首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pig is used as a large animal model in many research projects. Standard practice for airway maintenance under general anaesthesia is using endotracheal (ET) intubation after intravenous induction to a near surgical plane. This is a technically demanding skill, requiring the assistance of an experienced technician. A technique is required which simplifies pig anaesthesia. This study examined the feasibility and potential advantages of using the laryngeal mask airway (LMA) in 10 pigs during laparotomy under spontaneous breathing anaesthesia. The results show that the LMA can be inserted rapidly, with minimal time for airway control by researchers relatively inexperienced in anaesthesia and is associated with few complications. By removing the need for intravenous induction, an entire step in the anaesthetic process is removed. The LMA designed for humans fits well in the pig hypopharynx; all pigs could be manually ventilated with no detectable gas leak. Although the pigs in this study were spontaneously breathing it is proposed that the LMA should be further investigated in studies of artificially ventilated pigs.  相似文献   

2.
The laryngeal mask airway (LMA) has been used in various animal species anesthetized for the purpose of device evaluation, but the device has not been evaluated in rabbits during surgery. The authors tested the feasibility and potential advantages of using the LMA in 50 rabbits undergoing surgery under spontaneous-breathing inhalational anesthesia, focusing mainly on the technique of insertion and its efficacy. The LMA was easily inserted and no air leakage at the larynx was detected. Although four rabbits developed lingual cyanosis, this was reversible and most likely due to lingual vascular compression by the LMA. The authors conclude that the LMA is an attractive alternative to endotracheal intubation, as the mask can be inserted easily and rapidly and its correct placement is easily confirmed.  相似文献   

3.
The rabbit's oropharyngeal anatomy complicates the use of endotracheal intubation for airway management during surgical procedures. To determine if the laryngeal tube is useful for airway management in rabbits, the authors applied the device and evaluated its efficacy to ventilate the lungs. The laryngeal tube was inserted blindly and without difficulty in six healthy male New Zealand White rabbits; all of the rabbits were ventilated adequately with and without neuromuscular blockade. The authors conclude that the laryngeal tube can be used as an alternative means of airway management in rabbits.  相似文献   

4.
There is a need for a device for improved management of the airway of small laboratory animals during general anaesthesia. This report introduces such a device, referred to here as the airway device (AD). The AD has some similarity to the laryngeal mask airway (LMA) developed for human patients, but the mask portion of the device is specifically designed for small laboratory animals. In addition, the device has an oesophageal extension and unlike the LMA does not have a cuff associated with the mask. This report also shares experience of tests of one prototype AD with six New Zealand white rabbits. The AD was used for administering isoflurane and its effectiveness was evaluated during conditions of spontaneous and controlled intermittent positive pressure ventilation. The results provide encouragement for further development of the AD for airway management of small laboratory animals.  相似文献   

5.
Upper airway cooling and l-menthol reduce ventilation in the guinea pig.   总被引:1,自引:0,他引:1  
Cooling of the upper airway, which stimulates specific cold receptors and inhibits laryngeal mechanoreceptors, reduces respiratory activity in unanesthetized humans and anesthetized animals. This study shows that laryngeal cooling affects the pattern of breathing in the guinea pig and assesses the potential role of cold receptors in this response by using a specific stimulant of cold receptors (l-menthol). The response to airflows (30 ml/s, 10-s duration) through the isolated upper airway was studied in 23 anesthetized (urethan, 1 g/kg ip) guinea pigs breathing through a tracheostomy. Respiratory airflow, tidal volume, laryngeal temperature, and esophageal pressure were recorded before the challenges (control), during cold airflows (25 degrees C, 55% relative humidity), and during warm airflows (37 degrees C, saturated) with or without the addition of l-menthol. Whereas warm air trials had no effect, cold air trials, which lowered laryngeal but not nasal temperature, reduced ventilation (VE) to 85% of control, mainly by prolonging expiratory time (TE, 145% of control), an effect abolished by laryngeal anesthesia. Addition of l-menthol to the warm airflow caused a greater reduction in VE (41% of control) by prolonging TE (1,028% of control). Nasal anesthesia markedly reduced the apneogenic effect of l-menthol but did not affect the response to cold air trials. In conclusion, both cooling of the larynx and l-menthol in the laryngeal lumen reduce ventilation. Exposure of the nasal cavity to l-menthol markedly enhances this ventilatory inhibition; considering the stimulatory effect of l-menthol on cold receptors, these results suggest a predominant role of nasal cold receptors in this response.  相似文献   

6.
目的:比较proseal与slipa喉罩在腹腔镜胆囊切除术中的麻醉效果。方法:收集我院收治的68例胆囊行腹腔镜胆囊切除术患者,随机分为A组和B组,每组各34例,A组患者应用slipa喉罩,B组患者应用proseal喉罩进行麻醉。观察并比较两组患者各时间点血压、心率水平,患者麻醉时间、苏醒时间、喉罩插入时间与拔除时间以及患者的不良反应发生率。结果:与喉罩置入前相比,两组患者手术中收缩压(SBP)以及舒张压(DBP)水平均下降,差异具有统计学意义(P0.05)。两组患者各时间点的血压以、心率、麻醉时间及苏醒时间比较差异均无统计学意义(P0.05)。与B组相比,A组患者的喉罩插入时间较长,喉罩沾血的发生率较高,差异具有统计学意义(P0.05)。结论:Pro seal与Slipa喉罩在腹腔镜胆囊切除术中的麻醉效果相当,但Slipa喉罩的插入时间以及喉罩沾血的发生率更高。  相似文献   

7.
BACKGROUND: Chronic airway eosinophil accumulation is characteristic of asthma. However, it remains unclear whether airway eosinophils enhance or reduce release of chemical mediators and/or action of the released mediators in the airways in vivo, because previous investigators have indicated that eosinophil-derived factors such as histaminase and arylsulfatase may alter the allergic reaction by metabolizing chemical mediators. Recently, we have developed a guinea pig model of propranolol-induced bronchoconstriction (PIB), which is mediated by lipid mediators such as thromboxane A2 (TxA2), cysteinyl leukotrienes (cLTs) and platelet activation factor (PAF). This study was conducted to explain the influence of airway eosinophil accumulation on antigen-induced bronchoconstriction and the following PIB, both of which are mediated by lipid mediators. METHODS: Guinea pigs were transnasally treated with 75 microg/kg of polymyxin-B or vehicle twice a week for a total of 3 weeks. Guinea pigs were anesthetized and treated with diphenhydramine hydrochloride, and then artificially ventilated 24 h after the last administration of polymyxin-B or vehicle followed by passive sensitization. Propranolol at a concentration of 10 mg/ml was inhaled 20 min after an aerosolized antigen challenge. RESULTS: The proportion of eosinophils in bronchoalveolar lavage fluid obtained 15 min after the propranolol inhalation was significantly increased in guinea pigs treated with polymyxin-B compared with the vehicle. The polymyxin-B treatment did not affect antigen-induced bronchoconstriction or the following PIB. CONCLUSIONS: We conclude that eosinophils accumulated in the airways by polymyxin-B does not affect release of chemical mediators induced by antigen or propranolol inhalation, or action of released mediators in vivo.  相似文献   

8.
Gastroesophageal reflux has been indicated as anetiopathological factor in disorders of the upper airway. Upper airwaycollapsing pressure stimulates pressure-responsive laryngeal receptorsthat reflexly increase the activity of upper airway abductor muscles. We studied, in anesthetized dogs, the effects of repeated laryngeal instillations of HCl-pepsin (HCl-P; pH = 2) on the response of laryngeal afferent endings and the posterior cricoarytenoid muscle (PCA) to negative pressure. The effect of negative pressure on receptordischarge or PCA activity was evaluated by comparing their response toupper airway (UAO) and tracheal occlusions (TO). It is only during UAO,but not during TO, that the larynx is subjected to negative transmuralpressure. HCl-P instillation decreased the rate of discharge during UAOof the 10 laryngeal receptors studied from 56.4 ± 10.9 (SE) to 38.2 ± 9.2 impulses/s (P < 0.05). With UAO, the peak PCA moving time average, normalized by dividing itby the peak values of esophageal pressure, decreased after six HCl-Ptrials from 4.29 ± 0.31 to 2.23 ± 0.18 (n = 6;P < 0.05). The responses to TO ofeither receptors or PCA remained unaltered. We conclude that exposureof the laryngeal mucosa to HCl-P solutions, as it may occur withgastroesophageal reflux, impairs the patency-maintaining mechanismsprovided by laryngeal sensory feedback. Inflammatory and necroticalterations of the laryngeal mucosa are likely responsible for theseeffects.

  相似文献   

9.
Laryngopharyngeal or gastroesophageal reflux is associated with laryngeal airway hyperreactivity (LAH), but neither the cause-effect relationship nor the underlying mechanism has been elucidated. Here we established a rat model with enhanced laryngeal reflex reactivity induced by laryngeal acid-pepsin insult and investigated the neural and hydroxyl radical (*OH) mechanisms involved. The laryngeal segments of 103 anesthetized rats were functionally isolated while animals breathed spontaneously. Ammonia vapor was delivered into the laryngeal segment to measure laryngeal reflex reactivity. We found that the laryngeal pH 5-pepsin treatment doubled the reflex apneic response to ammonia, whereas laryngeal pH 7.4-pepsin, pH 2-pepsin, and pH 5-denatured pepsin treatment had no effect. Histological examination revealed limited laryngeal inflammation and epithelial damage after pH 5-pepsin treatment and more severe damage after pH 2-pepsin treatment. In rats that had received the laryngeal pH 5-pepsin treatment, the apneic response to ammonia was abolished by either denervation or perineural capsaicin treatment (PCT; a procedure that selectively blocks capsaicin-sensitive afferent fibers) of the superior laryngeal nerves, but was unaffected by perineural sham treatment. LAH was prevented by laryngeal application of either dimethylthiourea (DMTU; a *OH scavenger) or deferoxamine (DEF; an antioxidant for *OH), but was unaltered by the DMTU vehicle or iron-saturated DEF (ineffective DEF). LAH reappeared after recovery from PCT, DMTU, or DEF treatment. We conclude that 1) laryngeal insult by pepsin at a weakly acidic pH, but not at acidic pH, can produce LAH; and 2) LAH is probably mediated through sensitization of the capsaicin-sensitive laryngeal afferent fibers by a *OH mechanism.  相似文献   

10.
Respiratory inductive plethysmography is a non-invasive method of assessing breathing patterns that requires an airway connection for calibration. In previous studies an endotracheal tube was used to establish this connection. We employed a single position graphic calibration technique for gain calculation using a conical face mask in place of the endotracheal tube, thus eliminating the need for sedation and topical anaesthesia. Thirteen studies were completed on seven lambs. Validation of gains was performed by comparing volumes obtained simultaneously by respiratory inductive plethysmography and integrated pneumotachography. Total study time ranged between 5 and 10 min for each calibration procedure. Our results suggest that the conical mask can be used to perform accurate and time-efficient calibration of the respiratory inductive plethysmograph in the spontaneously breathing non-sedated lamb and eliminates the need for endotracheal intubation.  相似文献   

11.
Influence of upper airway negative-pressure change on the respiratory activity of various upper airway muscles was investigated in 13 anesthetized rabbits. Phasic inspiratory activity increased or appeared during virtually all negative-pressure trials in nasolabial, cricothyroid, and posterior cricoarytenoid muscles. No phasic inspiratory activity was seen in the sternothyroid (ST) and sternohyoid (SH) muscles before negative-pressure applications but appeared during 80% of trials in ST and 62% of trials in SH. During maintained negative pressure, a gradual decline in activity was often observed in the nasolabial and laryngeal muscles, whereas a rapid decline in activity was seen in the cervical strap muscles. Reflex effects of negative pressure was markedly reduced or abolished by sectioning the internal branch of the superior laryngeal nerve bilaterally. Reflex augmentation of upper airway muscle activity reported here may have functional significance in the maintenance of upper airway patency. It could prevent upper airway collapse when negative pressure swings in the upper airway increase or facilitate recovery when large negative pressure swings are produced by obstructed inspiratory efforts.  相似文献   

12.
Airway responsiveness to methacholine and other bronchoconstrictors is highly variable within and among species. The aim of the experiments in this report was to evaluate the importance of the quantity of airway smooth muscle as a determinant of intra- and inter-species variability in airway responsiveness. To do this we established concentration-response curves to methacholine in a sample of normal guinea pigs as well as in rat, rabbit, and dog. After challenge we excised the lungs for the quantitation of smooth muscle by morphometry. Animals were anesthetized with pentobarbital and mechanically ventilated using a Harvard ventilator. Aerosols of methacholine were administered in progressively doubling concentrations from 0.0625 to 256 mg/mL for a period of 30 s for each concentration. The maximal response, determined from pulmonary resistance (RL), and the concentration of methacholine required to effect 50% of the maximal RL were determined. After provocation testing the lungs were removed and fixed with 10% Formalin. Midsagittal sections and parahilar sections were stained with hematoxylin-phloxine-saffron for microscopic examination of smooth muscle. The images of all airways in the sections were traced using a camera lucida side-arm attachment and digitized using commercial software. The area of the airway wall occupied by smooth muscle was determined and standardized for airway size by dividing it by the square of the epithelial basement membrane length. The variability in airway smooth muscle in the intraparenchymal airways was significantly greater between than within individual guinea pigs (n = 13). This was not true of extraparenchymal airways.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We studied the effects of cricothyroid muscle (CT) contraction on upper airway flow dynamics in eight prone open-mouth anesthetized dogs. Animals were mechanically ventilated via a tracheostomy while a constant airflow (Vuaw) passed through the isolated upper airway. Nasal airflow (Vn) was monitored using a nasal mask and pneumotachograph. Bilateral CT contraction was induced by electrical stimulation of the external branches of the superior laryngeal nerves. During CT contraction with Vuaw of 100-443 ml/s in the inspiratory direction, total upper airway resistance (Ruaw) fell by 49.1 +/- 5.4% (SE) while supraglottic resistance fell by 63.6 +/- 3.6%; simultaneously Vn fell by 55.3 +/- 3.8% and Vuaw increased by 7.2 +/- 1.7%. Similar results were obtained when Vuaw was in the expiratory direction. In three dogs in which the attachments of the CT to either the thyroid or cricoid cartilage were severed, superior laryngeal nerve stimulation had no systematic effect on Ruaw. Because visual assessment during CT contraction consistently revealed dilation of the piriform recesses, we suggest that CT contraction is associated with pharyngeal dilation, which in open-mouth dogs (with overlapping soft palate and epiglottis) redistributes flow to the oral route with a net reduction in Ruaw. Thus the CT may have a respiratory role as a pharyngeal dilator.  相似文献   

14.
Protection of the airway, necessary for continued respiration, is a problem for mammals because of the relative positions of the oesophageal and laryngeal openings in the pharynx. In human infants, and all other mammals, infant and adult, the epiglottis contacts the posterior surface of the soft palate, providing a continuous passage from the nasopharynx to larynx. The function and movements of the epiglottis during swallows are debated as to whether the epiglottis bends to protect the airway or remains erect and leaves the airway open during the swallow. Using high-speed cineradiography, we examined swallows in detail for a precocious infant, Sus domesticus , the miniature pig, and the more altrical primate, Macaca fascicularis. Infant pigs swallowed in two different ways: down the midline of the oropharynx, over a bent epiglottis, and laterally, around an erect epiglottis, and presumably open airway. The epiglottis of infant macaques never bent, and milk always travelled laterally, through the pyriform recesses and around the larynx. The macaque airway was closed superiorily, however, when the soft palate sealed against the posterior pharyngeal wall. A hypothesis that could account for this pattern of swallowing involves an ontogenetic change from swallows travelling laterally through the pyriform recesses in young infants to swallows travelling over a bent epiglottis in more mature infants. This change would accompany maturation associated with weaning and the need to protect the airway from the larger and less fluid boluses of masticated solid food.  相似文献   

15.
The neonatal ventilatory response to hypoxia is characterized by initial transient stimulation and subsequent respiratory depression. It is unknown, however, whether this response is also exhibited by the upper airway muscles that regulate nasal, laryngeal, and pharyngeal patency. We therefore compared electromyogram (EMG) amplitudes and minute EMGs for the diaphragm (DIA), alae nasi (AN), posterior cricoarytenoid (PCA), and genioglossus (GG) muscles in 12 anesthetized spontaneously breathing piglets during inhalation of 12% O2 over 10 min. Minute EMG for the DIA responded to hypoxia with an initial transient increase and subsequent return to prehypoxia levels by 10 min. Hypoxia also stimulated all three upper airway muscles. In contrast to the DIA EMG, however, AN, PCA, and GG EMGs all remained significantly above prehypoxia levels after 10 min of hypoxia. We have thus demonstrated that the initial stimulation and subsequent depression of the DIA EMG after 12% O2 inhalation contrast with the sustained increase in AN, PCA, and GG EMGs during hypoxia. We speculate that 1) central inhibition during neonatal hypoxia is primarily distributed to the motoneuron pools regulating DIA activation and 2) peripheral chemoreceptor stimulation and/or central disinhibition induced by hypoxia preferentially influence those motoneuron pools that regulate upper airway muscle activation, causing the different hypoxic responses of these muscle groups in the young piglet.  相似文献   

16.
The effects of endothelin (ET) agonists on airway mechanics and bronchial blood flow were studied as well as the effects of mixed ET-receptor antagonist bosentan on allergen-induced airway reactions in the pig. ET agonists [ET-1, ET-3, and the ET(B) receptor-selective agonist Sarafotoxin 6c (Sf6c)] were given as intravenous injections (0.4-200 pmol/kg) to eight anesthetized pigs. Bosentan (10 mg/kg iv) was then administered, and the injections were repeated. Only Sf6c caused a significant increase in airway resistance, and this response was blocked by bosentan. Sf6c and ET-1 (200 and 400 pmol/kg, respectively) were also given as aerosols to five pigs. Sf6c, but not ET-1, caused bronchoconstriction via this route. All agonists (intravenous) caused increases in bronchial vascular conductance, an effect that was blocked by an NO-synthase inhibitor (N(G)-nitro-L-arginine) but unaffected by a cyxlooxygenase inhibitor (diclofenac). Fourteen pigs were sensitized with ascaris suum antigen. Under anesthesia, eight pigs were pretreated with bosentan, and six pigs were controls. They were all challenged with allergen aerosol resulting in acute bronchoconstriction and elevation of ET-1 in bronchoalveolar lavage fluid. Bosentan did not affect the maximal acute airway obstruction but markedly increased baseline bronchial vascular conductance, suggesting a basal vascular tone regulated by ETs. In conclusion, ETs induce bronchoconstriction primarily via the ET(B) receptor in the pig. However, ETs are probably not involved in the allergen-induced acute bronchoconstriction in this model.  相似文献   

17.
The reflex upper airway (UA) motor response to UA negative pressure (UANP) is attenuated by neuromuscular blockade. We hypothesized that this is due to a reduction in the sensitivity of laryngeal mechanoreceptors to changes in UA pressure. We examined the effect of neuromuscular blockade on hypoglossal motor responses to UANP and to asphyxia in 15 anesthetized, thoracotomized, artificially ventilated rats. The activity of laryngeal mechanoreceptors is influenced by contractions of laryngeal and tongue muscles, so we studied the effect of selective denervation of these muscle groups on the UA motor response to UANP and to asphyxia, recording from the pharyngeal branch of the glossopharyngeal nerve (n = 11). We also examined the effect of tongue and laryngeal muscle denervation on superior laryngeal nerve (SLN) afferent activity at different airway transmural pressures (n = 6). Neuromuscular blockade and denervation of laryngeal and tongue muscles significantly reduced baseline UA motor nerve activity (P < 0.05), caused a small but significant attenuation of the motor response to asphyxia, and markedly attenuated the response to UANP. Motor denervation of tongue and laryngeal muscles significantly decreased SLN afferent activity and altered the response to UANP. We conclude that skeletal muscle relaxation reduces the reflex UA motor response to UANP, and this may be due to a reduction in the excitability of UA motor systems as well as a decrease of the response of SLN afferents to UANP.  相似文献   

18.
The hypothesis that upper airway (UA) pressure and flow modulate respiratory muscle activity in a respiratory phase-specific fashion was assessed in anesthetized, tracheotomized, spontaneously breathing piglets. We generated negative pressure and inspiratory flow in phase with tracheal inspiration or positive pressure and expiratory flow in phase with tracheal expiration in the isolated UA. Stimulation of UA negative pressure receptors with body temperature air resulted in a 10--15% enhancement of phasic moving-time-averaged posterior cricoarytenoid electromyographic (EMG) activity above tonic levels obtained without pressure and flow in the UA (baseline). Stimulation of UA positive pressure receptors increased phasic moving-time-averaged thyroarytenoid EMG activity above tonic levels by 45% from baseline. The same enhancement of posterior cricoarytenoid or thyroarytenoid EMG activity was observed with the addition of flow receptor stimulation with room temperature air. Tidal volume and diaphragmatic and abdominal muscle activity were unaffected by UA flow and/or pressure, whereas respiratory timing was minimally affected. We conclude that laryngeal afferents, mainly from pressure receptors, are important in modulating the respiratory activity of laryngeal muscles.  相似文献   

19.
D P Kuehn 《Plastic and reconstructive surgery》1991,88(6):959-66; discussion 967-9
The purpose of this report is to introduce a new therapy technique for treating hypernasality. The instrumentation consists of a continuous positive airway pressure (CPAP) device that delivers air pressure by means of a hose and nasal mask assembly to the nasal cavities. This positive pressure is theoretically useful in providing resistance training to strengthen the velopharyngeal closure muscles. Speech drillwork is conducted in the patient's home and consists of production of VNCV syllables and short sentences with the nasal mask worn by the patient. Incremental changes in CPAP pressure and time per therapy session occur over an 8-week course of therapy. Six case studies are presented. The preliminary results suggest that CPAP therapy may be effective in reducing hypernasality in individuals exhibiting mild to moderate degrees of severity.  相似文献   

20.
We tested the hypotheses that active upper airway closure during induced central apneas in nonsedated lambs 1). is complete and occurs at the laryngeal level and 2). is not due to stimulation of the superior laryngeal nerves (SLN). Five newborn lambs were surgically instrumented to record thyroarytenoid (TA) muscle (glottal constrictor) electromyographic (EMG) activity with supra- and subglottal pressures. Hypocapnic and nonhypocapnic central apneas were induced before and after SLN sectioning in the five lambs. A total of 174 apneas were induced, 116 before and 58 after sectioning of the internal branch of the SLN (iSLN). Continuous TA EMG activity was observed in 88% of apneas before iSLN section and in 87% of apneas after iSLN section. A transglottal pressure different from zero was observed in all apneas with TA EMG activity, with a mean subglottal pressure of 4.3 +/- 0.8 cmH2O before and 4.7 +/- 0.7 cmH2O after iSLN section. Supraglottal pressure was consistently atmospheric. Sectioning of both iSLNs had no effects on the results. We conclude that upper airway closure during induced central apneas in lambs is active, complete, and occurs at the glottal level only. Consequently, a positive subglottal pressure is maintained throughout the apnea. Finally, this complete active glottal closure is independent from laryngeal afferent innervation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号