid vesicles. Spherical reconstituted high density lipoproteins (rHDL) containing apoA-I [(A-I)rHDL], apoE2 [(E2)rHDL], apoE3 [(E3)rHDL], or apoE4 [(E4)rHDL] as the sole apolipoprotein were prepared by incubating discoidal rHDL with low density lipoproteins and lecithin:cholesterol acyltransferase. PLTP remodeled the spherical, apoE-containing rHDL into large and small particles without the dissociation of apoE. The PLTP-mediated remodeling of apoE-containing rHDL was more extensive than that of (A-I)rHDL. PLTP transferred phospholipids from small unilamellar vesicles to apoE-containing rHDL in an isoform-dependent manner, but at a rate slower than that for spherical (A-I)rHDL. It is concluded that apoE enhances the capacity of PLTP to remodel HDL but reduces the ability of HDL to participate in PLTP-mediated phospholipid transfers.  相似文献   

12.
Zhang X  Chen B 《Biological chemistry》2011,392(5):423-429
It has been shown that apolipoprotein A-V (apoA-V) over-expression significantly lowers plasma triglyceride levels and decreases atherosclerotic lesion development. To assess the feasibility of recombinant high density lipoprotein (rHDL) reconstituted with apoA-V and apolipoprotein A-I (apoA-I) as a therapeutic agent for hyperlipidemic disorder and atherosclerosis, a series of rHDL were synthesized in vitro with various mass ratios of recombinant apoA-I and apoA-V. It is interesting to find that apoA-V of rHDL had no effect on lipoprotein lipase (LPL) activation in vitro and very low density lipoprotein (VLDL) clearance in HepG2 cells and in vivo. By contrast, LPL activation and VLDL clearance were inhibited by the addition of apoA-V to rHDL. Furthermore, the apoA-V of rHDL could not redistribute from rHDL to VLDL after incubation at 37°C for 30 min. These findings suggest that an increase of apoA-V in rHDL could not play a role in VLDL clearance in vitro and in vivo, which could, at least in part, attribute to the lost redistribution of apoA-V from rHDL to VLDL and LPL binding ability of apoA-V in rHDL. The therapeutic application of rHDL reconstituted with apoA-V and apoA-I might need the construction of rHDL from which apoA-V could freely redistribute to VLDL.  相似文献   

13.
The expression and immunoreactivity of apolipoprotein (apo) A-I epitopes in high density lipoproteins (HDL) and serum has been investigated using two series of monoclonal antibodies (Mabs) which have been described elsewhere. Series 1 Mabs, identified as 3D4, 6B8, and 5G6, were obtained by immunization and screening with apoA-I, and series 2 Mabs, identified as 2F1, 4H1, 3G10, 4F7, and 5F6, were obtained by immunization and screening with HDL. These Mabs were characterized with respect to their binding to HDL particles in solution. In series 2 Mabs, 2F1, 3G10, and 4F7, which react with apoA-I CNBr-fragments 1 and 2, could precipitate 100% of 125I-labeled HDL, while 4H1 and 5F6, which react with CNBr fragments 1 and 3, precipitated 90 and 60% of 125I-labeled HDL, respectively. Therefore, three distinct epitopes mapped to CNBr fragments 1 and 2 have been identified which are expressed on all HDL particles, indicating that several antigenic do mains exist on apoA-I which have the same conformation on all apoA-I-containing lipoproteins. The Mabs reacting at these sites have significantly higher affinity constants for 125I-labeled HDL than those that failed to precipitate 100% of HDL. This suggests that the high affinity Mabs react with apoA-I epitopes that are both expressed on all lipoproteins and located in thermo-dynamically stable regions of the molecules. All Mabs from series 1 precipitated 35% or less of 125I-labeled HDL prepared from freshly collected serum, but the proportion of HDL particles expressing the epitopes for these Mabs doubled or more upon serum storage at 4 degrees C. The time course of the alteration of apoA-I antigen in vitro was measured in three normolipemic donors. Upon storage of serum at 4 degrees C, the immunoreactivity of series 2 Mabs (4H1, 3G10) remained unchanged. However, the immunoreactivity of series 1 Mab 3D4 increased linearly at 38%/day for 4 weeks and by 12 weeks had plateaued at about 280-fold compared to day 1. The immunoreactivity of other series 1 Mabs also increased significantly with time in vitro. This process was partially inhibited in the presence of EDTA and by addition of antioxidants, however, the exact molecular nature of this in vitro alteration of apoA-I antigen was not identified.  相似文献   

14.
Paraoxonase1 (PON1) is a high-density lipoprotein (HDL)-associated protein which removes peroxidized lipids from lipoproteins. It has been proposed that apolipoprotein A-I (apoA-I) is an important determinant for its stabilization on HDL. However, little is known about its existence and activity in an apoA-I-deficient state in humans. To characterize the nature of PON1 in apoA-I deficiency, we investigated PON1 in an apoA-I-deficient patient. When serum was analyzed on fast protein liquid chromatography, PON1 protein was distributed almost exclusively on HDL despite the absence of apoA-I; on the other hand, 38.5% of PON1 protein was found in the lipoprotein-free fraction when the lipoproteins were fractionated through ultracentrifugation. The stability of PON1 activity in the patient serum was almost the same as in the normal control sera throughout incubation at 14 degrees C for 7 days. However, when the sera were incubated at 37 degrees C for 24 h, its activity declined more than those in the normal controls (19% versus 4% reduction of the initial values). Our results demonstrated that PON1 protein possesses a preferential association with HDL even in the absence of apoA-I, although apoA-I is a crucial factor for the maximal activity and stabilization of PON1.  相似文献   

15.
The metabolic and genetic determinants of HDL cholesterol (HDL-C) levels and HDL turnover were studied in 36 normolipidemic female subjects on a whole-food low-fat metabolic diet. Lipid, lipoprotein, and apolipoprotein levels, lipoprotein size, and apolipoprotein turnover parameters were determined, as were genetic variation at one site in the hepatic lipase promoter and six sites in the apolipoprotein AI/CIII/AIV gene cluster. Menopause had no significant effect on HDL-C or turnover. Stepwise multiple regression analysis revealed that HDL-C was most strongly correlated with HDL size, apolipoprotein A-II (apoA-II), and apolipoprotein A-I (apoA-I) levels, which together could account for 90% of the variation in HDL-C. HDL size was inversely correlated with triglycerides, body mass index, and hepatic lipase activity, which together accounted for 82% of the variation in HDL size. The hepatic lipase promoter genotype had a strong effect on hepatic lipase activity and could account for 38% of the variation in hepatic lipase activity. The apoA-I transport rate (AI-TR) was the major determinant of apoA-I levels, but AI-TR was not associated with six common genetic polymorphism in the apoAI/CIII/AIV gene cluster.A simplified model of HDL metabolism is proposed, in which A-I and apoA-II levels combined with triglycerides, and hepatic lipase activity could account for 80% of the variation in HDL-C.  相似文献   

16.
Serum amyloid A (SAA) circulates bound to HDL3 during the acute-phase response (APR), and recent evidence suggests that elevated levels of SAA may be a risk factor for cardiovascular disease. In this study, SAA-HDL was produced in vivo during the APR and without the APR by injection of an adenoviral vector expressing human SAA-1. SAA-HDL was also produced in vitro by incubating mouse HDL with recombinant mouse SAA and by SAA-expressing cultured hepatoma cells. Whether produced in vivo or in vitro, SAA-HDL floated at a density corresponding to that of human HDL3 (d 1.12 g/ml) separate from other apolipoproteins, including apolipoprotein A-I (apoA-I; d 1.10 g/ml) when either apoA-I or apolipoprotein E (apoE) was present. In the absence of both apoA-I and apoE, SAA was found in VLDL and LDL, with low levels in the HDL and the lipid-poor fractions suggesting that other HDL apolipoproteins are incapable of facilitating the formation of SAA-HDL. We conclude that SAA does not exist in plasma as a lipid-free protein. In the presence of HDL-associated apoA-I or apoE, SAA circulates as SAA-HDL with a density corresponding to that of human HDL3. In the absence of both apoA-I and apoE, SAA-HDL is not formed and SAA associates with any available lipoprotein.  相似文献   

17.
Livers from fasted or fed pigs were perfused for 5 h with Krebs-Ringer bicarbonate buffer containing human erythrocytes, bovine serum albumin, glucose, and amino acids. Liver viability was estimated by color, consistency, portal pressure, bile flow, electrolyte changes, and glucose levels in the perfusate, urea synthesis, [1-14C]leucine incorporation into protein, oxygen uptake, and histological examination. It was shown that the liver was maintained in good condition throughout the perfusions. The apolipoprotein B (apoB) and apolipoprotein A-I (apoA-I) in the perfusate were measured by solid phase radioimmunoassay. In the fasted state, the amount of apoB released was greatest in the low density lipoprotein (LDL) fraction and the amount was especially high during the 1st h. There was no increase of apoB in this fraction by feeding. The apoB in the very low density lipoprotein (VLDL) fraction was less than that in the LDL fraction in the fasted state, and it increased more than 2-fold in the fed animals. The amount of apoA-I was greatest in the 1.21 bottom fraction and was relatively small in the high density lipoprotein (HDL) fraction. The HDL fraction contained approximately one-twentieth as much apoA-I as the 1.21 bottom fraction in the fasted condition. In the fed state, apoA-I in the HDL fraction increased markedly, although the amount was still less than in the 1.21 bottom fraction.  相似文献   

18.
Apolipoprotein A-I (apoA-I) is an important ligand for the high density lipoprotein (HDL) scavenger receptor class B type I (SR-BI). SR-BI binds both free and lipoprotein-associated apoA-I, but the effects of particle size, composition, and apolipoprotein conformation on HDL binding to SR-BI are not understood. We have studied the effect of apoA-I conformation on particle binding using native HDL and reconstituted HDL particles of defined composition and size. SR-BI expressed in transfected Chinese hamster ovary cells was shown to bind human HDL(2) with greater affinity than HDL(3), suggesting that HDL size, composition, and possibly apolipoprotein conformation influence HDL binding to SR-BI. To discriminate between these factors, SR-BI binding was studied further using reconstituted l-alpha-palmitoyloleoyl-phosphatidylcholine-containing HDL particles having identical components and equal amounts of apoA-I, but differing in size (7.8 vs. 9.6 nm in diameter) and apoA-I conformation. The affinity of binding to SR-BI was significantly greater (50-fold) for the larger (9.6-nm) particle than for the 7.8-nm particle. We conclude that differences in apoA-I conformation in different-sized particles markedly influence apoA-I recognition by SR-BI. Preferential binding of larger HDL particles to SR-BI would promote productive selective cholesteryl ester uptake from larger cholesteryl ester-rich HDL over lipid-poor HDL.  相似文献   

19.
The central region of apolipoprotein A-I (apoA-I), spanning residues 143--165, has been implicated in lecithin:cholesterol acyltransferase (LCAT) activation and also in high density lipoprotein (HDL) structural rearrangements. To examine the role of individual amino acids in these functions, we constructed, overexpressed, and purified two additional point mutants of apoA-I (P143R and R160L) and compared them with the previously studied V156E mutant. These mutants have been reported to occur naturally and to affect HDL cholesterol levels and cholesterol esterification in plasma. The P143R and R160L mutants were effectively expressed in Escherichia coli as fusion proteins and were isolated in at least 95% purity. In the lipid-free state, the mutants self-associated similarly to wild-type protein. All the mutants, including V156E, were able to lyse dimyristoylphosphatidylcholine liposomes. In the lipid-bound state, the major reconstituted HDL (rHDL) of the mutants had diameters similar to wild type (96--98 A). Circular dichroism and fluorescence methods revealed no major differences among the structures of the lipid-free or lipid-bound mutants and wild type. In contrast, the V156E mutant had exhibited significant structural, stability, and self-association differences compared with wild-type apoA-I in the lipid-free state, and formed rHDL particles with larger diameters. In this study, limited proteolytic digestion with chymotrypsin showed that the V156E mutant, in lipid-free form, has a distinct digestion pattern and surface exposure of the central region, compared with wild type and the other mutants. Reactivity of rHDL with LCAT was highest for wild type (100%), followed by P143R (39%) and R160L (0.6%). Tested for their ability to rearrange into 78-A particles, the rHDL of the two mutants (P143R and R160L) behaved normally, compared with the rHDL of V156E, which showed no rearrangement after the 24-h incubation with low density lipoprotein (LDL). Similarly, the rHDL of V156E was resistant to rearrangement in the presence of apoA-I or apoA-II. These results indicate that structural changes are absent or modest for the P143R and R160L mutants, especially in rHDL form; that these mutants have normal conformational adaptability; and that LCAT activation is obliterated for R160L.Thus, individual amino acid changes may have markedly different structural and functional consequences in the 143--165 region of apoA-I. The R160L mutation appears to have a direct effect in LCAT activation, while the P143R mutation results in only minor structural and functional effects. Also, the processes for LCAT activation and hinge mobility appear to be distinct even if the same region of apoA-I is involved. -- Cho, K-H., D. M. Durbin, and A. Jonas. Role of individual amino acids of apolipoprotein A-I in the activation of lecithin:cholesterol acyltransferase and in HDL rearrangements. J. Lipid Res. 2001. 42: 379--389.  相似文献   

20.
A truncated apolipoprotein (apo) A-I with a molecular weight (M(r)) of 26 kDa was first isolated from the plasma high density lipoproteins of an atypical Japanese eel (Anguilla japonica). Interestingly, this eel contained a very small amount of intact apoA-I (M(r)28 kDa) in the plasma, although serine protease inhibitors were present throughout the plasma preparation. The N-terminal sequence of 20 amino acids in truncated apoA-I was completely identical with that of intact apoA-I. Another apolipoprotein with M(r)28 kDa, whose N-terminal amino acid sequence differed from apoA-I, was also found in high density lipoprotein and low density lipoprotein. The apolipoprotein profiles of Japanese eel plasma appear to be complicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号