首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular weight of the active unit of phospholipase A2 (PA2) in human seminal plasma and spermatozoa was determined using the radiation inactivation technique. Fresh spermatozoa possess more than one form of PA2 activity as judged by the biphasic nature of the curve obtained during enzyme inactivation. However, when stored frozen for several months followed by a period of heating for 60 min at 60 °C prior to irradiation, the sperm exhibited PA2 activity, which corresponded to a single low molecular mass form of 12,000 d when radioactive phosphatidylcholine (PC) was used as substrate and 8,000 d when radioactive phosphatidylethanolamine (PE) was used as substrate. In fresh seminal fluid, only one active form of PA2 was detected as judged by the linear nature of the curve obtained during enzyme inactivation by irradiation. Using PC as substrate, the active unit was again estimated to be 12,000 d, whereas it corresponded to 18,000 d when PE was used. The PA2 activity associated with normal spermatozoa exhibited a 60% decrease in activity after storage at ?20 °C for 48 hr followed by a heating period of 10 min at 60 °C. Long-term storage of spermatozoa at ?20 °C also resulted in a similar decrease in the deacylation of PC. No further loss of activity was observed during subsequent heat treatment at 60 °C. Seminal plasma, however, showed no loss of activity following short (48 hr at 4 °C or ?20 °C) or long-term storage and subsequent heat treatment. Thus, the behavior of PA2 when the effect of temperature was studied and in radiation inactivation experiments indicates that the low molecular weight component in the seminal plasma as well as in spermatozoa is temperature resistant. However, in fresh spermatozoa, a second form of PA2 was found and was sensitive to changes in temperature.  相似文献   

2.
The effects of trypsin inhibitors and phospholipase inhibitors on the acrosome reaction of washed cauda epididymal sperm of golden hamsters were studied using two different incubation systems. One incubation system, a non-synchronous acrosome reaction inducing system, included the use of a highly purified BSA and a protein-free motility factor preparation from hamster adrenal gland. The other system was a relatively synchronous acrosome reaction-inducing-system utilizing the calcium ionophore A23187. Acrosome reactions were inhibited by three low molecular weight synthetic trypsin inhibitors, benzamidine, NPGB and TLCK, when they were added five minutes prior to the initial occurrence of acrosome reactions in the non-synchronous system or five minutes prior to induction of acrosome reactions by A23187 in the synchronous system. Two phospholipase A inhibitors, p-bromophenacyl bromide and mepacrine, were also effective in inhibiting hamster sperm acrosome reactions in both incubation systems. TPCK, an inhibitor of several non-trypsin-like proteases, indomethacin, a prostaglandin synthetase inhibitor, and soybean trypsin inhibitor, a large molecular weight polypeptide, did not inhibit acrosome reactions. The inhibition of those acrosome reactions induced by A23187 provides further indirect evidence that the effective inhibitors were functioning at a site within the sperm. The overall results provide: (1) further support for our earlier work suggesting the involvement of an internal trypsin-like enzyme (presumably acrosin) rather than an exogenous trypsin-like enzyme in the hamster sperm acrosome reaction and (2) the first evidence suggesting the possibility that a sperm phospholipase may also be involved in the mammalian acrosome reaction.  相似文献   

3.
The interaction of the inhibitor VJ (InhVJ), isolated from sea anemone R. macrodactylus, with different proteases was investigated using the method of biosensor analysis. The following enzymes were tested: serine proteases (trypsin, α-chymotrypsin, plasmin, thrombin, kallikrein), cysteina protease (papain) and aspartic protease (pepsin). In the rage of the concentrations studied (10–400 nM) inhibitor VJ interacted only with trypsin and α-chymotrypsin. The intermolecular complexes formation between inhibitor VJ and each of these enzymes was characterized by the following kinetic and thermodynamics parameters: KD = 7.38 × 10?8 M and 9.93 × 10?7 M for pairs InhVJ/trypsin and InhVJ/α-chymotrypsin, respectively.  相似文献   

4.
Two acid stable proteinase inhibitors are present in bull seminal plasma and washed ejaculated bull spermatozoa. Inhibitor I with a molecular weight of about 8700 (estimated by gel filtration) is a very strong inhibitor of bull sperm acrosin but also inhibits bovine trypsin and chymotrypsin and porcine plasmin; inhibition of porcine pancreatic and urinary kallikrein was not observed. In this respect inhibitor I resembles the well known cow colostrum trypsin inhibitor. Inhibitor II with a molecular weight near 6800 (estimated by gel filtration) inhibits bovine trypsin and chymotrypsin, porcine plasmin and pancreatic and urinary kallikrein as well as bull acrosin. The inhibition specificity of inhibitor II is thus very similar to that of the basic inhibitor from bovine organs (Kunitz-type). In view of the inhibition strength and other characteristics, however, the acid stable bull seminal inhibitors are not identical with the inhibitor from cow colostrum or bovine lung (organs).  相似文献   

5.
Guinea-pig spermatozoa were induced to undergo an acrosome reaction with the ionophore A23187. A time course for the activation of protease activity was established. Acid treatment of fully activated spermatozoa at pH 2.35 for 30 min exposed additional activity. This was attributed to the acid dissociation of a protein inhibitor from acrosin. The acrosin content of fully activated and acid-dissociated sperm extracts was measured using a sensitive active-site titrant for serine proteases. The number of acrosin molecules per spermatozoon, calculated on the basis of the sperm count, was approximately 2 x 10(6), of which half were available without dissociation of the inhibitor.  相似文献   

6.
A fraction of acrosomal proteins dispersed during calcium ionophore A23187‐induced acrosome reaction was prepared from cauda epididymal sperm of wild‐type and acrosin‐deficient mice, rat, and hamster. The acrosome‐reacted sperm were further extracted by Nonidet P‐40 to obtain the detergent‐soluble protein fraction. Activities of serine proteases in the two protein fractions were examined by sodium dodecyl sulfate‐polyacrylamide gel electrophoresis in the presence of gelatin. A mixture of 42‐ and 41‐kDa gelatin‐hydrolyzing proteases was found in both fractions of the wild‐type mouse sperm, whereas the acrosin‐deficient mouse sperm contained the active 42‐kDa protease and apparently lacked the activity of the 41‐kDa protease. However, exogenous bovine pancreatic trypsin compensated for the absence of acrosin in the protein fractions of the mutant mouse sperm; the gelatin‐hydrolyzing activity of the 41‐kDa protease appeared when the sperm proteins of the mutant mice were treated with pancreatic trypsin. Two‐dimensional polyacrylamide gel electrophoresis revealed that the 42‐ and 41‐kDa proteases were distinguished from acrosin by the isoelectric point and immunoreactivity with affinity‐purified antibody against an oligopeptide corresponding to the N‐terminal amino acid sequence of mouse proacrosin. Moreover, the gelatin‐hydrolyzing proteins corresponding to these two proteases were not detected in rat and hamster sperm, in spite of the treatment of the sperm extracts with pancreatic trypsin, and the total amount of gelatin‐hydrolyzing activities in mouse was much smaller than those in rat and hamster. These results may reflect the difference of the serine protease system for the sperm penetration through the egg zona pellucida between mouse and other rodent animals, possibly explaining why the acrosin‐deficient mouse sperm are capable of penetrating the zona pellucida. Dev. Genet. 25:115–122, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

7.
When human spermatozoa are extracted in the presence of 0.05 M benzamidine, the resulting solutions show a time dependent, sigmoidal increase of trypsin-like activity upon incubation at pH 8. Gel permeation chromatography of these extracts separates two species, P1 and P2, with apparent molecular weights of 75,000 and 42,000 respectively. P1 and P2 are both autoactivatable at pH 7–8 and the kinetic parameters of activated P1 and P2 are indistinguishable from those of human acrosin. That P1 and P2 are inactive precursors of human acrosin is shown by the fact that, in the presence of benzamidine, they are obtained instead of and in greater yield than acrosin. That P1 and P2 are zymogens is shown by the features of the activation process.  相似文献   

8.
The large apical segments of guinea pig sperm acrosomes were mechanically separated from the spermatozoa and subsequently isolated by density gradient centrifugation. The isolated acrosomal caps were very stable and maintained their crescent morphology when suspended in sucrose-based medium buffered at pH 5.6, with or without the acrosin inhibitor p-aminobenzamidine (pAB). Examination under the electron microscope showed that the acrosomal caps were free of plasma membrane and were bound by an outer acrosomal membrane which was discontinuous. Enzymatic analysis after lysis of the caps indicated that acrosin and hyaluronidase were present with high specific activity, while only a trace amount of acid phosphatase activity and no arylsulphatase, phospholipase A2, or phospholipase C activities were present. Significant particulate acrosin activity, but only trace amounts of soluble acrosin activity, could be detected in the isolated acrosomal caps if assayed immediately after isolation in the absence of pAB. However, soluble acrosin activity of high specific activity was obtained after the acrosomal caps were extracted by 10% glycerol buffered at low pH (pH 3.0). The new procedures provide a means to isolate and purify guinea pig sperm apical acrosomal segments rapidly.  相似文献   

9.
Further evidence is presented that the acrosomal proteinase acrosin exists as a zymogen precursor in freshly ejaculated boar spermatozoa. Autoactivation of proacrosin to acrosin takes place optimally at slightly alkaline pH and in the presence of calcium ions. Activation is considerably accelerated by catalytic amounts of trypsin or highly purified acrosin. A significant acceleration of the activation is also achieved by porcine pancreatic and urinary kallikrein, whereas chymotrypsin, plasmin, thrombin or urokinase showed no effect. Activation can be inhibited by p-amino-benzamidine and p-nitrophenyl p'-guanidino-benzoate. Electrophoretic analysis at different stages of activation revealed that during this process various molecular forms of acrosin are produced, apparently by limited proteolysis.  相似文献   

10.
Mammalian eggs are surrounded by two egg coats: the cumulus oophorus and the zona pellucida, which is an extracellular matrix composed of sulfated glycoproteins. The first association of the spermatozoon with the zona pellucida occurs between the zona glycoprotein, ZP3 and sperm receptors, located at the sperm plasma membrane, such as the 95kDa tyrosine kinase-protein. This association induces the acrosome reaction and exposes the proacrosin/acrosin system. Proacrosin transforms itself, by autoactivation, into the proteolytical active form: acrosin. This is a serine protease that has been shown to be involved in secondary binding of spermatozoa to the zona pellucida and in the penetration of mammalian spermatozoa through it. The zona pellucida is a specific and natural substrate for acrosin and its hydrolysis and fertilization can be inhibited by antiacrosin monoclonal antibodies. Moreover, inin vitrofertilization experiments, trypsin inhibitors significantly inhibits fertilization. The use of the silver-enhanced immunogold technique has allowed immunolocalization of the proacrosin/acrosin system in spermatozoa after the occurrence of the acrosome reaction. This system remains associated to the surface of the inner acrosomal membrane for several hours in human, rabbit and guinea-pig spermatozoa while in the hamster it is rapidly lost. In the hamster, the loss of acrosin parallels the capability of the sperm to cross the zona pellucida. Rabbit perivitelline spermatozoa can fertilize freshly ovulated rabbit eggs and retain acrosin in the equatorial and postacrosomal region. These spermatozoa also show digestion halos on gelatin plates that can be inhibited by trypsin inhibitors. This evidence strongly suggests the involvement of acrosin in sperm penetration through the mammalian zona. Recently it was shown, however, that acrosin would not be essential for fertilization. It is likely, then, that such an important phenomenon in the mammalian reproductive cycle would be ensured though several alternative mechanisms.  相似文献   

11.
Two types of trypsin-like proteases, spermosin and acrosin, have been highly purified from spermatozoa of the ascidian (Prochordata) Halocynthia roretzi by a procedure including diethylaminoethylcellulose chromatography, Sephadex G-100 gel filtration, and soybean trypsin inhibitor-immobilized Sepharose 4B chromatography. Each purified preparation was judged to be homogeneous on the basis of chromatographic analysis and sodium dodecyl sulfate-gel electrophoresis. The molecular weights of spermosin and acrosin were estimated to be 27,000 and 32,000-34,000, respectively, by gel electrophoresis in sodium dodecyl sulfate. The isoelectric point of the former was 6.5, while that of the latter was 5.5. Non-ionic detergents, e.g. Brij 35, showed marked stabilizing effects on the purified enzymes. Both of these enzymes had pH optima between 8.5 and 9.0, and their activities were enhanced by the addition of calcium chloride. The enzymes were inhibited by diisopropyl fluorophosphate, phenylmethanesulfonyl fluoride, leupeptin, antipain, soybean trypsin inhibitor, aprotinin, ovomucoid, valyl-prolyl-arginyl-chloromethane, glycyl-valyl-arginyl-chloromethane, p-aminobenzamidine, benzamidine, zinc chloride, and mercuric chloride. Lima bean trypsin inhibitor and tosyl-lysyl-chloromethane strongly inhibited acrosin, but not spermosin. While the substrate specificity of acrosin was rather broad, that of spermosin was very narrow; the latter enzyme hydrolyzed only t-butyloxycarbonyl-valyl-prolyl-arginine 4-methylcoumaryl-7-amide among 12 peptidyl-arginine (or lysine) 4-methylcoumaryl-7-amides tested. Thus, the ascidian spermatozoa possess at least two proteases, acrosin and spermosin; the former shows the properties closely related to those of mammalian acrosin (EC 3.4.21.10), but the latter is a unique type of acrosin-like enzyme in respect to the substrate specificity and inhibitor susceptibility.  相似文献   

12.
Human plasma kallikrein. Purification and preliminary characterization   总被引:1,自引:0,他引:1  
A method is described for the convenient purification of the protease plasma kallikrein from human Cohn fraction IV-1. The enzyme was produced by endogenous activation after acid treatment to remove an inhibitor and was concentrated by the successive use of affinity adsorbents prepared by the immobilization of soybean trypsin inhibitor and aminobenzamidine. The esterase- and kinin-producing activities were enriched about 1100-fold from fraction IV-1.Several properties of plasma kallikrein strengthen the impression that it is related to trypsin, namely, competitive inhibition by benzamidine and the formation of a stable p-guanidinobenzoyl acyl enzyme intermediate. Inactivation by affinity labeling with Z-LysCH2Cl was successful in contrast to the inertness of Tos-LysCH2Cl.  相似文献   

13.
Mammalian fertilization involves various steps in which the participation of specific enzymes has been demonstrated by numerous studies. Acrosin is one of the most widely acrosomal protease in mammalian spermatozoa studied, including bovine; however, other proteases have also been described. A new trypsin-like serine protease named bovine serine protease of 120 kDa (BSp120) and its pre-cursor BSp66 (66 kDa) were identified in bovine spermatozoa. Cytological and ultrastructural immunolocalization studies on BSp120 were performed in live and fixed cells. Immunoflorescence assays with specific polyclonal antibodies revealed localization of BSp120 on the sperm head, with a signal homogeneously distributed over the acrosome resembling a horseshoe. After the acrosome reaction, sperm showed a patchy pattern in the acrosomal cap. Immune electron microscopy analysis indicated that BSp120 is located over the head plasma membrane of capacitated spermatozoa and acrosome reacting spermatozoa. To assess BSp120 function in sperm-oocyte interaction, in vitro fertilization studies were conducted. Oocytes were incubated with spermatozoa pre-treated with anti-BSp120, anti-guinea pig acrosin, and anti-BSp120 plus anti-guinea pig acrosin. Pre-treatment of bovine spermatozoa with antibodies towards each protein did not significantly modify fertilization rates. However, when both anti-acrosin and anti-BSp120 antibodies were simultaneously added, there was a significant decrease in the fertilization rate, suggesting that both enzymes may be required for fertilization. Altogether, the results from the present study described the localization of BSp120 over the acrosome of bovine sperm, and suggest its involvement in fertilization.  相似文献   

14.
The mammalian sperm acrosome reaction is a unique form of exocytosis, which includes the loss of the involved membranes. Other laboratories have suggested the involvement of hydrolytic enzymes in somatic cell exocytosis and membrane fusion, and in the invertebrate sperm acrosome reaction, but there is no general agreement on such an involvement. Although reference was made to such work in this review, the focus of the review was on the evidence (summarized below) that supports or fails to support the importance of certain hydrolytic enzymes to the mammalian sperm acrosome reaction. Because the events of capacitation, the prerequisite for the mammalian acrosome reaction, and of the acrosome reaction itself are not fully understood or identified, it is not yet always possible to determine whether the role of a particular enzyme is in a very late step of capacitation or part of the acrosome reaction. (1) The results of studies utilizing inhibitors of trypsin-like enzymes suggest that such an enzyme has a role in the membrane events of the golden hamster sperm acrosome reaction. The enzyme involved may be acrosin, but it is possible that some as yet unidentified trypsin-like enzyme on the sperm surface may play a role in addition to or instead of acrosin. Results obtained by others with guinea pig, ram and mouse spermatozoa suggest that a trypsin-like enzyme is not involved in the membrane events of the acrosome reaction, but only in the loss of acrosomal matrix. Such results, which conflict with those of the hamster study, may have been due to species differences or the presence of fusion-promoting phospholipase-A or lipids contaminating the incubation media components, and in one case to the possibly damaging effects of the high level of calcium ionophore used. The role of the trypsin-like enzyme in the membrane events of the hamster sperm acrosome reaction may be to activate a putative prophospholipase and/or to hydrolyse an outer acrosomal or plasma membrane protein, thus promoting fusion. A possible role of the enzyme in the vesiculation step rather than the fusion step of the acrosome reaction cannot be ruled out at present. (2) Experiments utilizing inhibitors of phospholipase-A2, as well as the fusogenic lysophospholipid and cis-unsaturated fatty acid hydrolysis products that would result from such enzyme activity, suggests that a sperm phospholipase-A2 is involved in the golden hamster sperm acrosome reaction. Inhibitor and LPC addition studies in guinea pig spermatozoa have led others to the same conclusion. The fact that partially purified serum albumin is important in so many capacitation media may be explained by its contamination with phospholipase-A and/or phospholipids. Serum albumin may also play a role, at least in part, by its removal of inhibitory products released by the action of phospholipase-A2 in the membrane. The demonstration of phospholipase-A2 activity associated with the acrosome reaction vesicles and/or the soluble component of the acrosome of hamster spermatozoa, and the fact that exogenous phospholipase A2 can stimulate acrosome reactions in hamster and guinea pig spermatozoa, also support a role for the sperm enzyme. The actual site or the sites of the enzyme in the sperm head are not yet known. The enzyme may be on the plasma membrane as well as, or instead of, in the acrosomal membranes or matrix. A substrate for the phospholipase may be phosphatidylcholine produced by phospholipid methylation. It is possible that more than one type of ‘fusogen’ is released by phospholipase activity (LPC and/or cis-unsaturated fatty acids, which have different roles in membrane fusion and/or vesiculation. In addition to acting as a potential ‘fusogen’, arachidonic acid released by sperm phospholipase-A2 probably serves as precursor for cyclo-oxygenase or lipoxygenase pathway metabolites, such as prostaglandins and HETES, which might also play a role in the acrosome reaction. Although much evidence points to a role for phospholipase-A2, phospholipase-C found in spermatozoa could also have a role in the acrosome reaction, perhaps by stimulating events leading to calcium gating, as suggested for this enzyme in somatic secretory cells. (3) A Mg2+-ATPase H+-pump is present in the acrosome of the golden hamster spermatozoon. Inhibition of this pump by certain inhibitors of ATPases (but not by those that only inhibit mitochondrial function) leads to an acrosome reaction only in capacitated spermatozoa and only in the presence of external K+. The enzyme is also inhibited by low levels of calcium, and such inhibition, combined with increased outer membrane permeability to H+ and K+, and possibly plasma membrane permeability to H+ (perhaps by the formation of channels), may be part of capacitation and/or the acrosome reaction. The pH of the hamster sperm acrosome has been shown to become more alkaline during capacitation, and such a change may result in the activation of hydrolytic enzymes in the acrosome or perhaps in a change in membrane permeability to Ca2+. A similar Mg2+-ATPase has not been found in isolated boar sperm head membranes. However, that conflicting result could have been due to the use of noncapacitated boar spermatozoa for the preparation of the membranes or to protease modification of the boar sperm enzyme during assay. (4) Inhibition of Na+, K+-ATPase inhibits the acrosome reaction of golden hamster spermatozoa, and the activity of this enzyme increases relatively early during capacitation. A late influx of K+ is important for the acrosome reaction. However, this late influx may not be due to Na+, K+-ATPase, but instead may be due to a K+ permeability increase (possibly via newly formed channels) in the membranes during capacitation. It is suggested in this review that Na+, K+-ATPase has a role early in capacitation rather than directly in the acrosome reaction (although such a role cannot yet be completely ruled out). One possible role for the enzyme in capacitation might be to stimulate glycolysis (which appears to be essential for capacitation and/or the acrosome reaction of hamster and mouse spermatozoa). The function of the influx of K+ just before the acrosome reaction is probably to stimulate, directly or indirectly, the H+-efflux required for the increase in intraacrosomal pH occurring during capacitation. Direct stimulation of the acrosome reaction by a change in membrane potential resulting directly from K+-influx is not a likely explanation for the hamster results. However, the importance of an earlier membrane potential change, due to increased Na+, K+-ATPase during capacitation, and/or of later membrane potential changes resulting from the pH change, cannot be ruled out. Although K+ is required for the hamster acrosome reaction, other workers have reported that K+ inhibits guinea pig sperm capacitation. However, the experimental procedures used in the guinea pig sperm studies raise some questions about the interpretation of those inhibition results. (5) Ca2+-influx is known to be required for the acrosome reaction. Others have suggested that increased Ca2+-influx due to inhibition or stimulation of sperm membrane calcium transport ATPases are involved in the acrosome reaction. There is as yet no direct or indirect biochemical evidence that inhibition or stimulation of such enzymatic activity is involved in the acrosome reaction, and further studies are needed on those questions. (6) I suggest that the hydrolytic enzymes important to the hamster sperm acrosome reaction will also prove important for the acrosome reaction of all other eutherian mammals.  相似文献   

15.
The scope of the present study was to evaluate the presence and activation of proacrosin/acrosin as a tool to determine the acrosomal status of fresh and frozen/thawed dog spermatozoa. Monoclonal antibody C5F11, directed against human acrosin, cross-reacted with dog spermatozoa and labeled the acrosome of both fresh and frozen/thawed dog spermatozoa. Frozen/thawed spermatozoa had a lesser proportion of labeled spermatozoa than fresh spermatozoa (P<0.05). When live spermatozoa were labeled with soybean trypsin inhibitor conjugated with Alexa 488 (SBTI-Alexa 488), the proportion of acrosome-labeled fresh spermatozoa was less than frozen/thawed spermatozoa (P<0.05). By using Western blots and enzymatic activity, frozen/thawed spermatozoa had a greater proportion of active acrosin than fresh spermatozoa. In addition, beta 1,4-galactosyl-transferase (GalT), a plasma membrane bound protein, remained attached to frozen/thawed spermatozoa. Proacrosin is activated during freezing/thawing of dog spermatozoa, and that proacrosin/acrosin may be a good indicator of acrosomal integrity of frozen/thawed spermatozoa.  相似文献   

16.
The benzamidine moiety, a well-known arginine mimetic, has been introduced in a variety of ligands, including peptidomimetic inhibitors of trypsin-like serine proteases. According to their primary substrate specificity, the benzamidine residue interacts with the negatively charged aspartate at the bottom of the S1 pocket of such enzymes. Six series of benzamidine derivatives (173) were synthesized and evaluated as inhibitors of two prototype serine proteases, that is, bovine trypsin and human thrombin. As a further target, human matriptase-2, a recently discovered type II transmembrane serine protease, was investigated. Matriptase-2 represents an important regulatory protease in iron homeostasis by down-regulation of the hepcidin expression. Compounds 173 were designed to contain a fixed sulfamoyl benzamidine moiety as arginine mimetic and a linker-connected additional substructure, such as a tert-butyl ester, carboxylate or second benzamidine functionality. A systematic mapping approach was performed with these inhibitors to scan the active site of the three target proteases. In particular, bisbenzamidines, able to interact with both the S1 and S3/S4 binding sites, showed notable affinity. In branched bisbenzamidines 6673 containing a third hydrophobic residue, opposite effects of the stereochemistry on trypsin and thrombin inhibition were observed.  相似文献   

17.
Mammalian sperm acrosomes contain a trypsin-like protease called acrosin which causes limited and specific hydrolysis of the extracellular matrix of the mammalian egg, the zona pellucida. Acrosin was localized on hamster, guinea-pig and human sperm using monoclonal and polyclonal antibodies to human acrosin labelled with colloidal gold. This was visualized directly with transmission electron microscopy, and with light and scanning microscopy after silver enhancement of the colloidal gold probe. Four distinct labelling patterns were found during capacitation and the acrosome reaction in hamster and guinea-pig spermatozoa, and three patterns were found in human spermatozoa. In the hamster, acrosin was not detected on the inner acrosomal surface after the completion of the acrosome reaction, thus correlating with the observation that hamster spermatozoa lose the ability to penetrate the zona after the acrosome reaction. With guinea-pig and human spermatozoa, acrosin was still detected after the completion of the acrosome reaction, thus correlating with the observation that acrosome reacted guinea-pig spermatozoa bind to and penetrate the zona pellucida.  相似文献   

18.
Evidence has accumulated suggesting multiple roles of acrosin in fertilization, including its participation in early steps of gamete recognition and binding. However, the implication of acrosin in many of these processes is not compatible with its presumptive sequestration within the sperm acrosome until a late phase of the acrosome reaction. In an earlier study (J. Tesarik, J. Drahorad, J. Peknicova, 1988, Fertil. Steril. 50, 133-141), we reported the binding of an anti-acrosin monoclonal antibody (MO-AKR.1) to the plasma membrane overlying the acrosome of human spermatozoa starting the acrosome reaction. In this study, we characterized further this antibody with regard to its reactivity with different forms of acrosin and found that it recognizes specifically an active form of this enzyme and does not react with its proenzyme form. MO-AKR.1 was thus used as a probe for in situ analysis of acrosin activation during the acrosome reaction. When suspensions of living spermatozoa were incubated with MO-AKR.1 and with another monoclonal antibody (T6) directed to an intra-acrosomal cytoskeletal protein, significantly more spermatozoa reacted with the former antibody than with the latter; this indicated that some of the spermatozoa showing acrosin immunoreactivity carried activated acrosin on the cell surface, while their acrosome was still impermeable to intra-acrosomal-directed probes. The size of this particular sperm subpopulation was increased by the action of follicular fluid (a natural acrosome reaction inducer), but not ionophore A23187 (an artificial acrosome reaction inducer); it corresponded to the proportion of spermatozoa showing acrosin immunoreactivity on the plasma membrane but neither intra-acrosomal staining nor perceptible membrane perturbations when examined by immunoelectron microscopy. When spermatozoa were pre-incubated with protease inhibitors before the addition of acrosome reaction-inducing agents, the percentage of cells binding MO-AKR.1 was markedly reduced. These data suggest that limited acrosin activation on the sperm plasma membrane is an early event in the physiological acrosome reaction.  相似文献   

19.
The kinetics of proacrosin activation and release from guinea pig spermatozoa during the nonsynchronous acrosome reaction were studied. Epididymal spermatozoa were incubated at 37 degrees C in a defined medium (pH 7.8) containing 1.7 mM Ca2+. After 195 min, 78% of the motile spermatozoa had undergone the acrosome reaction as determined by light microscopy. Acrosin and proacrosin levels in the spermatozoa and medium were measured at the beginning of the incubation period. Most of the total acrosin activity (78%) was associated with the spermatozoa, of which greater than 90% was in the form of proacrosin. Proacrosin represented a small, stable fraction (23%) of the total acrosin in the medium; it did not activate to acrosin while in the medium. After 195 min, a decrease in sperm-associated total acrosin (42%; p less than 0.05) was accompanied by an increase in the total acrosin level in the medium (115%; P less than 0.05). No change in the relative proacrosin content (percent of total acrosin) was evident in either medium or spermatozoa. Additional experiments quantified acrosin and proacrosin during the progression of the acrosome reaction. Both the loss of sperm-associated total acrosin and the increase in total acrosin levels in the medium were highly correlated with the fraction of acrosome-reacted spermatozoa (r = 0.954 and 0.922, respectively; P less than 0.001). However, the rate of acrosin appearance in the medium was only 60% (P less than 0.001) of the rate of acrosin loss from the spermatozoa. The fractional proacrosin content of spermatozoa (94%) and medium (31%) remained unchanged during the acrosome reaction (r = 0.15 and 0.30, respectively; P greater than 0.1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
A high-molecular-weight form of acrosin (alpha-acrosin, EC 3.4.21.10) was extracted from spermatozoa obtained from frozen semen and purified over 300-fold. Purification was effected by sequential use of Sephadex G-150, CM-cellulose and DEAE-cellulose chromatography. Properties of human acrosin were compared with those of human pancreatic trypsin. The molecular weight (Mr) of acrosin (70000) was greater than that of trypsin (Mr 21000). Isoelectric points for acrosin (pI = 9.0) and trypsin (pI = 8.2) were also different. alpha-N-Benzoyl-L-arginine ethyl ester was hydrolysed 50% more rapidly by acrosin than by trypsin. Acrosin had similar kcat. values for the hydrolysis of esters with different acylating groups (i.e. benzoyl-L-arginine and p-tosyl-L-arginine esters). In contrast, trypsin had dissimilar kcat. values for the hydrolysis of esters with different acylating groups. Kinetic data argue against deacylation as the rate-limiting step in ester hydrolysis by acrosin. Acrosin was less sensitive than trypsin to inhibition by 7-amino-1-chloro-3-L-tosylamidoheptan-2-one ('TLCK'), di-isopropyl fluorophosphate and soya-bean trypsin inhibitor. D-Fructose and D-arabinose inhibited acrosin, but had no effect on trypsin. The data indicate that definite differences exist between human acrosin and trypsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号