首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The presence of tonoplast ion channels regulated by voltage in the physiological range of transtonoplast electric potential was studied in isolated vacuoles from Acer pseudoplatanus cultured cells. In symmetrical KCl or K-gluconate depolarizing pulses induced instantaneously developing, decaying outward currents, while in symmetrical tetramethylammonium chloride these currents were absent. The outward currents were reduced if the depolarizations were applied from a holding potential of +30 millivolts and increased upon depolarizations from a holding potential of −30 millivolts and even more from a holding potential of −50 millivolts. These results indicate that the outward currents are due to K+ movement through channels which are open around 0 millivolt and close at positive potentials. These K+ channels, regulated in the range of the physiological electric potentials reported for the vacuoles in situ, are likely the same K+ channels activated by hyperpolarizations which we have previously described (R Colombo, R Cerana, P Lado, A Peres [1988] J Membr Biol 103: 227-236).  相似文献   

2.
In contrast to the vacuolar ion channels which are gated open by an increase of cytosolic Ca2+ the vacuolar ion currents at resting cytosolic Ca2+are poorly explored. Therefore, this study was performed to investigate the properties of the so-called fast-activating vacuolar (FV) current which dominates the electrical characteristics of the tonoplast at physiological free Ca2+ concentrations. Patch—clamp measurements were performed on whole barley ( Hordeum vulgare ) mesophyll vacuoles and on excised tonoplast patches. Single ion channels were identified, which, based on their selectivity, activation kinetics, Ca2+- and voltage-dependence, carry the whole-vacuole FV current. Reversal potential determinations indicated a K+ overs C permeability ratio of about 30. Both inward and outward whole-vacuole currents as well as the activity of single FV channels were inhibited by an increase of cytosolic Ca2+, with a Kd≈ 6 µM. At physiological vacuolar Ca2+ activities, the FV channel is an outward-rectifying potassium channel. The FV channel was activated in less than a few milliseconds both by negative and positive potential steps, having a minimal activity that is 40 mV negative of the K+ equilibrium potential. It is proposed that transport of K+ through this cation channel controls the electrical potential difference across the tonoplast.  相似文献   

3.
Pantoja O  Gelli A  Blumwald E 《Plant physiology》1992,100(3):1137-1141
Patch-clamp techniques were employed to study the electrical properties of vacuoles from sugar beet (Beta vulgaris) cell suspensions at physiological concentrations of cytoplasmic Ca2+. Vacuoles exposed to K+ malate revealed the activation of instantaneous and time-dependent outward currents by positive membrane potentials. Negative potentials induced only instantaneous inward currents. The time-dependent outward currents were 10 times more selective for malate than for K+ and were completely blocked by zinc. Vacuoles exposed to KCl developed instantaneous currents when polarized to positive or negative membrane potentials. The time-dependent outward channels could serve as the route for the movement of malate into the vacuole, whereas K+ could move through the time-independent inward and outward channels.  相似文献   

4.
Single channel properties, whole vacuole currents and protonpumping capacity were investigated in the intact vacuoles andmembrane patches of leaf tonoplast from the halophyte Suaedamaritima. ATP-dependent proton pumping capacity was similarto non-halophytes whether the plants were or were not grownwith added sodium chloride (200 mM). The most abundant ion channelwas inward rectifying and had a single channel conductance of58 pS in symmetrical KCl solutions (100 mM) to 170 pS usingphysiological conditions (50/150 mM KCl/NaCl cytoplasmic side,50/450 mM KCl/NaCl vacuolar side). The channel showed all thecharacteristics of the SV type channel described in many otherspecies. In the open state these channels caused tonoplast conductancesin excess of 0.5 nS m2– but conductances were much lowerusing physiological ion concentrations and membrane potentials.In spite of the poor selectivity and the potentially large tonoplastconductance it is calculated that compartmentation of NaCl inleaf vacuoles can be sustained by about 30% of ATP-dependentproton pumping capacity. The results do not indicate any specialadaptation of the tonoplast ion channels in the halophyte. Key words: Ion-channels, patch-clamp, salt-tolerance, vacuole  相似文献   

5.
Combined application of the patch–clamp technique and fura-2 fluorescence detection enables the study of study calcium fluxes or related increases in cytosolic calcium concentration. Here we used the excised patch configuration, focusing the photomultiplier on the tip of the recording pipette where the fluorescent dye was present (FLEP, fluorescence combined with excised patch). This configuration has several advantages, i.e. a lack of delay in loading the fluorophore, of interference by internal calcium buffers and of photobleaching, due to the quasi-infinite dye reservoir inside the pipette. Upon voltage stimulation of tonoplast patches, sustained and robust fluorescence signals indicated permeation of calcium through the slow vacuolar (SV) channel. Both SV currents and fluorescence signal changes were absent in the presence of SV channel inhibitors and in vacuoles from Arabidopsis tpc1 knockout plants that lack SV channel activity. The fractional calcium currents of this non-selective cation channel were voltage-dependent, and were approximately 10% of the total SV currents at elevated positive potentials. Interestingly, calcium permeation could be recorded as the same time as oppositely directed potassium fluxes. These events would have been impossible to detect using patch–clamp measurements alone. Thus, we propose use of the FLEP technique for the study of divalent ion-selective channels or transporters that may be difficult to access using conventional electrophysiological approaches.  相似文献   

6.
The electrical properties of the tonoplast of mature sugarbeet root vacuoles have been studied using the patch-clamp technique. In whole-vacuole recordings, the addition of 5 mM Mg-ATP to the external solution activated a proton-translocating ATPase which produced inward currents of up to 65 pA. Furthermore, we identified a voltage-dependent membrane conductance which activated at hyperpolarized (inside-negative) potentials and decreased at positive potentials. Outside-out membrane patches predominantly contained a channel which showed an increasing probability of opening at potentials more negative than about –20 mV. These channels can account for the macroscopic currents recorded in whole vacuoles. The permeability sequence of the channel for cations and anions was: PKstaggered+ = PNa+ >PAc >PNO3 >PMal2− >PCl. The unit conductance of this channel was about 70 pS in symmetrical 50 mM KCl and 180 pS in symmetrical 200 mM KCl solutions. Another channel type of smaller conductance (15 pS in 50 mM KCl) was also present, but its properties have not yet been studied. The permeability sequence of the nonselective channel corresponds to that found by tracer measurements in vacuole suspensions, implying that the channel studied may present the molecular pathway for the movement of ions across the tonoplast.  相似文献   

7.
Summary The patch-clamp technique in whole-cell configuration was used to study the electrical properties of the tonoplast in isolated vacuoles fromAcer pseudoplatanus cultured cells. In symmetrical KCl or K2 malate solutions, voltage- and time-dependent inward currents were elicited by hyperpolarizing the tonoplast (inside negative), while in the positive range of potential the conductance was very small. The specific conductance of the tonoplast at –100 mV, in 100mm symmetrical KCl was about 160 S/cm2. The reversal potentials (E rev) of the current, measured in symmetrical or asymmetrical ion concentrations (cation, anion or both) were very close to the values of the K+ equilibrium potential. Experiments performed in symmetrical or asymmetrical NaCl indicate that Na+ too can flow through the channels. NeitherE rev nor amplitude and kinetics of the current changed by replacing NaCl with KCl in the external solution. These results indicate the presence of hyperpolarization-activated channels in tonoplasts, which are permeable to K+ as well as to Na+. Anions such as Cl or malate seem to contribute little to the channel current.  相似文献   

8.
Blue light is the primary entrainment signal for a number of developmental and morphological processes in the lower eucaryote Neurospora crassa. Blue light regulates photoactivation of carotenoid synthesis, conidiation, phototropism of perithecia and circadian rhythms. Changes in the electrical properties of the plasma membrane are one of the fastest responses to blue light irradiation. To enable patch-clamp studies on light-induced ion channel activity, the wall-less slime mutant was used. Patch-clamp experiments were complemented by non-invasive ion-selective measurements of light-induced ion fluxes of slime cells using the vibrating probe technique. Blue light usually caused a decrease in conductance within 2-5 minutes at both negative and positive voltages, and a negative shift in the reversal potential in whole-cell patch-clamp measurements. Both K+ and Cl- channels contribute to the inward and outward currents, based on the effects of TEA (10 mM) and DIDS (500 microM). However, the negative shift in the reversal potential indicates that under blue light the Cl- conductance becomes dominant in the electrical properties of the slime cells due to a decrease of K+ conductance. The ion-selective probe revealed that blue light induced the following changes in the net ion fluxes within 5 minutes: 1) decrease in H+ influx; 2) increase in K+ efflux; and 3) increase in Cl- influx. Ca2+ flux was unchanged. Therefore, blue light regulates an ensemble of transport processes: H+, Cl-, and K+ transport.  相似文献   

9.
The temperature dependence of the activity of ion channels was investigated, by means of the patch-clamp technique in the 'whole-cell' configuration, using protoplasts and vacuoles isolated form Arabidopsis thaliana L. cultured cells. The effect of temperature changes in the range 11–22°C was tested on the hyperpolarization and depolarization-activated K+ currents in the plasma membrane and on the hyperpolarization-activated K currents in the tonoplast (vacuolar membrane). All 3 kinds of currents were unaffected by increasing temperature up to 15°C and were activated between 15 and 20°C.  相似文献   

10.
The effect of channel opening in the tonoplast by d-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] has been examined on red beet (Beta vulgaris) vacuoles. Patch-clamp measurements of the vacuolar potential and current were performed on vacuoles isolated in 0.1 micromolar free Ca2+ medium. With vacuoles clamped at +30 millivolts, the Ins(1,4,5)P3 induced changes in current were depending on the Ca2+ buffer strength in the external medium. The spontaneous depolarization of vacuoles in which H+-pumps were activated by 5 millimolar MgATP was increased from +6 to +18 millivolts by 1 micromolar Ins(1,4,5)P3. We have interpreted our data by assuming that even with 2 millimolar EGTA to buffer Ca2+ at 0.1 micromolar in the external medium, Ins(1,4,5)P3 released enough Ca2+ from the vacuole to produce an accumulation of this ion near the tonoplast. Apart from their dependency with free Ca2+ in the cytoplasm, the electrical properties of the tonoplast could be depending on the Ins(1,4,5)P3 and Ca2+ buffer values in the cytoplasm.  相似文献   

11.
We applied the patch-clamp technique to investigate the transport properties of the Slow Vacuolar (SV) channel identified in leaf vacuoles of Alyssum bertolonii Desv., a nickel hyperaccumulator plant growing in serpentine soil of the northern Apennines (Italy). SV currents recorded in vacuoles from adult plants collected in their natural habitat showed high sensitivity towards cytosolic nickel. Dose-response analyses indicated half-maximal current inhibition at submicromolar concentrations, i.e. up to three orders of magnitude lower than previously reported values from other plant species. The voltage-dependent increase of residual currents at saturating nickel concentrations could be interpreted as relief of channel block by nickel permeation at high positive membrane potentials. Including young plants of A. bertolonii into the study, we found that SV channels from these plants did not display elevated nickel sensitivity. This difference may be related to age-dependent changes in nickel hyperaccumulation of A. bertolonii leaf cells.  相似文献   

12.
Electrophysiological studies using the patch‐clamp technique were performed on isolated vacuoles from leaf mesophyll cells of the crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana to characterize the malate transport system responsible for nocturnal malic acid accumulation. In the presence of malate on both sides of the membrane, the current–voltage relations of the tonoplast were dominated by a strongly inward‐rectifying anion‐selective channel that was active at cytoplasmic‐side negative voltages. Rectification of the macroscopic conductance was reflected in the voltage‐dependent gating of a 3‐pS malate‐selective ion channel, which showed a half‐maximal open probability at ?43 mV. Also, the time‐averaged unitary currents following a step to a negative voltage corresponded to the time‐dependent kinetics of the macroscopic currents, suggesting that the activity of this channel underlies the anion‐selective inward rectifier. The inward rectifier showed saturation kinetics with respect to malate (apparent Km of 2.5 mm malate2? activity), a selectivity sequence of fumarate2? > malate2? > Cl? > maleate2– ≈ citrate3–, and greater activity at higher pH values (with an apparent pK of 7.1 and maximum activity at around pH 8.0). All these properties were in close agreement with the characteristics of malate transport observed in isolated tonoplast vesicles. Further, 100 µm niflumate reversibly blocked the activity of the 3‐pS channel and inhibited both macroscopic currents and malate transport into tonoplast vesicles to the same extent. The macroscopic current densities recorded at physiological voltages and the estimated channel density of 0.2 µm?2 are sufficient to account for the observed rates of nocturnal malic acid accumulation in this CAM plant, suggesting that the 3‐pS, inward‐rectifying, anion‐selective channel represents the principal pathway for malate influx into the vacuole.  相似文献   

13.
Vacuoles and actin filaments are important cytoarchitectures involved in guard cell function. The changes in the morphology and number of vacuoles and the regulation of ion channel activity in tonoplast of guard cells are essential for stomatal movement. A number of studies have investigated the regulation of ion channels in animal and plant cells; however, little is known about the regulating mechanism for vacuolar dynamics in stomatal movement. Actin filaments of guard cells are remodelling with the changes in the stomatal aperture; however, the dynamic functions of actin filaments in stomatal movement remain elusive. In this paper, we summarize the recent developments in the understanding of the dynamics of actin filaments and vacuoles of guard cells during stomatal movement. All relevant studies suggest that actin filaments might be involved in stomatal movement by regulating vacuolar dynamics and the ion channels in tonoplast. The future study could be focused on the linker protein mediating the interaction between actin filaments and tonoplast, which will provide insights into the interactive function of actin and vacuole in stomatal movement regulation.  相似文献   

14.
Treatment of the apical surface of the isolated, ouabain-inhibited turtle colon with the polyene antibiotic amphotericin B permitted the properties of a barium-sensitive potassium conductance in the basolateral membrane to be discerned from the measurements of transepithelial fluxes and electrical currents. Simultaneous measurements of potassium currents and 42K fluxes showed that the movement of potassium was not in accord with simple diffusion. Two other cations, thallium and rubidium, were also permeable and, in addition, exhibited strong interactions with the potassium tracer fluxes. The results indicate that permeant cations exhibit positive coupling, which is consistent with a single-file mechanism of ion translocation through a membrane channel.  相似文献   

15.
The ultrastructure of salt glands in developing leaves of Limoniumplatyphyllum is described prior to exposure to 3% NaCl solution(with non-secreting glands) and after 4.5 and 18 h exposureto the salt solution. It is shown that in most glands, the transitionto active chloride transport was accompanied by the displacementof vacuoles toward the cell periphery and by the establishmentof plasmalemma contact sites with the tonoplast which appearedsimilar to gap junctions in animal epithelial cells. No evidencefor the exocytosis of vacuoles was found. It is suggested thatgland vacuoles may have a primary role in chloride secretionand that the tonoplast may be functionally asymmetrical, sothat the free part facing the hyaloplasm bears ion pumps, whereashighly permeable ion channels are active along the zone of contactwith the plasmalemma. It follows that the active step in chloridetransport in Limonium glands is the influx of ions into thevacuoles. Within the inner cup cells of the gland, vacuolescome into contact with the plasmalemma only at sites where thecell wall is adjacent to secretory and accessory cells. Suchan asymmetry appears to ensure the directed flux of ions intothis cell wall. Wall protuberances in the gland cells are rudimentaryand presumably not involved directly in NaCl secretion. Thenucleolus is activated during secretion and the frequency offree ribosomes is significantly increased, which is suggestiveof their involvement in the synthesis of membrane transportproteins. The ultrastructure of about one-third of the glandsremained unchanged in salt-treated leaves. Key words: Salt glands, ultrastructure, ion fluxes  相似文献   

16.
Summary This study is concerned with the characterization of the ionic currents in the vacuolar membrane (tonoplast) of plant cells. Voltage patch-clamp experiments at the whole vacuole and single channel levels were employed to study the effects of cytoplasmic chloride on the tonoplast inward rectifying currents of sugar beet cultured cells. Whole vacuole experiments showed that removal of cytoplasmic chloride induced a decrease in the level of the inward currents, an effect that was reversed upon returning to control levels of cytoplasmic chloride. Substitution of cytoplasmic chloride by any other anion (organic or inorganic) resulted in a reduction in the level of the inward currents. At a given negative tonoplast potential, the inward currents showed a linear relationship with the concentration of cytoplasmic chloride between 10 and 100 mM, with the slope of these relationships increasing as the potential was made more negative. Single channel experiments showed that reduction of cytoplasmic chloride changed the gating mechanism of the channels without affecting the single channel conductance. Reduction of cytoplasmic chloride caused a decrease in the open probability of the tonoplast cation channels by reducing their mean open time and by inducing the appearance of an additional closed state.This work was supported by the National Science and Engineering Research Council of Canada.  相似文献   

17.
The effects of age on sodium fluxes in primary-leaf sections from control and decapitated bean plants were determined. It was assumed that at high external salt concentrations the measurements represent mainly fluxes through the tonoplast, and that in brief efflux experiment subsequent to free-space exchange efflux from the cytoplasma is essentially measured. Net- and influxes to the vacuoles increase during the period of leaf expansion and net chlorophyll synthesis. Both fluxes and amount of chlorophyll decrease rapidly in senescing leaves. The exchangeability of previously absorbed sodium also increased in senescing leaves. Decapitation delayed senescence and very much reduced the decreases in net flux and influx, and the exchangeability of sodium. The results are discussed in relation to solutes redistribution in the plant.  相似文献   

18.
Summary

Fungal cells generate D.C. and A.C. (action potentials) electrical currents during theirgrowth and differentiation. In addition, they exhibit tropic growth (galvanotropism) and tactic responses (galvanotaxis) in applied electrical fields. The natural D.C. electrical currents of fungi are due to clustering of ion channels and pumps in certain regions of the cells, mycelium or thallus. It now seems that these electrical currents per se are not essential for the process of tip growth although the local traffic of calcium ions, which are a component of the currents, may be. Instead, electrical currents and action potentials are concerned apparently with spatial control of nutrient uptake and perhaps in intramycelium communication. Studies of the phenomenon of galvanotropism have been used to explore further the mechanisms underlying apical extension of hyphae and these also implicate localcalcium ion uptake as being important for this process. Motile zoospores of phytopathogenic fungi exhibit galvanotaxis in weak electrical fields of a size comparable to those generated by plant roots. This tactic behaviour predicts the sites of their accumulation in the natural electrical fields generated by roots and suggests that they may utilize the endogenous electrical currents of plants to detect potential hosts. Generating and responding to electrical currents is therefore an important and general aspect of fungal physiology.  相似文献   

19.
The Arabidopsis thaliana Tonoplast Intrinsic Protein 1;1 (AtTIP1;1) is a member of the tonoplast aquaporin family. The tissue-specific expression pattern and intracellular localization of AtTIP1;1 were characterized using GUS and GFP fusion genes. Results indicate that AtTIP1;1 is expressed in almost all cell types with the notable exception of meristematic cells. The highest level of AtTIP1;1 expression was detected in vessel-flanking cells in vascular bundles. AtTIP1;1-GFP fusion protein labelled the tonoplast of the central vacuole and other smaller peripheral vacuoles. The fusion protein was not found evenly distributed along the tonoplast continuum but concentrated in contact zones of tonoplasts from adjacent vacuoles and in invaginations of the central vacuole. Such invaginations may result from partially engulfed small vacuoles. A knockout mutant was isolated and characterized to gain insight into AtTIP1;1 function. No phenotypic alteration was found under optimal growth conditions indicating that AtTIP1;1 function is not essential to the plant and that some members of the TIP family may act redundantly to facilitate water flow across the tonoplast. However, a conditional root phenotype was observed when mutant plants were grown on a glycerol-containing medium.  相似文献   

20.
The mechanisms involved in the transport of malate into isolated vacuoles of Catharanthus roseus (L.) cells were investigated with special reference to the effects of induced changes in membrane potential and surface charges of the tonoplast. For this purpose, thiocyanate (SCN?), a highly permeant anion often used as a membrane potential probe, was extensively exploited. In the absence of Mg-ATP, the low accumulation ratio of 14C SCN? could be related to the presence of negative charges at the outer surface of the tonoplast exerting a screening effect on the displacement of lipophilic anionic species. Nevertheless, malate was taken up continuously by vacuoles supporting the concept of a transport component which facilitates its transfer through the tonoplast. From experiments showing the pH dependence of malata uptake, it is suggested that the protonated form of the transporter is implicated in this process. Moreover, when the vacuoles are energized by Mg-ATP, the study of the equilibrium distribution of 14C SCN? indicated an inside positive membrane potential difference. Advantage was taken of these results to modulate the membrane potential with high levels of thiocyanate. The data obtained demonstrate that malate uptake results from electrophoretic movement in response to the positive potential difference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号