首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Follicle stimulating hormone (FSH) has fundamental importance in reproductive function, but its cyclic pattern has not previously been described in the squirrel monkey, due primarily to the lack of a suitable assay. An homologous radioimmunoassay (RIA) based on recombinant cynomolgus FSH measured changes in serum FSH relative to patterns of bioactive luteinizing hormone (LH), estradiol, and progesterone during the estrous cycle. FSH was observed to have a sharp peak during the late follicular phase coincident with the LH surge and then rose again during the luteal phase. Estradiol was low except for the midcycle rise, suggesting an inhibitory relationship. The rat granulosa cell in vitro FSH bioassay confirmed high levels of this hormone. Measurement of FSH in the squirrel monkey has found a pattern different from Old World primates in the luteal phase, which may provide insight into the reproductive mechanisms of this species.  相似文献   

2.
In the female Bolivian squirrel monkey a much greater elevation of serum estradiol (E2) was measured after mating than that observed in similary cycling monkeys that did not mate. This raised the possibility that cycling squirrel monkeys may not ovulate during nonmated cycles To test this hypothesis, we performed laparoscopies on nine isosexually housed, cycling monkeys to observe the ovaries after the luteinizing hormone (LH) surge, which was measured by mouse interstitial cell bioassay using LER 1909-2 as the standard. Single ovulatory stigmas were identified as well demarcated, red, punctate depressions at the center of dome-shaped elevations on the ovarian surface in eight monkeys, when laparoscopically examined 9-56 hr after the LH peak. One monkey examined laparoscopically prior to the LH surge had a large translucent cystic follicle, confirming the morphology of the mature prevulatory follicle. Mean progesterone (P) concentrations fell to a nadir 1 day prior to the LH surge and then began to rise on the LH surge. Peak P levels were found 2 days after the LH surge. In the ovulating animals in which periovulatory E2 levels were measured, no value was greater than 800 pg/ml, indicating that the presence of follicular rupture was not sufficient to account for the elevated E2 levels observed after mating. These data confirm ovulation and follicular rupture in the absence of mating and delineate the relationship between periovulatory LH, P, and E2 secretory patterns in cycling squirrel monkeys.  相似文献   

3.
The female squirrel monkey, Saimiri boliviensis, a New World monkey, has 10-day estrous cycles during the annual breeding season. Measurements of serum estradiol (E) concentrations in females housed with males in breeding pens revealed markedly higher levels than previously reported. Additionally, females in breeding pens appeared to have two distinct patterns of serum E peaks relative to the LH surge. Serum estrogen peaks averaging 5-fold greater than levels on the preceding day were observed on the same day as the LH surge, whereas other females had only a small E rise on the day of the LH surge followed by a 6-fold E rise on the next day. The serum progesterone (P) levels in all animals were depressed for 1-2 days before the LH surge but frequently started to rise on the day of the LH surge. The effect of the presence of a breeding male was examined by studying females housed in a group pen without exposure to a breeding male. In contrast to breeding-pen patterns, relatively small E rises were found in the 10 cycles observed. To further elucidate estrus-related E rises, a limited male-access paradigm was used to isolate mating-related hormone fluctuations. Pre-mating E levels had no marked rises; however, 4 h after mating, whether on the day of the LH surge or the next day, large E rises were found. These studies indicate that the LH surge in cycling squirrel monkeys is consistently preceded by a marked P nadir and associated with relatively small E rises.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Basal serum levels of follicle stimulating hormone (FSH), luteinizing hormone (LH), and testosterone (T) and the responsiveness of these hormones to a challenge dose of luteinizing hormone releasing hormone (LHRH), were determined in juvenile, pubertal, and adult rhesus monkeys. The monkey gonadotrophins were analyzed using RIA reagents supplied by the World Health Organization (WHO) Special Programme of Human Reproduction. The FSH levels which were near the assay sensitivity in immature monkeys (2.4 +/- 0.8 ng/ml) showed a discernible increase in pubertal animals (6.4 +/- 1.8 ng/ml). Compared to other two age groups, the serum FSH concentration was markedly higher (16.1 +/- 1.8 ng/ml) in adults. Serum LH levels were below the detectable limits of the assay in juvenile monkeys but rose to 16.2 +/- 3.1 ng/ml in pubertal animals. When compared to pubertal animals, a two-fold increase in LH levels paralleled changes in serum LH during the three developmental stages. Response of serum gonadotrophins and T levels to a challenge dose of LHRH (2.5 micrograms; i.v.) was variable in the different age groups. The present data suggest: an asynchronous rise of FSH and LH during the pubertal period and a temporal correlation between the testicular size and FSH concentrations; the challenge dose of LHRH, which induces a significant rise in serum LH and T levels, fails to elicit an FSH response in all the three age groups; and the pubertal as compared to adult monkeys release significantly larger quantities of LH in response to exogenous LHRH.  相似文献   

5.
6.
The changes in serum gonadotrophins in male hamsters following one injection of 15 μg luteinizing hormone releasing hormone (LHRH) (Group A) were compared with those following the last injection of LHRH in animals receiving an injection approximately every 12 hr for 4 days (Group B) or 12 days (Group C). Peak follicle stimulating hormone (FSH) levels (ng/ml) were 1776±218 (Group A), 2904±346 (Group B), and 4336±449 (Group C). Peak luteinizing hormone (LH) values (ng/ml) were 1352±80 (Group A), 410±12 (Group B), and 498±53 (Group C). Serum FSH:LH ratios, calculated from the concentrations measured 16 hr after the last LHRH injections, were higher in Groups B and C than in Group A. Similar injections of LHRH (100 ng or 15 μg/injection) for 6 days elevated the serum FSH:LH ratio in intact males. Five such LHRH injections (100 ng/injection) blunted the rise in serum LH in orchidectomized hamsters. Direct effects of LHRH on gonadotrophin secretory dynamics or altered brain-pituitary-testicular interactions may alter the ratio of FSH to LH in the hamster.  相似文献   

7.
New World squirrel monkeys (Saimiri spp.) have high circulating cortisol levels but normal electrolytes and blood pressures. The goal of the present study was to gain insight into adaptive mechanisms used by Bolivian squirrel monkeys to minimize the effects of high cortisol on mineralocorticoid receptor (MR) activity and electrolyte and water balance. Aldosterone levels in serum from 10 squirrel monkeys were 17.7 +/- 3.4 ng/dl (normal range in humans, 4 to 31 ng/dl), suggesting that squirrel monkeys do not exhibit a compensatory increase in aldosterone. The squirrel monkey MR was cloned and expressed in COS-7 cells and found to have similar responsiveness to cortisol and aldosterone as human MR, suggesting that squirrel monkey MR is not inherently less responsive to cortisol. To determine whether altered metabolism of cortisol might contribute to MR protection in squirrel monkeys, serum and urinary cortisol and cortisone were measured, and a comprehensive urinary corticosteroid metabolite profile was performed in samples from anesthetized and awake squirrel monkeys. The levels of cortisone exceeded those of cortisol in serum and urine, suggesting increased peripheral 11beta-hydroxysteroid dehydrogenase 2 activity in squirrel monkeys. In addition, a significant fraction (approximately 20%) of total corticosteroids excreted in the urine of squirrel monkeys appeared as 6beta-hydroxycortisol, compared with that in man (1%). Therefore, changes in cortisol metabolism likely contribute to adaptive mechanisms used by Bolivian squirrel monkeys to minimize effects of high cortisol.  相似文献   

8.
Summary 1. The pulsatile release of luteinizing hormone-releasing hormone (LHRH) is critical for reproductive function. However, the exact mechanism of LHRH pulse generation is unclear. The purpose of this article is to review the current knowledge on LHRH pulse generation and to discuss a series of studies in our laboratory.2. Using push-pull perfusion in the stalk-median eminence of the rhesus monkey several important facts have been revealed. There is evidence indicating that LHRH neurons themselves have endogenous pulse-generating mechanisms but that the pulsatility of LHRH release is also modulated by input from neuropeptide Y (NPY) and norepinephrine (NE) neurons. The release of NPY and NE is pulsatile, with their pulses preceding or occurring simultaneously with LHRH pulses, and the neuroligands NPY and NE and their agonists stimulate LHRH pulses, while the antagonists of the ligands suppress LHRH pulses.3. The pulsatile release of LHRH increases during the estrogen-induced LH surge as well as the progesterone-induced LH surge. These increases are partly due to the stimulatory effects of estrogen and progesterone on NPY neurons.4. An increase in pulsatile LHRH release occurs at the onset of puberty. This pubertal increase in LHRH release appears to be due to the removal of tonic inhibition from aminobutyric acid (GABA) neurons and a subsequent increase in the inputs of NPY and NE neurons to LHRH neurons.5. There are indications that additional neuromodulators are involved in the control of the LHRH pulse generation and that glia may play a role in coordinating pulses of the release of LHRH and neuromodulators.6. It is concluded that the mechanism generating LHRH pulses appears to comprise highly complex cellular elements in the hypothalamus. The study of neuronal and nonneuronal elements of LHRH pulse generation may serve as a model to study the oscillatory behavior of neurosecretion.  相似文献   

9.
The Bolivian squirrel monkey (Saimiri boliviensis boliviensis) is a seasonal breeder. Male squirrel monkeys show distinct morphological and behavioral changes prior to and during the breeding season. A “fatting syndrome” includes increased body weight, increased levels of androgens, and in the Bolivian subspecies, an increasingly active role in the social organization of the group. In this study, the behavior of ten adult male Bolivian squirrel monkeys was analyzed over a 6-month period prior to, during, and after the breeding season. Each was housed as the only adult male in a breeding unit with six to ten adult females and one juvenile male. Employing a principle components method, 11 behavioral clusters were generated from 27 responses. Their activity clusters were identified as follows: sexual activity that showed a peak around the time of peak conceptions; excitatory activity that was initially high but decreased throughout the breeding season; and maintenance activity that did not change across the breeding season. The changing social behavior of the male squirrel monkey parallels physiological changes and is correlated with changing androgen levels.  相似文献   

10.
The goal of the present investigation was to determine in the squirrel monkey the source and pattern of inhibin, a hormone known to effect reproductive steroid levels via pituitary and ovarian mechanisms. Since this seasonally polyestrous species is known to have elevated serum levels of reproductive steroids compared to other primates, the levels of ovarian alpha subunit mRNA expression and serum total alpha inhibin, estradiol, progesterone, and luteinizing hormone were measured and compared to human levels. Expression of the alpha subunit was robust in monkey luteal tissue compared to expression in human luteal tissue. Squirrel monkey serum inhibin peaked 4 days after the luteinizing hormone surge and correlated with progesterone changes. These luteal serum levels of inhibin were greater than 12 times higher than the human levels yet bio‐LH activities were less than in the human during the luteal phase. Inhibin concentrations during the non‐breeding season were generally half the levels measured in the breeding season and undetectable in ovariectomized animals. However, exogenous FSH stimulation induced a marked rise in inhibin, which correlated with an estradiol rise. In conclusion, abundant alpha inhibin subunit expression in the luteal ovary of the squirrel monkey and loss of serum delectability in ovariectomized animals indicates that the principle source of inhibin in the squirrel monkey is the ovary. Elevated serum inhibin levels during the luteal phase concurrent with ovulatory‐size follicular development is unique among species studied thus far. Possible simultaneous inhibin production from both follicular and luteal tissue may be responsible for the exceptionally high inhibin levels. Am. J. Primatol. 47:165–179, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

11.
12.
The Cape ground squirrel Xerus inauris is unusual among social mammals as it exhibits a low reproductive skew, being a facultative plural breeder with not all females breeding within a group. We investigated pituitary function to assess whether there was reproductive inhibition at the level of the pituitary and potentially the hypothalamus in breeding and non-breeding female Cape ground squirrels. We did so during the summer and winter periods by measuring luteinizing hormone (LH) responses to single doses of 2 g exogenous gonadotropin-releasing hormone (GnRH) and physiological saline administered to 42 females from 11 colonies. Basal LH concentrations of females increased in response to the GnRH challenge. Basal plasma LH concentrations were greater during winter, when most oestrus events are observed. However, we found no differences in plasma LH concentrations between breeding and non-breeding females. We showed that the anterior pituitary of non-breeding female ground squirrels is no less sensitive to exogenously administered GnRH than that of breeding females. We therefore concluded that the pituitary is no more active in breeding than non-breeding females. The lack of differentiation in response to GnRH suggests that either non-breeding females have ovaries that are less sensitive to LH or that they refrain from sexual activity with males through an alternative mechanism of self-restraint.  相似文献   

13.
To further understand the mechanism of action by which ethanol (ETOH) decreases plasma luteinizing hormone (LH) levels, the effects of multiple i.p. injections of EOH (1.0--1.5 g/kg) or saline on hypothalamic luteinizing hormone releasing hormone (LHRH) and plasma LH concentrations were evaluated in intact and castrate male rats. After injections, animals were decapitated, brains rapidly removed, and blocks containing the hypothalamus [with median eminence (ME)] were isolated. Hypothalami were subjected to acetic acid extraction and LHRH content quantitated via radioimmunoassay (RIA). Hypothalamic LHRH was found to be inversely correlated with plasma LH. In response to castration, both saline and ETOH-treated rats showed a decrease in hypothalamic LHRH content with a concomitant increase in plasma LH; however, the ETOH-treated animals retained significantly greater concentrations of LHRH and showed significantly lower plasma LH levels when compared to saline-treated controls. Likewise, ETOH-treated intact animals showed significant increases in LHRH content, with LH levels remaining significantly lower than the saline-treated intact controls. Thus, these data from both intact and castrate rats provide evidence to support the hypothesis that alcohol-induced decreases in LH levels are due to a diminished release rate of hypothalamic LHRH.  相似文献   

14.
Sheep fetuses at day 70 of gestation (term = 145 days) were implanted subcutaneously with a biodegradable implant containing a luteinizing-hormone-releasing hormone (LHRH) agonist (buserelin) to investigate whether treatment with LHRH agonist would induce a state of desensitization of the fetal gonadotrophs and thus influence fetal gonadal development. Treatment with the LHRH agonist for 35-40 days caused a significant reduction in mean fetal plasma concentrations of LH and follicle-stimulating hormone (FSH) compared with control fetuses. LH pulses were evident in control fetuses but were completely abolished by buserelin treatment. Furthermore, the pituitary content of LH and FSH was significantly depleted in fetuses implanted with LHRH agonist. A bolus intravenous injection of 500 ng LHRH given to control fetuses caused a rapid and significant increase in plasma LH and FSH concentrations which was sustained for at least 60 min after injection. Pretreatment with buserelin completely abolished the LH and FSH responses to a bolus injection of LHRH. There were no differences between the sexes in fetal gonadotrophin concentrations or pituitary sensitivity to LHRH in control or agonist-treated fetuses. Furthermore, buserelin treatment for 35-40 days had no effect on the morphological appearance of the fetal gonads when compared with control fetuses, at least to day 110 of pregnancy. These results provide evidence for the induction of a state of desensitization of the LHRH receptors of the fetal pituitary gonadotrophs following long-term treatment with an LHRH agonist, but provide no evidence for a role for gonadotrophin secretion in gonadal development at this stage in fetal life.  相似文献   

15.
Luteinizing hormone-releasing hormone (LHRH) induces two Ca2+ responses in single gonadotropes: a Ca2+ spike/plateau or oscillation. Similar receptor-mediated Ca2+ signals have been reported in many cell types but their functional significance is obscure. Accordingly, we have determined the concentration-response properties of LHRH-induced luteinizing hormone (LH) release at the single cell level. We demonstrate a critical single cell LHRH threshold for LH release. Each gonadotrope had a particular LHRH threshold value and a range of different single cell thresholds was distributed in the gonadotrope population. The physiological significance of the threshold was demonstrated by a striking reduction (delta ED50 = 153 nM) of the LHRH threshold immediately before the preovulatory surge of LH release. The metestrous phenotype of secretion resembled a quantal process in contrast with the graded process of the proestrous phenotype. That is, the quantity of hormone secreted per metestrous gonadotrope was independent of LHRH concentration and more all-or-none than graded. The LHRH threshold and the quantal secretion process of metestrous gonadotropes was further studied by measuring cytosolic Ca2+ using fura-2 and digital imaging microscopy. We provide evidence suggesting that the Ca2+ spike/plateau and oscillation are the respective responses to subthreshold and suprathreshold concentrations of LHRH. It is proposed therefore that the Ca2+ oscillation and spike/plateau response form a binary intracellular signaling code that functions as an on-off switch. It is further proposed that this potential code unraveled here for the regulation of hormone secretion may also regulate other gonadotrope functions. Thus, while the Ca2+ spike/plateau response is strongly associated with LH release, it may be associated with reduced levels of LH-beta mRNA, and reduced numbers of LHRH receptors. Conversely, while the Ca2+ oscillation appears to be unrelated to LH release, it may be associated with increased levels of LH-beta mRNA, and increased numbers of LHRH receptors. This model may explain in molecular terms the long-standing observation that an invariant, albeit pulsatile, pattern of LHRH release is sufficient to support the preovulatory surge of LH release.  相似文献   

16.
An entity (in fractions), separated from the luteinizing hormone-releasing hormone (LHRH), <Glu-OH, and N-Ac-Asp-OH, which released both FSH and LH appeared to show immunoreactivity in the RIA for LHRH. This entity was destroyed by trypsin, but did not yield LHRH, under conditions which (1) converted a synthetic model, [Arg-Lys-Gln1]-LHRH, of a pro-LHRH to LHRH; (2) did not destroy LHRH. This entity may not be a pro-LHRH, but may be the follicle stimulating hormone-releasing hormone (FSHRH) on the basis of all these data. A second immunoreactive entity had negligible, if any, releasing activity for FSH and LH, and did not yield LHRH on trypsin digestion.  相似文献   

17.
Female rats injected with a single dose of 2 mg estradiol valerate (EV) develop anovulatory acyclicity characterized by persistent vaginal cornification and the formation of multiple large cystic follicles on the ovaries. In order to determine if these effects of EV are accompanied by changes in ovarian and/or pituitary function, the following studies were conducted. Ovarian androgen production was determined by the measurement at 4, 5 and 6 weeks after EV treatment of circulating dehydroepiandrosterone, androstenedione and testosterone. The capacity of the polycystic ovary to ovulate in response to luteinizing hormone releasing hormone (LHRH) stimulus was assessed. Ovarian histology was examined at the termination of the study (9 weeks after EV treatment). Pituitary function was assessed 9 weeks after the EV treatment by examining the acute changes in plasma luteinizing hormone (LH) concentration in response to a double pulse of LHRH. Plasma concentrations of the androgens were unchanged over the 3-week sampling period and were similar to those found in sesame-oil-treated normal cycling control rats. The ovaries from EV-treated animals were smaller than those of controls and the cystic follicles exhibited marked thecal hypertrophy and attenuation of the granulosa cell layer. The basal plasma LH concentration at 9 weeks after EV treatment were significantly lower than in proestrus controls and plasma concentrations of LH elicited by LHRH pulses was significantly lower than in controls. The relative increase in plasma LH following the LHRH stimulus was, however, greater in the EV-treated animals than in controls. In spite of the diminished LH surge elicited in response to LHRH, the EV-treated animals ovulated as indicated by the presence of fresh corpora lutea on the ovaries. These results indicate that androgens are not responsible for the polycystic ovarian condition in this system and that the polycystic ovary is capable of ovulatory function when appropriately stimulated.  相似文献   

18.
Summary 1. A variety of neuroendocrine approaches has been used to characterize cellular mechanisms governing luteinizing hormone-releasing hormone (LHRH) pulse generation. We review recentin vivo microdialysis,in vitro superfusion, andin situ hybridization experiments in which we tested the hypothesis that the amplitude and frequency of LHRH pulses are subject to independent regulation via distinct and identifiable cellular pathways.2. Augmentation of LHRH pulse amplitude is proposed as a central feature of preovulatory LHRH surges. Three mechanisms are described which may contribute to this increase in LHRH pulse amplitude: (a) increased LHRH gene expression, (b) augmentation of facilitatory neurotransmission, and (c) increased responsiveness of LHRH neurons to afferent synaptic signals. Neuropeptide Y (NPY) is examined as a prototypical afferent transmitter regulating the generation of LHRH surges through the latter two mechanisms.3. Retardation of LHRH pulse generator frequency is postulated to mediate negative feedback actions of gonadal hormones. Evidence supporting this hypothesis is reviewed, including results ofin vivo monitoring experiments in which LHRH pulse frequency, but not amplitude, is shown to be increased following castration. A role for noradrenergic neurons as intervening targets of gonadal hormone negative feedback actions is discussed.4. Future directions for study of the LHRH pulse generator are suggested.  相似文献   

19.
Luteinizing hormone (LH) secretory patterns were characterized in adult male and female rats exposed to ethanol during the last week of fetal life. Gonadectomized fetal alcohol exposed (FAE) males and females had significantly reduced plasma LH titers as compared to those of pair-fed (PF) controls. The phasic afternoon LH secretory response to estrogen and progesterone priming was also significantly reduced in FAE females. These differences do not appear to be a result of altered pituitary sensitivity to luteinizing hormone releasing hormone (LHRH), since the infusion of LHRH resulted in an equal response in PF and FAE females. Subsequent characterization of the episodic pattern of LH secretion in FAE males revealed significantly reduced mean LH level as well as a decreased pulse amplitude and frequency when compared to PF males. Taken together, these data indicate that some of the central mechanisms controlling pituitary LH secretion are altered by prenatal exposure to alcohol.  相似文献   

20.
Summary 1. The decapeptide lueteinizing hormone-releasing hormone (LHRH) is synthesized in neuronal cell bodies diffusely distributed across the basal forebrain and is secreted from neuronal terminals in the median eminence. Once secreted, LHRH enters the portal vessels and is then transported to the anterior pituitary, where it modulates the synthesis and secretion of gonadotropins, which are essential to gonadal function and reproduction.2. Because of the difficulties encountered in studying these diffusely distributed neurons, we have developed strategies which combine immunocytochemistry and computer-assisted techniques to examine individual LHRH neuronal cell bodies, as well as the entire population of LHRH neurons from the diagonal band of Broca to the mammillary bodies. In addition, we have examined LHRH neuronal terminals in the median eminence using computer-assisted imaging techniques to examine individual terminals by electron microscopy or across all rostral-caudal regions of the median eminence by light microscopy. In our most recent studies using confocal microscopy, we have examined the relationships of LHRH terminals to glial processes.3. These studies reveal a very dynamic system of LHRH neuronal cell bodies and terminals. The population of neurons in which LHRH can be detected varies as a function of time after gonadectomy, during the estrous cycle, and during the preovulatory surge of LH during the afternoon of proestrus. Dynamic changes are also observed in LHRH terminals in the median eminence as a function of time after gonadectomy and in specific rostral-caudal regions of the median eminence during the preovulatory surge of LH. Finally, confocal microscopy reveals that LHRH terminals are prevented from contacting the basal lamina of the brain by glial end-feet.4. We are currently examining the hypothesis that these relationships change as a function of endocrine milieu and, therefore, participate in the modulation of LHRH secretion. Ongoing studies focus on defining the sites of action and synergy of multiple sources of regulation of LHRH secretion and their relative importance to ensuring reproductive success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号