首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Integrin alpha(IIb)beta(3) activation is critical for platelet physiology and is controlled by signal transduction through kinases and phosphatases. Compared with kinases, a role for phosphatases in platelet integrin alpha(IIb)beta(3) signaling is less understood. We report that the catalytic subunit of protein phosphatase 2A (PP2Ac) associates constitutively with the integrin alpha(IIb)beta(3) in resting platelets and in human embryonal kidney 293 cells expressing alpha(IIb)beta(3). The membrane proximal KVGFFKR sequence within the cytoplasmic domain of integrin alpha(IIb) is sufficient to support a direct interaction with PP2Ac. Fibrinogen binding to alpha(IIb)beta(3) during platelet adhesion decreased integrin-associated PP2A activity and increased the phosphorylation of a PP2A substrate, vasodilator associated phosphoprotein. Overexpression of PP2Ac(alpha) in 293 cells decreased alpha(IIb)beta(3)-mediated adhesion to immobilized fibrinogen. Conversely, small interference RNA mediated knockdown of endogenous PP2Ac(alpha) expression in 293 cells, enhanced extracellular signal-regulated kinase (ERK1/2) and p38 activation, and accelerated alpha(IIb)beta(3) adhesion to fibrinogen and von Willebrand factor. Inhibition of ERK1/2, but not p38 activation, abolished the increased adhesiveness of PP2Ac (alpha)-depleted 293 cells to fibrinogen. Furthermore, knockdown of PP2A(calpha) expression in bone marrow-derived murine megakaryocytes increased soluble fibrinogen binding induced by protease-activated receptor 4-activating peptide. These studies demonstrate that PP2Ac (alpha) can negatively regulate integrin alpha(IIb)beta(3) signaling by suppressing the ERK1/2 signaling pathway.  相似文献   

2.
3.
MID1 is a microtubule-associated protein that belongs to the TRIM family. MID1 functions as an ubiquitin E3 ligase, and recently was shown to catalyze the polyubiquitination of, alpha4, a protein regulator of protein phosphatase 2A (PP2A). It has been hypothesized that MID1 regulates PP2A, requiring the intermediary interaction with alpha4. Here we report that MID1 catalyzes the in vitro ubiquitination of the catalytic subunit of PP2A (PP2Ac) in the absence of alpha4. In the presence of alpha4, the level of PP2Ac ubiquitination is reduced. Using the MID1 RING-Bbox1-Bbox2 (RB1B2) construct containing the E3 ligase domains, we investigate the functional effects of mutations within the Bbox domains that are identified in patients with X-linked Opitz G syndrome (XLOS). The RB1B2 proteins harboring the C142S, C145T, A130V/T mutations within the Bbox1 domain and C195F mutation within the Bbox2 domain maintain auto-polyubiquitination activity. Qualitatively, the RB1B2 proteins containing these mutations are able to catalyze the ubiquitination of PP2Ac. In contrast, the RB1B2 proteins with mutations within the Bbox1 domain are unable to catalyze the polyubiquitination of alpha4. These results suggest that unregulated alpha4 may be the direct consequence of these natural mutations in the Bbox1 domain of MID1, and hence alpha4 could play a greater role to account for the increased amount of PP2A observed in XLOS-derived fibroblasts.  相似文献   

4.
Physiological functions of protein phosphatase 2A (PP2A) are determined via the association of its catalytic subunit (PP2Ac) with diverse regulatory subunits. The predominant form of PP2Ac assembles into a heterotrimer comprising the scaffolding PR65/A subunit together with a variable regulatory B subunit. A distinct population of PP2Ac associates with the Tap42/alpha4 subunit, an interaction mutually exclusive with that of PR65/A. Tap42/alpha4 is also an interacting subunit of the PP2Ac-related phosphatases, PP4 and PP6. Tap42/alpha4, an essential protein in yeast and suppressor of apoptosis in mammals, contributes to critical cellular functions including the Tor signaling pathway. Here, we describe the crystal structure of the PP2Ac-interaction domain of Saccharomyces cerevisiae Tap42. The structure reveals an all alpha-helical protein with striking similarity to 14-3-3 and tetratricopeptide repeat (TPR) proteins. Mutational analyses of structurally conserved regions of Tap42/alpha4 identified a positively charged region critical for its interactions with PP2Ac. We propose a scaffolding function for Tap42/alpha4 whereby the interaction of PP2Ac at its N-terminus promotes the dephosphorylation of substrates recruited to the C-terminal region of the molecule.  相似文献   

5.
We provide evidence of a cross-talk between nuclear receptor and Ser/Thr protein phosphatases and show that vitamin D receptor (VDR) interacts with the catalytic subunit of protein phosphatases, PP1c and PP2Ac, and induces their enzymatic activity in a ligand-dependent manner. PP1c specifically interacts with VDR but not retinoic acid receptor alpha and retinoid X receptor alpha in yeast. Although VDR-PP1c and VDR-PP2Ac interaction is ligand-independent in vivo, 1alpha,25-dihydroxy-vitamin D(3) induces VDR-associated phosphatase activity. Further, VDR modulation of PP1c/PP2Ac activity results in a rapid and specific dephosphorylation and inactivation of their substrate, p70 S6 kinase (p70(S6k)). Finally, we demonstrate that the endogenous VDR, PP1c or PP2Ac, and p70(S6k) are present in a ternary complex in vivo, and the interaction of p70(S6k) with the VDR-PP complex is modulated by the phosphorylation state of the kinase. Since p70(S6k) is essential for G(1)-S transition, our results provide a molecular basis of 1alpha,25-dihydroxyvitamin D(3)-induced G(1) block in colon cancer cells.  相似文献   

6.
Du H  Massiah MA 《PloS one》2011,6(12):e28877
Alpha4 is a regulatory subunit of the protein phosphatase family of enzymes and plays an essential role in regulating the catalytic subunit of PP2A (PP2Ac) within the rapamycin-sensitive signaling pathway. Alpha4 also interacts with MID1, a microtubule-associated ubiquitin E3 ligase that appears to regulate the function of PP2A. The C-terminal region of alpha4 plays a key role in the binding interaction of PP2Ac and MID1. Here we report on the solution structure of a 45-amino acid region derived from the C-terminus of alpha4 (alpha45) that binds tightly to MID1. In aqueous solution, alpha45 has properties of an intrinsically unstructured peptide although chemical shift index and dihedral angle estimation based on chemical shifts of backbone atoms indicate the presence of a transient α-helix. Alpha45 adopts a helix-turn-helix HEAT-like structure in 1% SDS micelles, which may mimic a negatively charged surface for which alpha45 could bind. Alpha45 binds tightly to the Bbox1 domain of MID1 in aqueous solution and adopts a structure consistent with the helix-turn-helix structure observed in 1% SDS. The structure of alpha45 reveals two distinct surfaces, one that can interact with a negatively charged surface, which is present on PP2A, and one that interacts with the Bbox1 domain of MID1.  相似文献   

7.
Protein phosphatase 2A (PP2A) is regulated through a variety of mechanisms, including post-translational modifications and association with regulatory proteins. Alpha4 is one such regulatory protein that binds the PP2A catalytic subunit (PP2Ac) and protects it from polyubiquitination and degradation. Alpha4 is a multidomain protein with a C-terminal domain that binds Mid1, a putative E3 ubiquitin ligase, and an N-terminal domain containing the PP2Ac-binding site. In this work, we present the structure of the N-terminal domain of mammalian Alpha4 determined by x-ray crystallography and use double electron-electron resonance spectroscopy to show that it is a flexible tetratricopeptide repeat-like protein. Structurally, Alpha4 differs from its yeast homolog, Tap42, in two important ways: 1) the position of the helix containing the PP2Ac-binding residues is in a more open conformation, showing flexibility in this region; and 2) Alpha4 contains a ubiquitin-interacting motif. The effects of wild-type and mutant Alpha4 on PP2Ac ubiquitination and stability were examined in mammalian cells by performing tandem ubiquitin-binding entity precipitations and cycloheximide chase experiments. Our results reveal that both the C-terminal Mid1-binding domain and the PP2Ac-binding determinants are required for Alpha4-mediated protection of PP2Ac from polyubiquitination and degradation.  相似文献   

8.
Phosphorylation and activation of ribosomal S6 protein kinase is an important link in the regulation of cell size by the target of rapamycin (TOR) protein kinase. A combination of selective inhibition and RNA interference were used to test the roles of members of the PP2A subfamily of protein phosphatases in dephosphorylation of Drosophila S6 kinase (dS6K). Treatment of Drosophila Schneider 2 cells with calyculin A, a selective inhibitor of PP2A-like phosphatases, resulted in a 7-fold increase in the basal level of dS6K phosphorylation at the TOR phosphorylation site (Thr398) and blocked dephosphorylation following inactivation of TOR by amino acid starvation or rapamycin treatment. Knockdown of the PP2A catalytic subunit increased basal dS6K phosphorylation and inhibited dephosphorylation induced by amino acid withdrawal. In contrast, depletion of the catalytic subunits of the other two members of the subfamily did not enhance dS6K phosphorylation. Knockdown of PP4 caused a 20% decrease in dS6K phosphorylation and knockdown of PP6 had no effect. Knockdown of the Drosophila B56-2 subunit resulted in enhanced dephosphorylation of dS6K following removal of amino acids. In contrast, knockdown of the homologs of the other PP2A regulatory subunits had no effects. Knockdown of the Drosophila homolog of the PP2A/PP4/PP6 interaction protein alpha4/Tap42 did not affect S6K phosphorylation, but did induce apoptosis. These results indicate that PP2A, but not other members of this subfamily, is likely to be a major S6K phosphatase in intact cells and is consistent with an important role for this phosphatase in the TOR pathway.  相似文献   

9.
Amino acids are unique anabolic agents in that they nutritively signal to mRNA translation initiation and serve as substrates for protein synthesis in skeletal muscle. Glucocorticoid excess antagonizes the anabolic action of amino acids on protein synthesis in laboratory animals. To examine whether excessive glucocorticoids modulate mixed amino acid-signaled translation initiation in human skeletal muscle, we infused an amino acid mixture (10% Travasol) systemically to 16 young healthy male volunteers for 6 h in the absence (n = 8) or presence (n = 8) of glucocorticoid excess (dexamethasone 2 mg orally every 6 h for 3 days). Vastus lateralis muscles were biopsied before and after amino acid infusion, and the phosphorylation of eukaryotic initiation factor (eIF) 4E-binding protein 1 (4E-BP1), ribosomal protein S6 kinase (p70(S6K)), and eIF2alpha and the guanine nucleotide exchange activity of eIF2B were measured. Systemic infusion of mixed amino acids significantly stimulated the phosphorylation of 4E-BP1 (P < 0.04) and p70(S6K) (P < 0.001) and the dephosphorylation of eIF2alpha (P < 0.003) in the control group. Dexamethasone treatment did not alter the basal phosphorylation state of 4E-BP1, p70(S6K), or eIF2alpha; however, it abrogated the stimulatory effect of amino acid infusion on the phosphorylation of 4E-BP1 (P = 0.31) without affecting amino acid-induced phosphorylation of p70(S6K) (P = 0.002) or dephosphorylation of eIF2alpha (P = 0.003). Neither amino acid nor dexamethasone treatment altered the guanine nucleotide exchange activity of eIF2B. We conclude that changes of amino acid concentrations within the physiological range stimulate mRNA translation by enhancing the binding of mRNA to the 43S preinitiation complex, and the activity of p70(S6K) and glucocorticoid excess blocks the former action in vivo in human skeletal muscle.  相似文献   

10.
The sphingolipid ceramide (CER) and its metabolites have been recognized as important mediators of signal transduction processes leading to a variety of cellular responses, including survival and demise via apoptosis. Accumulating evidence implicates key regulatory roles for intracellularly generated CER in metabolic dysfunction of the islet beta cell. We have previously reported localization of an okadaic (OKA)-sensitive CER-activated protein phosphatase (CAPP) in the islet beta cell. We have also reported immunological identification of the structural A subunit, the regulatory B56alpha subunit, and the catalytic C subunit for CAPP holoenzyme complex in insulin-secreting INS-1 cells. Herein, we provide the first evidence to suggest that siRNA-mediated knockdown of the alpha isoform of the catalytic subunit of PP2Ac (PP2Acalpha) markedly reduces the CAPP activity in INS 832/13 cells. Potential significance of the functional activation of CAPP holoenzyme in the context of lipid-and glucose-induced metabolic dysfunction of the islet beta cell is discussed.  相似文献   

11.
Serine/threonine kinase Akt is a downstream effector protein of phosphatidylinositol-3-kinase (PI-3K). Many integrins can function as positive modulators of the PI-3K/Akt pathway. Integrin alpha 2 beta 1 is a collagen receptor that has been shown to induce specific signals distinct from those activated by other integrins. Here, we found that, in contrast what was found for cells adherent to fibronectin, alpha 2 beta 1-mediated cell adhesion to collagen leads to dephosphorylation of Akt and glycogen synthase kinase 3 beta (GSK3 beta) and concomitantly to the induction of protein serine/threonine phosphatase 2A (PP2A) activity. PP2A activation can be inhibited by mutation in the alpha 2 cytoplasmic domain and by a function-blocking anti-alpha 2 antibody. Akt can be coprecipitated with PP2A, and coexpression of Akt with PP2Ac (catalytic subunit) inhibits Akt kinase activity. Integrin alpha 2 beta 1-related activation of PP2A is dependent on Cdc42. These results indicate that cell adhesion to collagen modulates Akt activity via the alpha 2 beta 1-induced activation of PP2A.  相似文献   

12.
13.
Protein phosphatase 2A (PP2A) is a heterotrimer comprising catalytic, scaffold, and regulatory (B) subunits. There are at least 21 B subunit family members. Thus PP2A is actually a family of enzymes defined by which B subunit is used. The B56 family member B56alpha is a phosphoprotein that regulates dephosphorylation of BCL2. The stress kinase PKR has been shown to phosphorylate B56alpha at serine 28 in vitro, but it has been unclear how PKR might regulate the BCL2 phosphatase. In the present study, PKR regulation of B56alpha in REH cells was examined, because these cells exhibit robust BCL2 phosphatase activity. PKR was found to be basally active in REH cells as would be predicted if the kinase supports B56alpha-mediated dephosphorylation of BCL2. Suppression of PKR promoted BCL2 phosphorylation with concomitant loss of B56alpha phosphorylation at serine 28 and inhibition of mitochondrial PP2A activity. PKR supports stress signaling in REH cells, as suppression of PKR promoted chemoresistance to etoposide. Suppression of PKR promoted B56alpha proteolysis, which could be blocked by a proteasome inhibitor. However, the mechanism by which PKR supports B56alpha protein does not involve PKR-mediated phosphorylation of the B subunit at serine 28 but may involve eIF2alpha activation of AKT. Phosphorylation of serine 28 by PKR promotes mitochondrial localization of B56alpha, because wild-type but not mutant S28A B56alpha promoted mitochondrial PP2A activity. Cells expressing wild-type B56alpha but not S28A B56alpha were sensitized to etoposide. These results suggest that PKR regulates B56alpha-mediated PP2A signaling in REH cells.  相似文献   

14.
《Cellular signalling》2014,26(12):2730-2737
TRAFs constitute a family of proteins that have been implicated in signal transduction by immunomodulatory cellular receptors and viral proteins. TRAF2 and TRAF6 have an E3-ubiquitin ligase activity, which is dependent on the integrity of their RING finger domain and it has been associated with their ability to activate the NF-κB and AP1 signaling pathways. A yeast two-hybrid screen with TRAF2 as bait, identified the regulatory subunit PP4R1 of protein phosphatase PP4 as a TRAF2-interacting protein. The interaction of TRAF2 with PP4R1 depended on the integrity of the RING finger domain of TRAF2. PP4R1 could interact also with the TRAF2-related factor TRAF6 in a RING domain-dependent manner. Exogenous expression of PP4R1 inhibited NF-κB activation by TRAF2, TRAF6, TNF and the Epstein–Barr virus oncoprotein LMP1. In addition, expression of PP4R1 downregulated IL8 induction by LMP1, whereas downregulation of PP4R1 by RNA interference enhanced the induction of IL8 by LMP1 and TNF. PP4R1 could mediate the dephosphorylation of TRAF2 Ser11, which has been previously implicated in TRAF2-mediated activation of NF-κB. Finally, PP4R1 could inhibit TRAF6 polyubiquitination, suggesting an interference with the E3 ubiquitin ligase activity of TRAF6. Taken together, our data identify a novel mechanism of NF-κB pathway inhibition which is mediated by PP4R1-dependent targeting of specific TRAF molecules.  相似文献   

15.
This study explores the signaling transduction cascade of ERK and p38 MAPK on regulating MAPK phosphatase-1 (MKP-1) and protein phosphatase 2A catalytic subunit α (PP2Acα) expression in caffeine-treated human leukemia U937 cells. Caffeine induced an increase in the intracellular Ca2 + concentration and ROS generation leading to p38 MAPK activation and ERK inactivation, respectively. Caffeine treatment elicited MKP-1 down-regulation and PP2Acα up-regulation. The transfection of constitutively active MEK1 or pretreatment with SB202190 (p38 MAPK inhibitor) abolished the caffeine effect on MKP-1 and PP2Acα expression. Caffeine repressed ERK-mediated c-Fos phosphorylation but evoked p38 MAPK-mediated CREB phosphorylation. Knockdown of c-Fos and CREB by siRNA showed that c-Fos and CREB were responsible for MKP-1 and PP2Acα expression, respectively. Promoter and chromatin immunoprecipitating assay supported the role of c-Fos and CREB in regulating MKP-1 and PP2Acα expression. Moreover, transfection of dominant negative MKP-1 cDNA led to p38 MAPK activation and PP2Acα down-regulation in U937 cells, while PP2A inhibitor attenuated caffeine-induced ERK inactivation and MKP-1 down-regulation. Taken together, our data indicate that a reciprocal relationship between ERK-mediated MKP-1 expression and p38 MAPK-mediated PP2Acα expression crucially regulates ERK and p38 MAPK phosphorylation in U937 cells.  相似文献   

16.
Diverse functions of protein Ser/Thr phosphatases depend on the distribution of the catalytic subunits among multiple regulatory subunits. In cells protein phosphatase 2A catalytic subunit (PP2Ac) mostly binds to a scaffold subunit (A subunit or PR65); however, PP2Ac alternatively binds to alpha-4, a subunit related to yeast Tap42 protein, which also associates with phosphatases PP4 or PP6. We mapped alpha-4 binding to PP2Ac to the helical domain, residues 19-165. We mutated selected residues and transiently expressed epitope-tagged PP2Ac to assay for association with A and alpha-4 subunits by co-precipitation. The disabling H118N mutation at the active site or the presence of the active site inhibitor microcystin-LR did not interfere with binding of PP2Ac to either the A subunit or alpha-4, showing that these are allosteric regulators. Positively charged side chains Lys(41), Arg(49), and Lys(74) on the back surface of PP2Ac are unique to PP2Ac, compared with phosphatases PP4, PP6, and PP1. Substitution of one, two, or three of these residues with Ala produced a progressive loss of binding to the A subunit, with a corresponding increase in binding to alpha-4. Conversely, mutation of Glu(42) in PP2Ac essentially eliminated PP2Ac binding to alpha-4, with an increase in binding to the A subunit. Reciprocal changes in binding because of mutations indicate competitive distribution of PP2Ac between these regulatory subunits and demonstrate that the mutated catalytic subunits retained a native conformation. Furthermore, neither the Lys(41)-Arg(49)-Lys(74) nor Glu(42) mutations affected the phosphatase-specific activity or binding to microcystin-agarose. Binding of PP2Ac to microcystin and to alpha-4 increased with temperature, consistent with an activation energy barrier for these interactions. Our results reveal that the A subunit and alpha-4 (mTap42) require charged residues in separate but overlapping surface regions to associate with the back side of PP2Ac and modulate phosphatase activity.  相似文献   

17.
The protein phosphatases1 (PP1) and 2A (PP2A) serve as ceramide-activated protein phosphatases (CAPP). In this study, the structural requirements for interaction between ceramide and CAPP were determined. D-erythro-C(6) ceramide activated the catalytic subunit of PP2A (PP2Ac) approximately 3-fold in a stereospecific manner. In contrast, saturation of the 4-5 double bond, producing D-erythro-dihydro C(6) ceramide, inhibited PP2Ac (IC(50) = 8.5 microM). Furthermore, phyto C(6) ceramide, D-erythro-dehydro C(6) ceramide, and D-erythro-cis-C(6) ceramide had no effect on PP2Ac activity. Modification of the sphingoid chain also abolished the ability of ceramide to activate PP2Ac. Further studies demonstrated the requirement for the amide group, the primary hydroxyl group, and the secondary hydroxyl group of the sphingoid backbone for activation of PP2Ac through the synthesis and evaluation of D-erythro-urea C(6) ceramide, L-erythro-urea C(6) ceramide, D-erythro-N-methyl C(6) ceramide, D-erythro-L-O-methyl C(6) ceramide, D-erythro-3-O-methyl C(6) ceramide, and (2S) 3-keto C(6) ceramide. None of these compounds induced significant activation of PP2Ac. Liposome binding studies were also conducted using analogs of D-erythro-C C(6) ceramide, and the results showed that the ability of ceramide analogs to influence CAPP (activation or inhibition) was associated with the ability of the analogs to bind to CAPP. This study demonstrates strict structural requirements for interaction of ceramide with CAPP, and disclose ceramide as a very specific regulator of CAPP. The studies also begin to define features that transform ceramide analogs into inhibitors of CAPP.  相似文献   

18.
19.
It is clear that mTORC1 (mammalian target of rapamycin complex 1) is regulated by the presence of ambient amino acid nutrients. However, the mechanism by which amino acids regulate mTORC1 is still open to question, despite extensive efforts. Our recent work has revealed that PR61?, a B56 family regulatory subunit of PP2A (protein phosphatase 2A), associates with and regulates the activity of MAP4K3 (mitogen-activated protein kinase kinase kinase kinase 3), a protein kinase regulated by amino acid sufficiency that acts upstream of mTORC1. In searching for a physiological process regulated by amino acids, we have demonstrated recently that arginine plays a role in the activation of LPS (lipopolysaccharide)-induced MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase]/ERK signalling in macrophages. PP2A similarly associates with the upstream regulator of MEK in this signalling pathway, TPL-2 (tumour progression locus-2), in response to arginine availability. Thus PP2A is a negative regulator of both MAP4K3 and TPL-2 in both mTORC1 and MEK/ERK signalling pathways.  相似文献   

20.
Recently it has been shown that the potent apoptotic agent ceramide activates a mitochondrial protein phosphatase 2A (PP2A) and promotes dephosphorylation of the anti-apoptotic molecule Bcl2 (Ruvolo, P. P., Deng, X., Ito, T., Carr, B. K., and May, W. S. (1999) J. Biol. Chem. 274, 20296-20300). In cells expressing Bcl2, dephosphorylation of Bcl2 appears to be required for ceramide-induced cell death because treatment of cells with low doses of the PP2A inhibitor okadaic acid blocks Bcl2 dephosphorylation and promotes cell survival. Furthermore, the non-phosphorylatable (i.e. PP2A-resistant) gain-of-function S70E mutant Bcl2 can protect cells from ceramide-induced apoptosis. These findings support a model whereby Bcl2 function is regulated by PP2A. PP2A is a heterotrimer that contains a catalytic C-subunit, a structural A-subunit, and a regulatory B-subunit. The A- and C-subunits are fairly conserved and ubiquitously expressed, and they form the catalytic complex of the phosphatase. In contrast, there are at least three families of diverse B-subunit molecules that vary in expression temporally and by tissue type. It is hypothesized that ceramide regulates PP2A via the B-subunit. Thus, understanding the mechanism of how PP2A regulates Bcl2 phosphorylation status and how ceramide might regulate this process requires identification of the regulatory B-subunit of PP2A that comprises the Bcl2 phosphatase. Results indicate that the B56 alpha-subunit is a candidate regulatory subunit of the physiologic Bcl2 phosphatase since (a) B56 alpha associates with Bcl2 as evidenced by pull-down experiments, (b) B56 alpha co-localizes with Bcl2 in mitochondrial membranes, (c) ceramide promotes translocation of B56 alpha to mitochondrial membranes, and (d) overexpression of B56 alpha promotes mitochondrial PP2A activity and Bcl2 dephosphorylation and potentiates cell killing with ceramide. These findings suggest a role for B56 alpha in regulating the Bcl2 phosphatase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号