共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. In peas ( Pisum sativum L.) homozygous for sym 5, nodulation has an unusual temperature dependence. These sym 5 mutants nodulate poorly at a root temperature of 20°C but nodulate better at 12°C. By lowering the root temperature of the sym 5 mutants from a lightroom temperature of 20/15°C to a constant 12°C, 8d after planting, the number of nodules can be further increased. A cool period (12°C) as short as 6h, early in the infection process, is sufficient to significantly increase nodulation of plants otherwise growing at 20/15°C. This temperature-sensitivity of nodulation is not due to a temperature induced change of a sym 5-related, 66-kD peptide but may involve accumulation of a gas in the rhizosphere. 相似文献
2.
Using low concentrations of picloram (0.06 mg/l), embryoids were formed on the surface of leaf-derived callus of pea, Pisum sativum L. (c.v. Dippes Gelbe Victoria) upon transfer to liquid medium. After some days in culture, embryoids spontaneously separated from the calli, and developed into torpedo-shaped embryos, which were transferred to solid medium. In a second series of experiments, embryos were also formed by mutant 489C and a genetic line of Pisum arvense, which additionally exhibited embryogenesis also from epicotyl-derived callus. Some of the embryos showed root formation, but no shoot morphogenesis occurred. In a limited number of cases, an additional root was formed in the apparent shoot apical region after 2–5 days. 相似文献
3.
In the present study, root hydrotropism in an agravitropic mutant of Pisum sativum L. grown in vermiculite with a steep water potential gradient was examined. When wet and dry vermiculite were placed side by side, water diffused from the wet (-0.04 MPa) to the dry (-1.2 MPa) and a steep water potential gradient became apparent in the dry vermiculite close to the boundary between the two. The extent and location of the gradient remained stable between the fourth and sixth day after filling a box with vermiculite, and the steepest gradient (approx. 0.02 MPa mm-1) was found in the initially dry vermiculite between 60 and 80 mm from the boundary. When seedlings with 25-35 mm long roots were planted in the initially dry vermiculite near where the gradient had been established, each of the main roots elongated toward the wet vermiculite, i.e. toward the high water potential. Control roots elongated without curvature in both the wet and the dry vermiculite, in which no water potential gradient was detectable. These results show that pea roots respond to the water potential gradient around them and elongate towards the higher water potential. Therefore, positive hydrotropism occurs in vermiculite just as it does in air. Hydrotropism in soil may be significant when a steep water potential gradient is apparent, such as when drip irrigation is applied. 相似文献
4.
Abstract. Peas were grown in controlled environments (12h white fluorescent light. ∼47 μmol photons m-2 s 1/12 dark, 25 °C), using (1) 15-min far-red illumination at the end of each photoperiod (brief FR) to simulate the increase in the far-red/red ratio near the end of the day, and (2) high levels of supplementary far-red light (red:far-red ratio=0.04) during the entire photoperiod (long-term FR) to simulate extreme shade conditions under a plant canopy. Brief FR illumination led to marked morphological effects attributable to phytochrome regulation, namely, an increase in internodal length, but a decrease in leaflet area, chloroplast size and chlorophyll content per chloroplast compared with the control. Significantly, brief FR illumination had little or no effect on the amounts of the major chloroplast components (ribulose 1.5-biphosphate carboxylase, adenosine triphosphate synthase, cytochrome b/f complex and Photosystem II) relative to chlorophyll or Photosystem I, and the leaf photosynthetic capacities per unit chlorophyll were similar. In contrast, supplementing high levels of far-red light during the entire photoperiod not only led to the phytochrome effects above, but there was also a marked increase in leaf photosynthetic capacity per unit chlorophyll. due to increased amounts of the major chloroplast components relative to chlorophyll or Photosystem I. We hypothesize that supplementary far-red light, absorbed by Photosystem I, induced an increase in the major chloroplast components by a photosynthetic feedback mechanism. In fully greened leaves, we propose that the two photosystems themselves, rather than phytochrome, may be the predominent sensors of light quantity in triggering modulations of the stoichiometries of chloroplast components, which in turn lead to varying photosynthetic capacities. 相似文献
5.
Forster Colette North Helen Afzal Naureen Domoney Claire Hornostaj Andrzej Robinson David S. Casey Rod 《Plant molecular biology》1999,39(6):1209-1220
A mutant line of Pisum fulvum was identified that lacked seed lipoxygenase-2 (LOX-2). The mutant phenotype was introgressed into a standard Pisum sativum cv. Birte to provide near-isogenic lines with or without seed LOX-2. Genetic analyses showed the mutation to behave as a single, recessive Mendelian gene. Northern and dot-blot analyses showed a large reduction in LOX-2 mRNA from developing seeds of the LOX-2-null mutant. A restriction fragment length polymorphism associated with the 5 end of the LOX-2 gene(s) co-segregated with the null phenotype, indicating that the reduction of LOX-2 mRNA was neither a consequence of deletion of the LOX genes nor a consequence of the action of a genetically distant regulatory gene. Analysis of the 5-flanking sequences of LOX-2 genes from Birte and the near-isogenic LOX-2-null mutant revealed a number of insertions, deletions and substitutions within the promoter from the LOX-2-null mutant that could be responsible for the null phenotype. Incubation of crude seed LOX preparations from Birte and the LOX-2-null mutant showed that the latter generated relatively less 13-hydroperoxides and also produced relatively more hydroxy- and ketoacid compounds that have implications for the fresh-frozen pea industry. 相似文献
6.
Biologically Active Oligosaccharides from Pectins of Pisum sativum L. Seedlings Affecting Root Generation 总被引:2,自引:0,他引:2
Zabotina OA Ibragimova NN Zabotin AI Trofimova OI Sitnikov AP 《Biochemistry. Biokhimii?a》2002,67(2):227-232
Two physiologically active oligosaccharide fractions were isolated from pectin of Pisum sativum L. cell wall after its partial acid hydrolysis. These fractions displayed stimulating and inhibiting effects on root formation in thin-layer explants. The subsequent separation of these fractions by gel permeation and anion-exchange chromatography resulted in fractions with effective concentrations two orders of magnitude lower than the concentrations of the initial fractions. The resulting oligosaccharides displayed their effect on the earliest stage of the rhizogenesis associated with formation of root primordias. The rhizogenesis-inhibiting fraction suppressed cell division by 30-50%. The stimulating fraction mainly contained fragments of xyloglucan and galactan, and the inhibiting fraction contained fragments of xyloglucan, galactan, and arabinan. The polymerization degrees of the stimulating and of the inhibiting oligosaccharides were 10-11 and 5-6, respectively. 相似文献
7.
8.
In this study 16 cultivars of pea (Pisum sativum L.) were screened in vitro for the formation of somatic embryos which were dependent on the genotype, culture conditions and explant source used. The cultivars Stehgolt, Maro and Progreta showed the highest tendency to form somatic embryos (c. 25%) while Alaska, Rondo and Ascona did not show any embryo production. Using the cultivar Belman, the highest embryo production was achieved by using nodal explants of shoots (10.6%) and a cotyledon-free embryo as explant source (14.1%) in the light (15.8%) compared to using apices as explants (1.8%) and a seedling as the explant source (9.4%) in the dark (3.3%). Media containing picloram (0.75 mg/litre) followed by BA (1 mg/litre) or kinetin (1 mg/litre), each for four weeks gave the highest somatic embryo production. The development of embryos to whole plants was unreliable and some 90% of the embryos induced did not develop any further, died, recallused or formed secondary embryos. The size of the embryo at separation and the timing of the separation from the original callus were important factors determining success for complete development to whole plant. Regeneration of 184 plants was achieved with ensuing flowering, pod formation and viable seed production from the techniques described. 相似文献
9.
Intact chloroplasts were isolated from mature pea (Pisum sativum L.) leaves in order to study the degradation of several stromal proteins in organello. Changes in the abundances of ribulose-1,5-bisphosphate
carboxylase/oxygenase (EC 4.1.1.39), phosphoribulokinase (EC 2.7.1.19), glutamine synthetase (EC 6.3.1.2) and ferredoxin-dependent
glutamine:α-ketoglutarate aminotransferase (glutamate synthase; EC 1.4.7.1) were detected by sodium dodecyl sulfate-polyacrylamide
gel electrophoresis followed by Coomassie-staining of the gels or immunoblotting using specific antibodies for the different
enzymes. Degradation of several stromal proteins was strongly stimulated when intact chloroplasts were incubated in the light
in the presence of dithiothreitol. Since free radicals may artificially accumulate in the chloroplast under such conditions
and interfere with the stability of stromal proteins, the general relevance of these processes remains questionable. In the
absence of light, proteolysis proceeded slowly in isolated chloroplasts and was not stimulated by dithiothreitol. Inhibition
by ethylenediaminetetraacetic acid (EDTA), 1,10-phenanthroline or excess zinc ions as well as the requirement for divalent
cations suggested that a zinc-containing metalloprotease participated in this process. Furthermore, light-independent degradation
of ribulose-1,5-bisphosphate carboxylase/oxygenase and phosphoribulokinase was enhanced in chloroplasts isolated from leaves
in which senescence was accelerated by nitrogen starvation. Our results indicate that light-independent stromal protein degradation
in intact chloroplasts may be analogous to proteolysis that occurs in intact leaves during senescence.
Received: 3 July 1997 / Accepted: 15 October 1997 相似文献
10.
Marina Rafiq Ghulam Abbas Saliha Shamshad Sana Khalid Nabeel Khan Niazi 《International journal of phytoremediation》2017,19(7):662-669
In this study, we determined the effect of ethylenediaminetetraacetic acid (EDTA) and calcium (Ca) on arsenic (As) uptake and toxicity to Pisum sativum. Plants were treated with three levels of As (25, 125, and 250 µM) in the presence and absence of three levels of Ca (1, 5, and 10 mM) and EDTA (25, 125, and 250 µM). Exposure to As caused an overproduction of hydrogen peroxide (H2O2) in roots and leaves, which induced lipid peroxidation and decreased pigment contents. Application of both Ca and EDTA significantly reduced As accumulation by pea, Ca being more effective in reducing As accumulation. Both Ca and EDTA enhanced As-induced H2O2 production, but reduced lipid peroxidation. In the case of pigment contents, EDTA significantly reduced pigment contents, whereas Ca significantly enhanced pigment contents compared to As alone. The effect of As treatment in the presence and absence of EDTA and Ca was more pronounced in younger leaves compared to older leaves. The effect of amendments varied greatly with their applied levels, as well as type and age of plant organs. Importantly, due to possible precipitation of Ca-As compounds, the soils with higher levels of Ca ions are likely to be less prone to food chain contamination. 相似文献
11.
Miroslav Griga Eva Tejklová František J. Novák Marie Kubaláková 《Plant Cell, Tissue and Organ Culture》1986,6(1):95-104
A system of in vitro clonal propagation has been developed in Pisum sativum L. (cv. Bohatýr). A modified MS-medium supplemented with 20 M 6-benzylaminopurine (BAP) and 0.1 M -naphthaleneacetic acid (NAA) was used to induce multiple shoot formation from shoot apices, axillary buds of the first normal leaf, axillary buds of the first and second primary scales and axillary buds of cotyledons of 4 to 6 day old pea seedlings. Meristem explants maintained a high proliferation ability in each subculture in the course of 20 months of the culture. Regenerated shoots were rooted in the same basal medium containing 5 M NAA. Rooted plants were cultured in hydroponic pots filled with half-strength MS-medium to attain anthesis and seed maturity. The phenotypic uniformity of the regenerants was evaluated. Cytological investigation confirmed the diploid stage (2n=14) of regenerants and their progeny. Histological studies revealed that proliferating shoots originated from axillary and adventitious buds. In vitro propagation is discussed as related to pea breeding. 相似文献
12.
Abstract The catabolism of indole-3-acetic acid was investigated in chloroplast preparations and a crude enzyme fraction derived from chloroplasts of Pisum sativum seedlings. Data obtained with both systems indicate that indole-3-acetic acid undergoes decarboxylative oxidation in pea chloroplast preparations. An enhanced rate of decarboxylation of [1′-1C]indole-3-acetic acid was obtained when chloroplast preparations were incubated in the light rather than in darkness. Results from control experiments discounted the possibility of this being due to light-induced breakdown of indole-3-acetic acid. High performance liquid chromatography analysis of [2′-14C]indole-3-acetic acid-fed incubates showed that indole-3-methanol was the major catabolite in both the chloroplast and the crude enzyme preparations. The identification of this reaction product was confirmed by gas chromatography-mass spectrometry when [2H5]indole-3-methanol was detected in a purified extract derived from the incubation of an enzyme preparation with 32H5]indole-3-acetic acid. 相似文献
13.
14.
The effect of nitrogen source (N(2) or nitrate) on carbon assimilation by photosynthesis and on carbon partitioning between shoots and roots was investigated in pea (Pisum sativum L. 'Baccara') plants at different growth stages using (13)C labelling. Plants were grown in the greenhouse on different occasions in 1999 and 2000. Atmospheric [CO(2)] and growth conditions were varied to alter the rate of photosynthesis. Carbon allocation to nodulated roots was unaffected by N source. At the beginning of the vegetative period, nodulated roots had priority for assimilates over shoots; this priority decreased during later stages and became identical to that of the shoot during seed filling. Carbon allocation to nodulated roots was always limited by competition with shoots, and could be predicted for each phenological stage: during vegetative and flowering stages a single, negative exponential relationship was established between sink intensity (percentage of C allocated to the nodulated root per unit biomass) and net photosynthesis. At seed filling, the amount of carbon allocated to the nodulated root was directly related to net photosynthesis. Respiration of nodulated roots accounted for more than 60 % of carbon allocated to them during growth. Only at flowering was respiration affected by N supply: it was significantly higher for strictly N(2)-fixing plants (83 %) than for plants fed with nitrate (71 %). At the vegetative stage, the increase in carbon in nodulated root biomass was probably limited by respiration losses. 相似文献
15.
16.
17.
Tsyganov VE Voroshilova VA Priefer UB Borisov AY Tikhonovich IA 《Annals of botany》2002,89(4):357-366
Twelve non-nodulating pea (Pisum sativum L.) mutants were studied to identify the blocks in nodule tissue development. In nine, the reason for the lack of infection thread (IT) development was studied; this had been characterized previously in the other three mutants. With respect to IT development, mutants in gene sym7 are interrupted at the stage of colonization of the pocket in the curled root hair (Crh- phenotype), mutants in genes sym37 and sym38 are blocked at the stage of IT growth in the root hair cell (Ith- phenotype) and mutants in gene sym34 at the stage of IT growth inside root cortex cells (Itr- phenotype). With respect to nodule tissue development, mutants in genes sym7, sym14 and sym35 were shown to be blocked at the stage of cortical cell divisions (Ccd- phenotype), mutants in gene sym34 are halted at the stage of nodule primordium (NP) development (Npd- phenotype) and mutants in genes sym37 and sym38 are arrested at the stage of nodule meristem development (Nmd- phenotype). Thus, the sequential functioning of the genes Sym37, Sym38 and the gene Sym34 apparently differs in the infection process and during nodule tissue development. Based on these data, a scheme is suggested for the sequential functioning of early pea symbiotic genes in the two developmental processes: infection and nodule tissue formation. 相似文献
18.
Summary Clathrin-coated vesicles have been isolated from cotyledons of both developing and germinating pea seeds using differential centrifugation, ribonuclease treatment, discontinuous sucrose gradients, and isopycnic centrifugation on a linear D2O-Ficoll gradient. The yield of coated vesicles from developing pea cotyledons was exceptional, being 1.6 × higher than the yield from hog and bovine brain, 5.3 × higher than the yield from carrot suspension cultures, and 13 × the yield from cotyledons of germinating pea seeds. The pea coated vesicles are similar to other plant coated vesicles in size (approximately 80 nm in diameter) and in having a clathrin heavy chain of 190,000 Mr. The lipid phosphorus to protein ratio, 190–250 nmol P per mg protein, of the coated vesicles from plants is comparable to that reported for highly purified coated vesicles from animals. The nondenatured pea clathrin reacted weakly with an antiserum to bovine brain clathrin, but pea clathrin denatured by sodium dodecyl sulfate did not.Abbreviations CLC
Clathrin light chain
- CHC
clathrin heavy chain
- CV
coated vesicle
- DTT
dithiothreitol
- EGTA
ethyleneglycol-bis-(-aminoethyl ether) N,N-tetraacetic acid
- SDS-PAGE
sodium dodecyl sulfate polyacrylamide gel electrophoresis
- TBS
Tris buffered saline 相似文献
19.
Water potential, turgor and cell wall properties in elongating tissues of the hydrotropically bending roots of pea (Pisum sativum L.) 总被引:1,自引:0,他引:1
The hydrotropic bending of roots of an ageotropic pea mutant, ageotropum, was studied in humid air in a chamber with a steady humidity gradient. We examined the effects of atmospheric humidity around the root on the water status of root tissues, as well as the wall growth and the hydraulic properties of the elongating tissues. Atmospheric humidity at the surface of the root was clearly lower on the side orientated towards the air with lower humidity than on the side orientated towards the air with higher humidity. However, there were no differences in water potential and osmotic potential between the tissues that faced air with higher and lower humidities in the elongating and mature regions. Plastic extensibility was higher in the tissues that faced the air with lower humidity than in the tissues that faced the air with higher humidity. No differences in turgor pressure and yield threshold were observed between the tissues that faced air with higher and lower humidities. Therefore, the extensibility of the cell wall appeared to be responsible for the different growth rates of tissues in root hydrotropism. A further probable cause of the hydrotropical bending of roots is changes in the hydraulic conductance in the elongating tissues. Since the hydrotropic bending of roots occurred only when a root tip was exposed to a humidity gradient, hydrotropism might occur after perception of a difference in humidity by the root tip, with accompanying changes in cell wall extensibility and hydraulic conductance. 相似文献
20.
The composition and function of thylakoid membranes from pea plants grown under white or green light with or without far-red light 总被引:1,自引:0,他引:1
Pea plants ( Pisum sativum L. ev. Greenfeast) were grown for 2 to 3 weeks in while (˜ 50 μmol photons m−2 s−1 ; 400–700 nm) or green (˜ 30 μmol photons m−2 s −1 400–700 nm) light (16 h day/8 h night), with or without far-red light. Supplementary far-red light decreased leaf area and increased internodal length in both white and green light, demonstrating that phytochrome influenced leaf size and plant growth. However, there was no effect of far-red light on chlorophyll a /chlorophyll b ratios, chlorophyll-protein composition, the stoichiometry of electron transport complexes or photosynthetic function of isolated thylakoids. These results suggest that phytochrome is ineffective in modulating the composition and function of thylakoids in pea plants grown at low irradiance. One possible explanation of the ineffectiveness of phytochrome on thylakoids is discussed in terms of the drastic attenuation of red relative to far-red light in green tissue. 相似文献