首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We generated four point mutations in the DNA-binding protein (DBP) gene of adenovirus type 5 by oligonucleotide-directed site-specific mutagenesis. The sites mutated were in the three conserved regions (CR; amino acids 178-186 [CR1], 322-330 [CR2], and 464-475 [CR3]) identified previously by comparative sequence analysis (G. R. Kitchingman, Virology 146:90-101, 1985). The mutations resulted in changes in amino acids 181 (Trp to Leu), 323 (Arg to Leu), 324 (Trp to Leu), and 469 (Phe to Ile). The mutated DBP genes were put under the control of the simian virus 40 early promoter and analyzed by transfection for their ability to help adeno-associated virus replicate its DNA in COS-1 monkey cells. Mutations in the aromatic amino acids 324 and 469 reduced the amount of AAV DNA replication approximately 10-fold, while the mutation in Arg 323 produced a reduction of approximately fourfold. The Trp-to-Leu mutation in amino acid 181 had no effect on AAV DNA replication. The decreased helper activity of the 323, 324, and 469 mutations was not caused by any effect of the mutation on the stability of the DBP. These results suggest that CR2 and CR3 are involved in AAV helper activity, specifically in AAV DNA replication. The relevance of these findings to the identification of residues important for the functions of DBP in adenovirus infection is discussed.  相似文献   

2.
The adenovirus-encoded single-stranded DNA-binding protein (DBP) functions in viral DNA replication and several aspects of RNA metabolism. Previous studies (G. A. M. Neale and G. R. Kitchingman, J. Biol. Chem. 264:3153-3159, 1989) have defined three highly conserved regions in the carboxy-terminal domain of the protein (amino acids 178 to 186, 322 to 330, and 464 to 475) that may be involved in the binding of the protein to single-stranded DNA. We examined the role of conserved region 3 (464 to 475) by constructing nine classes of point mutants with from one to four amino acid changes. The point mutants were tested for their ability to assist adeno-associated virus DNA replication. All nine differed from wild-type DBP; seven were essentially nonfunctional, whereas two had 55 and 145%, respectively, of the wild-type DBP helper activity. Three of the mutants were found to be temperature sensitive, with significantly greater helper activity at 33 degrees C than at 37 degrees C. All nine mutants produced essentially wild-type levels of protein. One monoclonal antibody against the DBP, termed 2/4, did not immunoprecipitate the mutant DBPs as well as wild-type DBP, indicating either that the antibody recognized sequences around CR3 or that the conformation of the protein around the epitope recognized by 2/4 had changed. Two of the three temperature-sensitive DBP mutants bound to single-stranded DNA-cellulose with the same affinity as wild-type DBP at 4 degrees C; the remaining mutants all showed reduced affinity. These results demonstrated that many of the residues within conserved region 3 of the DBP are important for interaction of the protein with nucleic acid.  相似文献   

3.
In contrast to other replication systems, adenovirus DNA replication does not require a DNA helicase to unwind the double-stranded template. Elongation is dependent on the adenovirus DNA-binding protein (DBP) which has helix-destabilizing properties. DBP binds cooperatively to single-stranded DNA (ssDNA) in a non-sequence-specific manner. The crystal structure of DBP shows that the protein has a C-terminal extension that hooks on to an adjacent monomer which results in the formation of long protein chains. We show that deletion of this C-terminal arm results in a monomeric protein. The mutant binds with a greatly reduced affinity to ssDNA. The deletion mutant still stimulates initiation of DNA replication like the intact DBP. This shows that a high affinity of DBP for ssDNA is not required for initiation. On a single-stranded template, elongation is also observed in the absence of DBP. Addition of DBP or the deletion mutant has no effect on elongation, although both proteins stimulate initiation on this template. Strand displacement synthesis on a double-stranded template is only observed in the presence of DBP. The mutant, however, does not support elongation on a double-stranded template. The unwinding activity of the mutant is highly reduced compared with intact DBP. These data suggest that protein chain formation by DBP and high affinity binding to the displaced strand drive the ATP-independent unwinding of the template during adenovirus DNA replication.  相似文献   

4.
The adenovirus single-stranded DNA (ssDNA)-binding protein (DBP) is necessary for the elongation step in viral DNA replication. In an attempt to characterize the putative ssDNA-binding domain of the DBP, we purified and characterized the Ad2ts111A DBP, which contains a glycine-to-valine substitution at amino acid 280. This mutation is adjacent to that in the previously studied Ad2+ND1ts23. Ad2+ND1ts23 exhibits a temperature-sensitive defect in DNA replication, and its DBP has previously been shown to bind ssDNA with reduced affinity. Ad2ts111A DBP, like Ad2+ND1ts23, does not support adenovirus DNA replication in vitro at elevated temperatures. However, the Ad2ts111A DBP binds ssDNA more tightly than does Ad2+ND1ts23 and is not temperature sensitive in this function. To determine the nucleic acid-binding properties of DBP, we applied spectrofluorometric techniques, which had not been used previously to study adenovirus DBP. Using the homopolynucleotide poly(1,N6)-ethenoadenylic acid (poly(r epsilon A], we have determined that the binding site size is approximately 16 nucleotides. In 20 mM NaCl, the Ad2wt, Ad2ts111A, and Ad2+ND1ts23 DBP proteins all bound stoichiometrically to poly(r epsilon A) with overall apparent affinities above 108 M-1. Based on titrations carried out at higher salt concentrations, however, the stability of these complexes did appear to increase in the order Ad2+ND1ts23 less than Ad2ts111A less than Ad2wt. By these techniques, we have confirmed also that the DBP of another temperature-sensitive mutant, H5ts107, like the Ad2ts111A DBP, retains its ability to bind ssDNA even at a restrictive temperature utilizing the salt concentration compatible with adenovirus DNA replication in vitro. The H5ts107 DBP, which contains an amino acid substitution at position 413, is defective for in vitro replication at nonpermissive temperature but is not temperature sensitive for binding to ssDNA. In summary, our results indicate that the replication defects of the Ad2ts111A are similar to those of H5ts107 and cannot be attributed to defective, nonspecific ssDNA binding by the DBP. It appears that ssDNA binding by itself is not sufficient to account for the role of DBP in adenovirus DNA replication.  相似文献   

5.
The adenovirus DNA-binding protein (DBP) binds cooperatively to single-stranded DNA (ssDNA) and stimulates both initiation and elongation of DNA replication. DBP consists of a globular core domain and a C-terminal arm that hooks onto a neighboring DBP molecule to form a stable protein chain with the DNA bound to the internal surface of the chain. This multimerization is the driving force for ATP-independent DNA unwinding by DBP during elongation. As shown by x-ray diffraction of different crystal forms of the C-terminal domain, the C-terminal arm can adopt different conformations, leading to flexibility in the protein chain. This flexibility is a function of the hinge region, the part of the protein joining the C-terminal arm to the protein core. To investigate the function of the flexibility, proline residues were introduced in the hinge region, and the proteins were purified to homogeneity after baculovirus expression. The mutant proteins were still able to bind ss- and double-stranded DNA with approximately the same affinity as wild type, and the binding to ssDNA was found to be cooperative. All mutant proteins were able to stimulate the initiation of DNA replication to near wild type levels. However, the proline mutants could not support elongation of DNA replication efficiently. Even the elongation up to 26 nucleotides was severely impaired. This defect was also seen when DNA unwinding was studied. Binding studies of DBP to homo-oligonucleotides showed an inability of the proline mutants to bind to poly(dA)(40), indicating an inability to adapt to specific DNA conformations. Our data suggest that the flexibility of the protein chain formed by DBP is important in binding and unwinding of DNA during adenovirus DNA replication. A model explaining the need for flexibility of the C-terminal arm is proposed.  相似文献   

6.
We constructed insertion and deletion mutants with mutations within the adeno-associated virus (AAV) sequences of the infectious recombinant plasmid pSM620. Studies of these mutants revealed at least three AAV phenotypes. Mutants with mutations between 11 and 42 map units were partially or completely defective for rescue and replication of the AAV sequences from the recombinant plasmids (rep mutants). The mutants could be complemented by mutants with replication-positive phenotypes. The protein(s) that is affected in rep mutants has not been identified, but the existence of the rep mutants proves that at least one AAV-coded protein is required for viral DNA replication. Also, the fact that one of the rep mutant mutations maps within the AAV intron suggests that the intron sequences code for part of a functional AAV protein. Mutants with mutations between 63 and 91 map units synthesized normal amounts of AAV duplex DNA but could not generate single-stranded virion DNA (cap mutants). The cap phenotype could be complemented by rep mutants and is probably due to a defect in the major AAV capsid protein, VP3. This suggests that a preformed capsid or precursor is required for the accumulation of single-stranded AAV progeny DNA. Mutants with mutations between 48 and 55 map units synthesized normal amounts of AAV single-stranded and duplex DNA but produced substantially lower yields of infectious virus particles than wild-type AAV (lip mutants). The lip phenotype is probably due to a defect in the minor capsid protein, VPI, and suggests the existence of an additional (as yet undiscovered) AAV mRNA. Evidence is also presented for recombination between mutant AAV genomes during lytic growth.  相似文献   

7.
A subset of DNA replication proteins of herpes simplex virus (HSV) comprising the single-strand DNA-binding protein, ICP8 (UL29), and the helicase-primase complex (UL5, UL8, and UL52 proteins) has previously been shown to be sufficient for the replication of adeno-associated virus (AAV). We recently demonstrated complex formation between ICP8, AAV Rep78, and the single-stranded DNA AAV genome, both in vitro and in the nuclear HSV replication domains of coinfected cells. In this study the functional role(s) of HSV helicase and primase during AAV DNA replication were analyzed. To differentiate between their necessity as structural components of the HSV replication complex or as active enzymes, point mutations within the helicase and primase catalytic domains were analyzed. In two complementary approaches the remaining HSV helper functions were either provided by infection with HSV mutants or by plasmid transfection. We show here that upon cotransfection of the minimal four HSV proteins (i.e., the four proteins constituting the minimal requirements for basal AAV replication), UL52 primase catalytic activity was not required for AAV DNA replication. In contrast, UL5 helicase activity was necessary for fully efficient replication. Confocal microscopy confirmed that all mutants retained the ability to support formation of ICP8-positive nuclear replication foci, to which AAV Rep78 colocalized in a manner strictly dependent on the presence of AAV single-stranded DNA (ssDNA). The data indicate that recruitment of AAV Rep78 and ssDNA to nuclear replication sites by the four HSV helper proteins is maintained in the absence of catalytic primase or helicase activities and suggest an involvement of the HSV UL5 helicase activity during AAV DNA replication.  相似文献   

8.
9.
Varicella-zoster virus (VZV) can complement temperature-sensitive mutants of herpes simplex virus. Of seven mutants tested, two, carrying mutations in the immediate-early ICP4 and ICP27 proteins, were complemented. This complementation was not seen in coinfections with adenovirus type 5 or cytomegalovirus. Following transfection into CV-1 cells, a DNA fragment containing the VZV short repeat sequence complemented the ICP4 mutant. These data demonstrate a functional relationship between VZV and herpes simplex virus and have allowed localization of a putative VZV immediate-early gene.  相似文献   

10.
The gene 32 protein (gp32) of bacteriophage T4 is the essential single-stranded DNA (ssDNA)-binding protein required for phage DNA replication and recombination. gp32 binds ssDNA with high affinity and cooperativity, forming contiguous clusters that optimally configure the ssDNA for recognition by DNA polymerase or recombination enzymes. The precise roles of gp32 affinity and cooperativity in promoting replication and recombination have yet to be defined, however. Previous work established that the N-terminal "B-domain" of gp32 is essential for cooperativity and that point mutations at Arg(4) and Lys(3) positions have varying and dramatic effects on gp32-ssDNA interactions. Therefore, we examined the effects of six different gp32 B-domain mutants on T4 in vitro systems for DNA synthesis and homologous pairing. We find that the B-domain is essential for gp32's stimulation of these reactions. The stimulatory efficacy of gp32 B-domain mutants generally correlates with the hierarchy of relative ssDNA binding affinities, i.e. wild-type gp32 approximately R4K > K3A approximately R4Q > R4T > R4G gp32-B. However, the functional defect of a particular mutant is often greater than can be explained simply by its ability to saturate the ssDNA at equilibrium, suggesting additional defects in the proper assembly and activity of DNA polymerase and recombinase complexes on ssDNA, which may derive from a decreased lifetime of gp32-ssDNA clusters.  相似文献   

11.
Transfection of a pBR322-based, recombinant plasmid, pAV2, containing the entire adeno-associated virus (AAV) type 2 genome into human 293 cells in the presence of helper adenovirus resulted in rescue and replication of AAV to yield infectious particles. We constructed mutants of pAV2 containing deletions within the AAV sequence. We describe here the phenotypes of these AAV deletion mutants. The results can be summarized as follows. Mutants (cap-) with deletions between map positions 53 and 85 did not synthesize capsid antigen or progeny single-stranded DNA but accumulated normal levels of duplex replicating form DNA. Mutants (rep-) with deletions between map positions 17 and 36 failed to rescue or replicate any AAV DNA. The rep- mutants could be complemented for replicating form DNA synthesis by a cap- mutant. This clearly demonstrates an AAV-coded replication function which is different from the capsid antigen. Other mutants (inf-) with deletions in the region between map positions 40 and 52 synthesized abundant amounts of replicating form DNA and capsid antigen but gave a low yield of infectious particles. This suggests that there may be an additional region of AAV, perhaps within the intron, which is required for efficient particle assembly. This work shows that AAV is genetically complex and expresses at least three clearly different functions.  相似文献   

12.
When the entire adeno-associated virus (AAV) genome is inserted into a bacterial plasmid, infectious AAV genomes can be rescued and replicated when the recombinant AAV-plasmid DNA is transfected into human 293 cells together with helper adenovirus particles. We have taken advantage of this experimental system to analyze the effects of several classes of mutations on replication of AAV DNA. We obtained AAV mutants by molecular cloning in bacterial plasmids of naturally occurring AAV variant or defective-interfering genomes. Each of these mutants contains a single internal deletion of AAV coding sequences. Also, some of these mutant-AAV plasmids have additional deletions of one or both AAV terminal palindromes introduced during constructions in vitro. We show here that AAV mutants containing internal deletions were defective for replicative form DNA replication (rep-) but could be complemented by intact wild-type AAV. This indicates that an AAV replication function, Rep, is required for normal AAV replication. Mutants in which both terminal palindromes were deleted (ori-) were also replication defective but were not complementable by wild-type AAV. The cis-dominance of the ori- mutation shows that the replication origin is comprised in part of the terminal palindrome. Deletion of only one terminal palindrome was phenotypically wild-type and allowed rescue and replication of AAV genomes in which the deleted region was regenerated apparently by an intramolecular correction mechanism. One model for this correction mechanism is proposed. An AAV ori- mutant also complemented replication of AAV rep- mutants as efficiently as did wild-type AAV. These studies also revealed an unexpected additional property of the deletion mutants in that monomeric single-stranded single-stranded DNA accumulated very inefficiently even though monomeric single-stranded DNA from the complementing wild-type AAV did accumulate.  相似文献   

13.
The requirement for the adenovirus (Ad) single-stranded DNA binding protein (DBP) in the expression of adeno-associated virus (AAV) proteins was studied by specific immunofluorescent staining of infected cells and in vitro translation of RNA from infected cells. The Ad5 mutant ts125, which carries a mutation in the DBP gene, helped AAV as efficiently as the Ad5 wild type (WT) did at both the permissive (32 degrees C) and nonpermissive (40.5 degrees C) temperatures in HeLa and KB cells. Furthermore, at 40.5 degrees C ts125 was as efficient as Ad5WT was in inducing the expression of AAV proteins in a line of Detroit 6 cells which is latently infected with AAV. However, little if any AAV protein was synthesized when coinfections were carried out with Ad5WT in CV-C cells, a monkey cell line that is highly restrictive for human Ad replication unless the cells are also infected with simian virus 40. On the other hand, AAV protein was efficiently produced in CV-C cells in coinfections with the Ad5 mutant hr404, whose growth is unrestricted in CV-C cells and whose mutation also maps in the DBP gene. Finally, preparations of cytoplasmic RNA extracted from CV-C cells infected with AAV and Ad5WT or from CV-C cells infected with AAV, Ad5WT, and simian virus 40 were each capable of directing the in vitro synthesis of abundant amounts of AAV proteins in a rabbit reticulocyte lysate system. These results indicate that the abnormal DBP of ts125 still retains its helper function for AAV replication, but that the molecular feature of the DBP which relates to the monkey cell host range restriction of Ad's may also account for the observed block to AAV protein translation in CV-C cells.  相似文献   

14.
The nucleic acid binding domain of the adenovirus type 2 (or type 5) DNA-binding protein (DBP) was characterized by using limited proteolysis and photochemical cross-linking. Three proteases were used to generate fragments of DBP which retained the ability to bind to single-stranded DNA. One fragment, a 35-kDa tryptic product, was partially sequenced and found to contain amino acid residues 153 to approximately 470. This fragment further defines the minimum region of the protein which is required for nucleic acid binding. The DNA binding pocket of DBP was defined by using ultraviolet irradiation to cross-link covalently the carboxyl-terminal portion of the protein to the oligonucleotide p(dT)14. Cross-linked complexes were digested with trypsin, and peptides which were associated with the oligonucleotide were isolated by anion-exchange and reverse-phase ion-pairing high performance liquid chromatography. Two DBP peptides comprised of residues 294-308 and 415-434 were isolated by this approach. Sequence analysis indicated that methionine 299 and phenylalanine 418 were probable sites of cross-linking between their respective peptides and the oligonucleotide; hence these residues may represent contact points between DBP and single-stranded DNA. Both residues are highly conserved and are near, but not identical to, regions of the protein implicated previously in DNA binding.  相似文献   

15.
The adenovirus type 7 (Ad7) single-stranded DNA-binding protein (DBP) structural gene has been sequenced and located between 66.7 and 62.3 map units. This region codes for a protein that contains 517 amino acid residues with a calculated molecular mass of 58,240 daltons. We compared the Ad7 amino acid sequence with those reported for the Ad5 (Kruijer, W., van Schaik, F.M.A., and Sussenbach, J.S. (1981) Nucleic Acids Res. 9, 4439-4457) and Ad12 (Kruijer, W., van Schaik, F.M.A., Speijer, J.G., and Sussenbach, J.S. (1983) Virology 128, 140-153) DNA-binding proteins. A greater amount of amino acid sequence homology was found in the carboxyl-terminal DNA-binding domain of the molecule. This homology is 61% between Ad7 and Ad5 and 49% when Ad12 was included in the comparison. The NH2-terminal domain of DBP retained a 49% homology between Ad7 and Ad5 and a 23% homology for all three serotypes. The greatest difference between the Ad7 and Ad5 DBPs is the absence, in the Ad7 protein, of 12 amino acids located between the two functional domains in the Ad5 protein (amino acids 151-162). In addition, three regions of high amino acid conservation between Ad5, Ad7, and Ad12 consisting of 9 (178-186), 9 (322-330), and 12 (464-475) consecutive amino acids (numbers refer to Ad5) in the DNA-binding portion of the molecule were revealed. These three regions contain a centrally located basic amino acid (183, 326, and 470) as well as an aromatic amino acid residue (181, 324, and 469). Since basic and aromatic amino acids have been implicated in other single-stranded DNA-binding protein/DNA interactions (Anderson, R.A., Nakashima, V., and Coleman, J.E. (1975) Biochemistry 14,907-917; Kowalczykowski, S.C., Lonberg, N., Newport, J.W., and von Hippel, P.H. (1981). J. Mol. Biol. 145, 75-104), these three conserved regions may represent DBP/DNA contact points.  相似文献   

16.
The Fanconi anemia complementation group A (FANCA) gene is one of 15 disease-causing genes and has been found to be mutated in ~60% of Fanconi anemia patients. Using purified protein, we report that human FANCA has intrinsic affinity for nucleic acids. FANCA binds to both single-stranded (ssDNA) and double-stranded (dsDNA) DNAs; however, its affinity for ssDNA is significantly higher than for dsDNA in an electrophoretic mobility shift assay. FANCA also binds to RNA with an intriguingly higher affinity than its DNA counterpart. FANCA requires a certain length of nucleic acids for optimal binding. Using DNA and RNA ladders, we determined that the minimum number of nucleotides required for FANCA recognition is ~30 for both DNA and RNA. By testing the affinity between FANCA and a variety of DNA structures, we found that a 5'-flap or 5'-tail on DNA facilitates its interaction with FANCA. A patient-derived FANCA truncation mutant (Q772X) has diminished affinity for both DNA and RNA. In contrast, the complementing C-terminal fragment of Q772X, C772-1455, retains the differentiated nucleic acid-binding activity (RNA > ssDNA > dsDNA), indicating that the nucleic acid-binding domain of FANCA is located primarily at its C terminus, where most disease-causing mutations are found.  相似文献   

17.
A series of adenovirus type 5 precursor terminal protein (pTP) and DNA polymerase (Ad pol) genes with linker insertion mutations were separately introduced into the vaccinia virus genome under the control of a late vaccinia virus promoter. The recombinant viruses were used for overexpression of the mutant genes in HeLa cells. In total, 22 different mutant pTP and 10 different Ad pol vaccinia virus recombinants were constructed, including some that expressed carboxyl-terminus-truncated forms of both proteins and one that produced the mutant H5ts149 Ad pol. To investigate the structure-function relationships of both proteins, extracts from cells infected with the recombinant viruses were tested for in vitro complementation of the initiation and elongation steps in adenovirus DNA replication. The results were in accordance with those of earlier in vivo experiments with these insertion mutants and indicate that multiple regions of both proteins are essential for adenovirus DNA replication. The carboxyl termini of both pTP and Ad pol were shown to be essential for proper functioning of these proteins during initiation of adenovirus DNA replication. Three different DNA replication-negative pTP mutants were shown to have residual activity in the initiation assay, suggesting not only that pTP is required for initiation but also that it may play a role in DNA replication after the deoxycytidylation step.  相似文献   

18.
Sugimoto N 《Biopolymers》2000,55(6):416-424
A novel 24-residue peptide (L2-G), Ile-Arg-Met-Lys-Ile-Gly-Val-Met-Phe-Gly-Asn-Pro-Glu-Thr-Thr-Thr-Gly-Gly-Asn-Ala-Leu-Lys-Phe-Tyr, derived from RecA can discriminate a single-stranded DNA (ssDNA) from a double-stranded DNA (dsDNA) and a new developed support with this peptide recognizes not dsDNA but ssDNA. The 24-mer peptide with L2 and helix G amino acids of Escherichia coli RecA protein showed the ssDNA binding property with more than 1000 times affinity difference for the dsDNA. However, truncated 15-mer peptide showed no ssDNA binding activity. In the ssDNA binding, L2-G changed its conformation with the perturbation of an alpha-helix structure. The ssDNA binding and the DNA discrimination property of this peptide were due to almost all L2 and helix G amino acids, respectively. This result is useful to design synthetic peptides as functional materials for DNA recognition.  相似文献   

19.
20.
Protein p5 is a Bacillus subtilis phage phi 29-encoded protein required for phi 29 DNA replication in vivo. Protein p5 has single-stranded DNA binding (SSB) capacity and stimulates in vitro DNA replication severalfold when phi 29 DNA polymerase is used to replicate either the natural phi 29 DNA template or primed M13 single-stranded DNA (ssDNA). Furthermore, other SSB proteins, including Escherichia coli SSB, T4 gp32, adenovirus DNA-binding protein, and human replication factor A, can functionally substitute for protein p5. The stimulatory effect of phi 29 protein p5 is not due to an increase of the DNA replication rate. When both phi 29 DNA template and M13 competitor ssDNA are added simultaneously to the replication reaction, phi 29 DNA replication is strongly inhibited. This inhibition is fully overcome by adding protein p5, suggesting that protein p5-coated M13 ssDNA is no longer able to compete for replication factors, probably phi 29 DNA polymerase, which has a strong affinity for ssDNA. Electron microscopy demonstrates that protein p5 binds to M13 ssDNA forming saturated complexes with a smoothly contoured appearance and producing a 2-fold reduction of the DNA length. Protein p5 also binds to ssDNA in the phi 29 replicative intermediates produced in vitro, which are similar in structure to those observed in vivo. Our results strongly suggest that phi 29 protein p5 is the phi 29 SSB protein active during phi 29 DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号