首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Binding sites for prolactin were identified in a plasma-membrane-enriched fraction isolated from livers of mature female rats. 125I-labelled sheep prolactin prepared by the lactoperoxidase procedure retained the same molecular integrity and binding affinity as the native hormone at physiological pH. The receptors bound prolactin from different species, whereas non-lactogenic hormones were not bound. The binding of 125I-labelled sheep prolactin was activated equally by bivalent and univalent cations, bivalent cations exerting their maximal effect at much lower concentrations. The association of 125I-labelled sheep prolactin with the receptor was a time- and temperature-dependent process. Partial dissociation was detected. The binding of 125I-labelled sheep prolactin was strongly influenced by pH, with an optimum observed at pH 6.5. Receptor activity was destroyed by Pronase and phospholipase C, whereas neuraminidase increased binding. Treatment of the membranes by ribonuclease and deoxyribonuclease did not affect the binding. Binding of 125I-labelled sheep prolactin was inhibited by p-chloromercuribenzoic acid, dithiothreitol and by brief exposure to high temperatures. Scatchard analysis of the binding of 125I-labelled sheep prolactin to receptors indicated that prolactin has a high affinity for its receptor. Binding of prolactin to liver membranes showed some properties different from those observed with mammary cells. Binding by these tissues differed in pH optimum, in effects of ions, and in response to neuraminidase.  相似文献   

2.
The binding of 125I-labelled human somatotropin (growth hormone) to a crude membrane preparation from the liver of pregnant rabbit, and to receptors solubilized from this fraction by Triton X-100, was dependent on time, temperature and receptor concentration. At 4 degrees C a steady state was reached after 20 h, and maximum specific binding (as a percentage of total tracer added) was approx. 50% for both membrane-bound and solubilized receptors. Solubilization did not significantly affect the binding properties of the receptor at low concentrations of Triton X-100 (less than 0.05%, v/v, in the assay tube). However, at higher concentrations (approx. 0.1%, v/v), the detergent lowered the ability of some hormones, for example ovine prolactin, to displace 125I-labelled human somatotropin, but did not affect other hormones such as bovine somatotropin. Some somatogenic hormones, such as bovine somatotropin, and some lactogenic hormones, such as ovine prolactin, displaced 125I-labelled human somatotropin from membrane-bound and solubilized receptor preparations. Furthermore, 85% of 125I-labelled bovine somatotropin was displaced from membrane-bound receptors by ovine prolactin, and 125I-labelled ovine prolactin was almost completely displaced by bovine somatotropin. Scatchard analysis of the binding data for human somatotropin suggested a single class of binding sites in the membrane-bound receptor preparation, with an affinity (Ka) of 1.9 X 10(9) M-1 and a capacity of 1726 fmol/mg of protein; these values were slightly increased by solubilization (Ka = 3.2 X 10(9) M-1, capacity = 2103 fmol/mg of protein). Scatchard analysis of binding to membrane-bound receptors also indicated a single class of high-affinity binding sites for bovine somatotropin (Ka = 4.8 X 10(9) M-1, capacity = 769 fmol/mg) and for ovine prolactin (Ka = 6.1 X 10(9) M-1, capacity = 187 fmol/mg).  相似文献   

3.
1. 125I-labelled ovine prolactin and bovine growth hormone were used to test for the presence of prolactin and growth hormone receptors in membrane prepared from tissues of the white eel Anguilla japonica, the carp Ctenopharynogodon idellus and the ricefield eel Monopterus albus. 2. High levels of specific 125I-labelled ovine prolactin binding were found in white eel liver membranes and carp kidney membranes. 3. High levels of specific 125I-labelled bovine growth hormone binding were detected in white eel liver membranes. 4. Tissues of the ricefield eel did not bind 125I-labelled ovine prolactin or bovine growth hormone. 5. The results suggest the presence of prolactin receptors in white eel liver and carp kidney membranes and growth hormone receptors in white eel liver membranes.  相似文献   

4.
A simple method for preparing plasma membranes from bovine testes is described. Bovine testicular receptor has a high affinity and specificity for 125I-labelled human FSH (follicle-stimulating hormone). The specific binding of 125I-labelled human FSH to the plasma membranes is a saturable process with respect to the amounts of receptor protein and FSH added. The association and dissociation of 125I-labelled human FSH are time- and temperature-dependent, and the binding of labelled human FSH to bovine testicular receptor is strong and not readily reversible. Scatchard [Ann. N.Y. Acad. Sci. (1949) 51, 660-672] analysis indicates a dissociation constant, Kd, of 9.8 X10(-11)M, and 5.9 X 10(-14)mol of binding sites/mg of membrane protein. The testicular membrane receptor is heat-labile. Preheating at 40 degrees C for 15 min destroyed 30% of the binding activity. Specific binding is pH-dependent, with an optimum between pH 7.0 and 7.5. Brief exposure to extremes of pH caused irreversible damage to the receptors. The ionic strength of the incubation medium markedly affects the association of 125I-labelled human FSH with its testicular receptor. Various cations at concentrations of 0.1M inhibit almost completely the binding of 125I-labelled human FSH. Nuclectides and steroid hormones at concentrations of 1mM and 5mu/ml respectively have no effect on the binding of FSH to its receptor. Incubation of membranes with and chymotrypsin resulted in an almost complete loss of binding activity, suggesting that protein moieties are essential for the binding of 125I-labelled human FSH. Binding of 125I-labelled human FSH to bovine testicular receptor does not result in destruction or degradation of the hormone.  相似文献   

5.
Antisera against a partially purified prolactin-receptor preparation derived from pregnant-rabbit mammary glands were generated in guinea pigs. On double immuno-diffusion, each antiserum produced a single precipitin line with the prolactin receptors. The anti-receptor sera also specifically inhibited the binding of 125I-labelled sheep prolactin to membrane particles as well as to highly purified prolactin receptors derived from the rabbit mammary glands. The same antisera, however, had no effect on the binding of 125I-labelled insulin to the same membranes. These antisera did not bind or destroy prolactin. Moreover, the binding of 125I-LABELLED PROLACTIN TO MEMBRANE PARTICLES DErived from different tissues from a number of species was also inhibited by the antisera, thus suggesting that the immunological determinants of the prolactin receptors are similar in various tissues derived from different species. The factors in the antisera that were responsible for inhibiting the binding of 125I-labelled prolactin to its receptors were found to be associated with the gamma-globulin fraction. In addition, 131I-labelled gamma-globulins derived from one antiserum were shown to bind to membrane particles derived from mammary glands, and an increase in binding of gamma-globulin was accompanied by a decrease in binding of prolactin. Kinetic analyses of inhibition of 125I-labelled prolactin binding by antisera by using the methods of Lineweaver & Burk [J. Am. Chem. Soc. (1934) 56, 658-666] and Dixon [Biochem. J. (1953) 55, 170-171], revealed that the mechanism is a hyperbolic competitive inhibition. The demonstration of hormone-receptor-antibody complexes further favours this mechanism. The availability of anti-receptor sera should facilitate studies on the functional role as well as other biochemical, immunological and physiological properties of the prolactin receptors.  相似文献   

6.
Lactogen binding and prolactin content were measured in hepatic subcellular fractions from tumor-bearing rats (TBR; MtT/F4, MtT/W5, MtT/W10) with elevated prolactin and growth hormone levels and from control animals. Specific binding of 125I-oPRL to Golgi fractions from tumor-bearing animals was 2.5 to 7 fold greater than that from controls. Binding to plasmalemma was 6-fold greater in tumor-bearing rats. The specific binding of 125I-labelled bGH and insulin showed less marked differences between TBR and controls. Subcellular fractions were extracted with HCl to determine hormonal content. The content of prolactin and growth hormone in Golgi fractions from TBR was at least 20-fold that in fractions from controls. Rat prolactin extracted from Golgi heavy elements was 50% as effective as native material in binding to lactogen receptors as judged by radioreceptor assay. These studies demonstrate that the chronic elevation of prolactin was associated with an increase of receptors not only in the intracellular compartment but on the cell surface as well. Furthermore, they demonstrate that native prolactin is internalized and accumulated in rat liver Golgi fractions.  相似文献   

7.
The binding of 125I-labelled human growth hormone (hGH) to a purified plasma membrane preparation from the liver of pregnant rabbit, and to receptors solubilized from this fraction with Triton X-100, was dependent on time, temperature, the cations used and the receptor concentration. Solubilization did not affect the binding properties of the receptors at low concentrations of Triton X-100. Some somatogenic hormones, such as bovine GH, and some lactogenic hormones, such as ovine prolactin, displaced 125I-labelled hGH from purified plasma membranes and solubilized receptor preparations, but GHs and prolactins from various other species were rather ineffective. The results indicate that although there are binding sites for hGH in these pregnant rabbit liver membranes, few of these are specifically somatogenic or lactogenic. The binding properties of the purified plasma membranes are similar to those of a microsomal preparation studied previously, suggesting that the complex nature of the binding of hGH is not due to the heterogeneity of cellular membranes used to study binding, but is a property of the receptors associated with plasma membranes.  相似文献   

8.
Characterization of prolactin receptors in pig mammary gland.   总被引:1,自引:1,他引:0       下载免费PDF全文
Prolactin receptors present in the particulate fraction of lactating pig mammary gland were solubilized by 7.5mM-3-[(3-cholamidopropyl)dimethylammonio]-1-propane-su lph onic acid (Chaps) and purified by affinity chromatography on prolactin coupled to Affi-Gel 10. Nearly 30% of the particulate receptors were solubilized by the detergent and over a 1000-fold purification from homogenates was achieved. A water-soluble fraction rich in receptors was observed during the preparation of membranes, although this fraction has not yet been purified. Prolactin binding to the receptors was a time-dependent, reversible and saturable reaction in particulate, Chaps-solubilized and purified receptors. In all forms, receptors showed the same specificity to peptide hormones. Prolactin and human growth hormone bound to the same receptors, whereas bovine growth hormone, follicle-stimulating hormone, luteinizing hormone, thyroid-stimulating hormone and insulin failed to bind. After solubilization, the dissociation constant (Kd) for prolactin was decreased 5-fold from 9.8 X 10(-11) M in the particulate receptors to 1.8 X 10(-11) M in solubilized and purified receptors, being due principally to an increase in the association rate constant from 1.0 X 10(9)M-1 X h-1 to (3.9-4.6) X 10(9)M-1 X h-1, respectively, with the dissociation rate constant remaining unchanged at (1.1-1.3) X 10(-2)h-1. Isoelectric focusing of the prolactin-receptor complex revealed two peaks, one at a pI of 5.5-5.6 and the other at 5.2-5.3. Microsomal receptors were covalently cross-linked to 125I-labelled ovine prolactin with ethylene glycol bis(succinimidyl succinate) and analysed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Autoradiography of the gel revealed a major subunit of Mr 28 000-35 000 and a minor one of Mr 67 000-69 000. Anti-(prolactin receptor) antibodies raised against rabbit mammary gland prolactin receptors were equally effective in inhibiting prolactin binding to particulate, solubilized and affinity-purified receptors, suggesting that purified prolactin receptors have a structure indistinguishable immunologically from particulate receptors and rabbit mammary gland prolactin receptors. The present demonstration shows that particulate prolactin receptors from a domestic animal can be solubilized and purified without losing the original properties of high affinity and binding specificity for hormones.  相似文献   

9.
Human somatotropin binding to rabbit kidney microsomal fraction.   总被引:1,自引:1,他引:0       下载免费PDF全文
Specific binding of 125I-labelled human somatotropin was demonstrated in microsomal membranes (microsomes) from rat and rabbit kidneys. Female rabbit kidney microsomes showed the highest binding activity and were used for further study. The association of 125I-labelled human somatotropin was time- and temperature-dependent and the binding reaction was reversible. Scatchard analysis of saturation data indicated a dissociation equilibrium constant, KD, of 56 pM and a binding capacity of 37 fmol per mg of protein. Similar results were obtained from competition experiments. Binding of 125I-labelled human somatotropin to the microsomes was specifically inhibited by hormones with lactogenic activity. The binding sites, as well as 125I-labelled human somatotropin, were not inactivated on incubation. Treatment of the microsomes with trypsin and chymotrypsin decreased the specific binding by over 90%. Preheating of the microsomes at 55 degrees C for 15 min abolished 50% of the specific binding activity.  相似文献   

10.
Receptors for 125I-labelled human prolactin have been identified in the crude membrane fraction isolated from human ovarian tissue. The non-ionic detergent Triton X-100, has been used to solubilize the membrane fraction. The presence of the receptor in the detergent extract was demonstrated by gel filtration and sucrose density gradient centrifugation. The binding was time-temperature dependent, being maximal at 23 degrees C after 15 h of incubation. Large amounts of other peptide hormones did not inhibit the binding of 125I-labelled human prolactin. The binding Scatchard analysis demonstrated that the affinity of the soluble receptor (Ka 1.13 +/- 0.15 X 10(10) M-1) for the labelled hormone was slightly greater than that of the crude membrane fraction (Ka 0.91 +/- 0.12 X 10(10) M-1). The binding capacity of the solubilized receptor was also significantly greater than that seen in the particulate before solubilization. The apparent Stokes radius of the solubilized receptor was estimated to be 57 A and that the hormone-receptor complex 60 A. The sedimentation coefficient of the solubilized receptor was 7.0 +/- 0.1 s, whereas that of the hormone-receptor complex was 7.5 +/- 0.2 s.  相似文献   

11.
A highly sensitive radioreceptor assay (RRA) for human prolactin (hPRL) based on membrane preparations obtained from chemically induced rat mammary tumour is described. The binding of 125I-labelled, highly purified pituitary human prolactin was specific for lactogenic hormones and depending on time, temperature, and concentration of receptor protein. Optimal specific receptor binding (18-20%) was obtained by incubation at 21 degrees C for 18 h. The prolactin receptor was shown to have a single "class" of binding sites with an affinity constant (Ka) of 6.0 X 10(10) mol-1. The binding capacity was 8-33 fmol/mg membrane protein. The sensitivity of the radioreceptor assay was 0.5 ng/ml ovine prolactin (NIH-PS-10) or 0.84 ng/ml human prolactin (NIH-VLS-4). The receptor binding activity of various purified prolactin preparations from different species was comparable to the biological hormone activities, indicating that this in vitro assay system measures values which are biologically relevant.  相似文献   

12.
Antisera against a partially purified growth hormone receptor derived from rabbit liver were generated in guinea pigs. The antisera specifically inhibited the binding of 125I-ovine growth hormone (oGH) to liver membranes but had no effect on the binding of 125I-ovine prolactin to rabbit mammary gland receptors. These antisera did not bind or destroy 125I-oGH. Moreover, the binding of labeled growth hormone to membrane particles derived from liver of several species was also inhibited by the antisera, thus suggesting that immunological determinants of the growth hormone receptor of several species are similar. gamma-Globulin fractions derived from the antisera were responsible for the inhibition. In addition 125I-gamma-globulin derived from one antiserum bound to membrane pellets with a corresponding decline in 125I-oGH binding. Kinetic analysis of inhibition of 125I-oGH binding suggested a hyperbolic competitive inhibition, a point of view which is favored by the demonstration of a hormone receptor . antibody complex. The availability of the antireceptor sera confirmed previous data that differential affinity chromatography separated growth hormone and prolactin receptors in solubilized rabbit liver membrane preparations. The antireceptor sera will be useful probes in further characterization of the growth hormone receptor.  相似文献   

13.
The binding of 125I-labelled human growth hormone to the 100000g microsomal membrane fraction prepared from the livers of normal female rats was dependent on time, temperature, pH, membrane concentration and concentration of 125I-labelled human growth hormone. At 22 degrees C binding reached a steady state after 16h, with the mean maximal specific binding being 20% of the tracer initially added. Dissociation of 125I-labelled human growth hormone from the membranes, after addition of excess of unlabelled hormone, was relatively slow with a half-time greater than 24h. Only minor degradation of the 125I-labelled human growth hormone was observed during incubation with membranes for 16 or 25h at 22 degrees C. Similarly, no significant change in the ability of membranes to bind human growth hormone was evident after preincubation of the membranes for 16 or 25h. Specificity studies showed that up to 90% of the 125I-labelled human growth hormone bound could be displaced by 1 mug of unlabelled hormone. Ovine prolactin also showed considerable competition for the binding site. Non-primate growth-hormone preparations (ovine, bovine, porcine and rat) and non-related hormones (insulin, thyrotropin, lutropin and follitropin) all showed negligible competition. Scatchard analysis of the binding data was consistent with two classes of binding site with binding affinities of 0.64 X 10(10) +/- 0.2 X 10(10)M-1 and 0.03 X 10(10) +/- 0.007 X 10(10)M-1 and corresponding binding capacities of 98.4 +/- 10 fmol/mg of protein and 314.6 +/- 46.3 fmol/mg of protein. These studies provide data which, in general, are consistent with the criteria required for hormone-receptor interaction. However, proof of the thesis that the human-growth-hormone-binding sites in female rat liver represent physiological receptors must await the demonstration of a correlation between hormone binding and a biological response.  相似文献   

14.
The distribution of 125I radioactivity in the liver, kidneys, adrenals and serum of male rats was measured 10 minutes after an intravenous bolus of 125I-labelled human growth hormone (hGH) was administered in the presence or absence of a large excess of ovine growth hormone or ovine prolactin. The hGH binding sites in the adrenals had displacement properties characteristic of lactogenic receptors, whereas those in the liver had displacement properties characteristic of somatogenic receptors. Bovine and ovine adrenal microsomal membrane fractions contained high affinity (Ka = 1.4-3.3 nM-1) binding sites for hGH which showed ligand specificity typical of lactogenic receptors. It is concluded that the hGH binding site in the adrenal gland is a classical lactogenic receptor and that this tissue is a convenient and rich (42.6 +/- 6.4 fmol hGH specifically bound/mg protein) source of receptor suitable for further characterization.  相似文献   

15.
Pituitary extract of the common rat snake (Ptyas mucosa) was found to be capable of displacing the binding of 125I-labelled ovine prolactin to female rat liver membranes, suggesting the presence of prolactin-like substance in snake pituitary. The snake prolactin-like substance was unadsorbed on Concanavalin A-Sepharose, but adsorbed on DEAE-cellulose. The partially purified snake prolactin-like substance was also capable of displacing the binding of 125I-labelled ovine prolactin to snake kidney and large intestine membranes. Chromatographic fractions derived from snake pituitary and which possessed potent growth hormone receptor binding activity were devoid of prolactin receptor binding activity, suggesting the existence of distinct prolactin-like and growth hormone-like substances in snake pituitary.  相似文献   

16.
Specific receptors for prolactin (PRL) are known to be present on plasma membranes and intracellular membranes of mammary gland. We now report, however, the detection and characterization of a soluble lactogen-specific binding protein in high-speed (200,000 g) cytosolic preparations from pregnant- and non-pregnant-rabbit mammary gland. The binding protein was not detectable by poly(ethylene glycol) precipitation; instead, bound and free 125I-labelled human growth hormone (hGH; a potent lactogen) was separated using a mini-gel filtration technique. Specific binding of 125I-hGH reached an apparent equilibrium between 10 and 14 h at 21-23 degrees C. It was dependent on mammary-gland protein concentration and, partially, on Ca2+ or Mg2+ concentrations. Scatchard analysis revealed steep curvilinear plots, the high-affinity component having a KA of approximately 3 X 10(10) M-1. Gel filtration on calibrated Ultrogel AcA34 columns of 125I-hGH-cytosol complexes or of cytosol alone, followed by measurement of 125I-hGH binding in each eluted fraction, indicated that the binding protein had an Mr of 33,000-43,000. A specific binding protein of the same size was observed when 125I-ovine or -human PRL, but not 125I-bovine GH, was used as ligand. The apparent lactogenic specificity was confirmed by a lack of cross-reactivity of the binding protein with an anti-[GH receptor (rabbit liver)] monoclonal antibody. Polyacrylamide-gel electrophoresis of 125I-hGH covalently cross-linked to cytosol with disuccinimidyl suberate revealed binding proteins of Mr 35,000 (non-reduced) and 37,000 (reduced), results comparable with those obtained by gel filtration and indicating an absence of inter-subunit disulphide bonds. These studies have shown the presence of an apparently naturally soluble lactogen-binding protein in the cytosolic fraction of rabbit mammary gland. The relationship between this binding protein and the membrane PRL receptor is not yet known.  相似文献   

17.
Three monoclonal antibodies (M110, A82, and A917) were obtained by fusing myeloma cells and spleen cells from mice immunized with partially purified rabbit mammary gland prolactin (PRL) receptors. All 3 antibodies were capable of complete inhibition of 125I-ovine prolactin (oPRL) binding to rabbit mammary PRL receptors in either particulate or soluble form. M110 showed slightly greater potency than oPRL in competing for 125I-oPRL binding. These antibodies also inhibited PRL binding to microsomal fractions from rabbit liver, kidney, adrenal, ovary, and pig mammary gland, although A82 showed poor inhibition in pig mammary gland. There was no cross-reaction of any of the 3 monoclonal antibodies (mAbs) for the other species tested: human (T-47D breast cancer cells) and rat (liver, ovary). In order to confirm that these antibodies are specific to the binding domain, antibodies were purified, iodinated, and binding characteristics were investigated. 125I-M110 and 125I-A82 binding was completely inhibited by lactogenic hormones, whereas nonlactogenic hormones did not cross-react. Competition of 125I-M110 by oPRL (ID50 = 0.44 nM) was comparable to that of 125I-oPRL by unlabeled oPRL (ID50 = 0.35 nM), while 125I-A917 binding was only partially competed (30-60%) by lactogenic hormones. Tissue and species specificity of labeled antibody binding paralleled results of binding inhibition experiments using 125I-oPRL. In addition, A82 and A917 completely inhibited 125I-M110 binding. In contrast, 125I-A82 binding was stimulated by A917 and 125I-A917 binding was stimulated by A82. These findings indicate that monoclonal antibodies can be readily prepared from partially purified PRL receptors from rabbit mammary gland; two antibodies (M110 and A82) are hormone binding site specific while the other (A917) binds a domain partially but not entirely distinct from the hormone binding site, and that all three antibodies have strong species specificity.  相似文献   

18.
19.
Specific binding of 125I-labelled human somatotropin was demonstrated in isolated hepatocytes from male mice. In the presence of divalent cations (Ca2+ and Mg2+) the binding of 125I-labelled human somatotropin was competitive with ovine prolactin. Scatchard analysis of competition data indicated a KD of 1.4 +/- 0.2 nM and a binding capacity of 13 000 +/- 2000 sites/cell. In the absence of divalent cations and in the presence of EDTA, human and bovine somatotropins were found to be equally effective to displace bound 125I-labelled human somatotropin, while ovine prolactin showed a weak competition. In this case, the binding capacity was 8400 +/- 1500 sites/cell and the KD was 1.1 +/- 0.1 nM.  相似文献   

20.
Lactogenic receptors from rat liver microsomal fraction ('microsomes') were extracted by treatment with 1% (w/v) Triton X-100. Triton X-100 exerts an inhibitory effect on both the binding reaction and the separation of the free hormone from the complex. The association and dissociation of 125I-labelled human somatotropin are time- and temperature-dependent processes. The association rate constant, k1, is 6.7 x 10(6) mol . litre-1 . min-1 at 25 decrees C, and the dissociation rate constant, k-1, is 1.1 x 10(-3) min-1 at 25 degrees C. Scatchard analysis of saturation data reveals the existence of a single class of receptors and that solubilization leads to a slight decrease in affinity and a sharp increase in binding capacity. The dissociation constant, Kd, of the solubilized preparation is 0.22 nM and the binding capacity 2900 fmol/mg of protein. Similar results were obtained from competition experiments. Binding of 125I-labelled human somatotropin to the solubilized receptors is specifically inhibited by hormones with lactogenic activity. Incubation of the solubilized preparation with trypsin resulted in an 80% decrease in binding activity. The solubilized form of the receptor has a slightly increased sensitivity to the inactivation by trypsin, heat and extremes of pH, with respect to the membrane-bound form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号