首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A quantitative study of the operation of Muller's Ratchet for the accumulation of deleterious genes in an asexually reproducing population is made. For a population of size N, in which deleterious mutations occur at rate λ/genome/ generation, and the relative fitness of an individual with k mutants is (1 ? s)k, the most important parameter is n0 = Ne, where θ = λs. If n0 is large (?25), deleterious mutations will accumulate very slowly, and independently of each other; if n0 is small (<1), the rate of accumulation of deleterious mutations will be greater than a natural population could plausibly bear; an estimate of the speed of the Ratchet for intermediate values of n0 is made. It is pointed out that the frequency distribution for the numbers of individuals carrying k mutants will retain its shape, but will move bodily to the right at the same average speed as the Ratchet. When favourable mutations also occur, the frequency distributions can move right of left; an estimate of the probability that any particular step is right or left is made, and it is shown that, for a given net rate of arrisal of deleterious mutations, the greater the rate of beneficial mutation, the greater the chance that beneficial mutations will accumulate.  相似文献   

2.
Sexual populations will accumulate favourable mutations more rapidly than asexual populations. This is true if it is often the case that two different favourable mutations can be found to be spreading simultaneously through populations. It is argued here that sexual species will incorporate single favourable mutations more quickly than asexual “species”, if the latter are multi-clonal. Thus one mutation can spread to fixation within a sexual species but in an asexual “species” with Nc clones at least Nc mutations must occur if the mutation is to be subsequently found in every member of the “species”. Asexual “species” may minimise this disadvantage by evolving polyploidy or occasional episodes of hybridisation. Both are in fact common in asexual “species”.  相似文献   

3.
Mini- and microsatellites, comprising tandemly repeated short nucleotide sequences, are abundant dispersed repetitive elements that are ubiquitous in eukaryotic genomes. In humans and other bisexual species hypervariable mini- and microsatellite loci provide highly informative systems for monitoring of germline and somatic instability. However, little is known about the mechanisms by which these loci mutate in species that lack effective genetic recombination. Here, multilocus DNA fingerprinting was used to study M13 minisatellite and (GATA) n microsatellite instability in the parthenogenetic Caucasian rock lizard Darevskia unisexualis (Lacertidae). DNA fingerprinting of 25 parthenogenetic families, from six isolated populations in Armenia (comprising a total of 84 siblings), using the oligonucleotide (GATA)4 as a hybridization probe, revealed mutant fingerprinting phenotypes in 13 siblings that differed from their mothers in several restriction DNA fragments. In three families (8 siblings), the mutations were present in the germline. Moreover, the mutant fingerprint phenotypes detected in siblings were also present in population DNA samples. No intrafamily variations in DNA fingerprint patterns were observed with the M13 minisatellite probe. Estimates of the mutation rate for (GATA) n microsatellite loci in D. unisexualis showed that it was as high as that seen in some bisexual species, reaching 15% per sibling or 0.95% per microsatellite band. Furthermore, in one case, a somatic (GATA) n microsatellite mutation was observed in an adult lizard. These findings directly demonstrate that mutations in (GATA) n microsatellite loci comprise an important source of genetic variation in parthenogenetic populations of D. unisexualis.Communicated by G. P. Georgiev  相似文献   

4.
5.
Although Saccharomyces cerevisiae can form petite mutants with deletions in mitochondrial DNA (mtDNA) (ρ) and can survive complete loss of the organellar genome (ρo), the genetic factor(s) that permit(s) survival of ρ and ρo mutants remain(s) unknown. In this report we show that a function associated with the F1-ATPase, which is distinct from its role in energy transduction, is required for the petite-positive phenotype of S. cerevisiae. Inactivation of either the α or β subunit, but not the γ, δ, or ɛ subunit of F1, renders cells petite-negative. The F1 complex, or a subcomplex composed of the α and β subunits only, is essential for survival of ρo cells and those impaired in electron transport. The activity of F1 that suppresses ρo lethality is independent of the membrane Fo complex, but is associated with an intrinsic ATPase activity. A further demonstration of the ability of F1 subunits to suppress ρo lethality has been achieved by simultaneous expression of S. cerevisiae F1α and γ subunit genes in Kluyveromyces lactis– which allows this petite-negative yeast to survive the loss of its mtDNA. Consequently, ATP1 and ATP2, in addition to the previously identified AAC2, YME1 and PEL1/PGS1 genes, are required for establishment of ρ or ρo mutations in S. cerevisiae. Received: 20 March 1999 / Accepted: 18 July 1999  相似文献   

6.
The benefits and detriments of recombination for adaptive evolution have been studied both theoretically and experimentally, with conflicting predictions and observations. Most pertinent experiments examine recombination's effects in an unchanging environment and do not study its genomewide effects. Here, we evolved six replicate populations of either highly recombining R+ or lowly recombining R? E. coli strains in a changing environment, by introducing the novel nutrients L‐arabinose or indole into the environment. The experiment's ancestral strains are not viable on these nutrients, but 130 generations of adaptive evolution were sufficient to render them viable. Recombination conferred a more pronounced advantage to populations adapting to indole. To study the genomic changes associated with this advantage, we sequenced the genomes of 384 clones isolated from selected replicates at the end of the experiment. These genomes harbour complex changes that range from point mutations to large‐scale DNA amplifications. Among several candidate adaptive mutations, those in the tryptophanase regulator tnaC stand out, because the tna operon in which it resides has a known role in indole metabolism. One of the highly recombining populations also shows a significant excess of large‐scale segmental DNA amplifications that include the tna operon. This lineage also shows a unique and potentially adaptive combination of point mutations and DNA amplifications that may have originated independently from one another, to be joined later by recombination. Our data illustrate that the advantages of recombination for adaptive evolution strongly depend on the environment and that they can be associated with complex genomic changes.  相似文献   

7.
Mutations can arise in static populations of cells that are subjected to nonlethal selective pressure, a phenomenon that has been called ‘adaptive mutation’. This phenomenon has been extensively studied in FC40, a strain ofEscherichia coli that cannot metabolize lactose (Lac) but that reverts to lactose utilization (Lac+) when lactose is its sole energy and carbon source. The adaptive Lac+ mutations arise by two mutational processes: a recombination-dependent process that is highly active on the episome carrying the Lac allele, and an unknown process that affects the whole genome. Most of the Lac+ mutations are due to the first process, which also produces nonselected mutations on the F′ episome. However, about 10% of the Lac+ mutations arise in a subpopulation of cells that experience a period of transient hypermutation. Although minor contributors to any one type of mutation, the hypermutators account for nearly all cases of multiple mutations. The evolutionary implications of these results are: (i) DNA synthesis associated with recombination may be an important source of spontaneous mutation, particularly in cells that are not actively growing; (ii) the efficient mutational mechanism that occurs on the episome could result in the horizontal transfer of new alleles among species that carry and exchange conjugal plasmids; and (iii) a subpopulation of transient hypermutators could be a source of multiple mutations that would allow for rapid adaptive evolution under adverse conditions.  相似文献   

8.
Viral recombination can dramatically impact evolution and epidemiology. In viruses, the recombination rate depends on the frequency of genetic exchange between different viral genomes within an infected host cell and on the frequency at which such co-infections occur. While the recombination rate has been recently evaluated in experimentally co-infected cell cultures for several viruses, direct quantification at the most biologically significant level, that of a host infection, is still lacking. This study fills this gap using the cauliflower mosaic virus as a model. We distributed four neutral markers along the viral genome, and co-inoculated host plants with marker-containing and wild-type viruses. The frequency of recombinant genomes was evaluated 21 d post-inoculation. On average, over 50% of viral genomes recovered after a single host infection were recombinants, clearly indicating that recombination is very frequent in this virus. Estimates of the recombination rate show that all regions of the genome are equally affected by this process. Assuming that ten viral replication cycles occurred during our experiment—based on data on the timing of coat protein detection—the per base and replication cycle recombination rate was on the order of 2 × 10−5 to 4 × 10−5. This first determination of a virus recombination rate during a single multi-cellular host infection indicates that recombination is very frequent in the everyday life of this virus.  相似文献   

9.

Several genetic variants of the cd1- and ef-helices of the Qo site of mitochondrial cytochrome b have been associated with bifenazate resistance in the spider mite Tetranychus urticae, an important crop pest around the world. Maternal inheritance of bifenazate resistance has provided strong evidence for the involvement of many of these mutations alone or in combination. A number of populations highly resistant to bifenazate were uncovered that carried the G126S substitution in combination with other target-site mutations. This G126S mutation has therefore been investigated in several studies in the context of resistance evolution and the development of diagnostic markers. However, experimental data that link bifenazate resistance with the presence of the G126S mutation without additional cd1- and ef-helices mutations, remain very limited. Here, we genotyped 38 T. urticae field populations for cytochrome b and uncovered nine field populations with a fixed or segregating G126S substitution without other target-site mutations in the conserved cd1- and ef-helices of the cytochrome b Qo pocket. Toxicity bioassays showed that all nine field populations were very susceptible to bifenazate, providing strong evidence that G126S alone does not confer bifenazate resistance. These findings also implicate that previous T. urticae populations with G126S found to be low to moderately resistant to bifenazate, evolved alternative mechanisms of resistance, and more importantly, that this mutation cannot be used as a molecular diagnostic for bifenazate resistance.

  相似文献   

10.
The rarity of exclusively asexual species is often attributed to Muller's Ratchet. This supposes that because asexual populations cannot recreate individuals with fewer mutations than the currently least-loaded line, mutations will accumulate in such isolates. However, because the computer models that corroborate this theory have assumed isolate immortality, it is possible that mutations will accumulate only if there is “soft” selection acting on relative, rather than absolute, fitness. Here we, therefore, describe several models in which 200 asexual organisms randomly selected from an infinite population in genetic equilibrium under “hard” selection (acting through absolute fitness), were followed for 100 generations. When there were no limits to the fluctuations in population size, the deterministic distribution of mutations per individual was maintained for 100 (as well as for 200) generations. If population growth was limited by a proportional decrease in fertility of the whole isolate, then the isolates tended to become extinct. The rate of extinction was inversely related to maximum isolate size. When resource limitation at maximum population size had an extra deleterious effect on mutants, then isolates shed the mutant classes. Mutations accumulated (ad inifinitum) in immortal isolates whose population numbers were kept constant by proportionately increasing or decreasing each class's size whenever isolate size ≠ 200. Muller's Ratchet, therefore, operates only when mutations affect the outcome of intraspecific contests, but not the organisms' intrinsic ability to survive in the ecosystem.  相似文献   

11.
A synthetic polynucleotide (TG)n was hybridized to equine DNA digested with HinfI and hypervariable hybridization patterns were obtained. Mendelian inheritance of these DNA fingerprinting patterns was confirmed by pedigree analysis. Estimates of the probabilities of identical band patterns in unrelated individuals of different breeds (Swedish Trotters, North Swedish Trotters, Thoroughbreds and Arabians) were in the range 1 times 10-4-7 times 10-6 The variability derived with the (TG)n, probe in horses was higher than what we obtained with several other commmonly used probes for DNA fingerprinting. Individuals within breeds tended to be more similar to each other with regard to DNA fingerprint pattern than to individuals of other breeds. Moreover, a parsimony analysis made on the basis of the hybridization patterns gave clustering of individuals within breeds. The possibility of using hypervariable probes for the identification of breed-specific characters is discussed.  相似文献   

12.
  • 1.1. The binding of O2 to goldfish haemoglobin showed a strong pH dependence P50=5.5 mmHg; n = 2.4 at pH 8.0 and P50 = 170 mmHg; n = 1.0 at pH 5.5 such that the protein is only 50% saturated in a solution of air equilibrated buffer at pH 5.5.
  • 2.2. The binding of CO is cooperative at high pH (n = 2.8; L = 1000; KR = 0.1 μM; KT = 4 μM) and non-cooperative (n = 1) at pH 5.5.
  • 3.3. The rate of O2 dissociation is extremely fast and pH dependent; being 30 sec−1 at pH 8.0 and 400 sec−1 at pH 6.0 at 1°C. At 23°C the rate of this process is too fast to obtain accurate data using stopped-flow techniques.
  • 4.4. Partial photolysis of the oxyhaemoglobin species leads to homogeneous recombination kinetics at pH 8.0 with an associated rate constant of 4.7 × 107 M−1 sec−1. At pH < 7.5 the recombination process occurs in two steps. One rate is equal to that observed at pH 8.0. The slower process is favoured at low pH.
  • 5.5. Photolysis of the CO haemoglobin complex indicates that, at high pH, combination of CO with deoxyhaemoglobin is cooperative, whilst recombination with Hb(CO)3 is non-cooperative and occurs at a rate of 1.2 × 106 M−1 sec−1.
  • 6.6. At neutral pH recombination of CO with partially linganded haemoglobin occurs in a two-step process. The proportion contributed by each of these two steps in pH dependent.
  • 7.7. The functioning of this Root effect haemoglobin is discussed in terms of the two state-model of cooperativity in which the αβ chain heterogeneity is minimal
  相似文献   

13.
Since genome size and the number of duplicate genes observed in genomes increase from haploid to diploid organisms, diploidy might provide more evolutionary probabilities through gene duplication. It is still unclear how diploidy promotes genomic evolution in detail. In this study, we explored the evolution of segmental gene duplication in haploid and diploid populations by analytical and simulation approaches. Results show that (1) under the double null recessive (DNR) selective model, given the same recombination rate, the evolutionary trajectories and consequences are very similar between the same-size gene-pool haploid vs. diploid populations; (2) recombination enlarges the probability of preservation of duplicate genes in either haploid or diploid large populations, and haplo-insufficiency reinforces this effect; and (3) the loss of duplicate genes at the ancestor locus is limited under recombination while under complete linkage the loss of duplicate genes is always random at the ancestor and newly duplicated loci. Therefore, we propose a model to explain the advantage of diploidy: diploidy might facilitate the increase of recombination rate, especially under sexual reproduction; more duplicate genes are preserved under more recombination by originalization (by which duplicate genes are preserved intact at a special quasi-mutation-selection balance under the DNR or haplo-insufficient selective model), so genome sizes and the number of duplicate genes in diploid organisms become larger. Additionally, it is suggested that small genomic rearrangements due to the random loss of duplicate genes might be limited under recombination.USUALLY genome size becomes larger from haploid to diploid organisms (Lynch and Conery 2003), and so does the number of duplicate genes observed in genomes (Zhang 2003). It is extensively hypothesized that diploidy might facilitate the preservation and accumulation of duplicate genes, but it is still unclear how diploidy supports the evolution of duplicate genes in detail. The superiority of diploidy is classically attributed to preventing expression of deleterious mutations (Crow and Kimura 1965), but it is also argued that the sheltering of deleterious mutations cannot adequately explain the advantages of diploidy (Perrot et al. 1991).Recombination is a common phenomenon in all three kingdoms of life, Bacteria, Eukarya, and Archaea. It has been reported that recombination influences the loss of duplicate genes (Zhang and Kishino 2004; Xue et al. 2010). In diploid organisms, if recombination between the ancestor locus and the newly duplicated locus is free, the rate of recombination is maximally 0.5, which is commonly observed especially when the two loci are located on different chromosomes. Although recombination should not be regarded as an exception in haploid organisms (Fraser et al. 2007), recombination events usually occur more frequently in diploid populations than they do in haploid populations. In other words, diploidy might facilitate the occurrence of recombination. The difference of recombination behaviors between haploid and diploid organisms is an obvious and important feature during genomic evolution.In our recent studies of genomic duplication, we proposed a new possible way of preserving and accumulating duplicate genes in genomes—originalization (Xue and Fu 2009a). As is well known, for a locus in an infinite diploid population, the frequencies of wild-type and degenerative alleles will move to an equilibrium under purifying selection and mutation, which is known as the mutation–selection balance. After genomic duplication, under two simple selective models, double null recessive (DNR, under which valid individuals require at least one active wild-type allele on the ancestor and newly duplicated loci) and haplo-insufficient (HI or partial dominant, under which valid individuals require at least two active wild-type alleles on both loci) models, a special equilibrium of allele frequencies at the ancestor and newly duplicated loci will be reached under recombination, in which the frequency of wild-type allele is kept high at both loci. Under the HI selective model this balance becomes so stable and flexible that the fixation of a degenerative allele at one of these two loci (or the balance being broken) becomes very difficult even in a modest population (Xue and Fu 2009a,b). However, if the two loci are tightly linked (recombination rate r = 0), this balance of allele frequencies does not appear. As r increases, the balance becomes more stable and the frequency of the wild-type allele at two loci becomes higher. High frequency of the wild-type allele at both loci means that duplicate genes are preserved intact in genomes, so this phenomenon was named originalization.Although many duplicate genes originated from genomic duplications in some species, such as yeast, maize, and fish (Li et al. 2005), those from segmental duplications are also very popular (Zhang et al. 2000; Leister 2004). In haploid populations, most duplication events are small segmental duplications. Therefore, to understand genomic evolution comprehensively, it is necessary to explore the evolution of segmental genomic duplication.Lynch et al. (2001) and Tanaka et al. (2009) have studied the evolution of segmental gene duplication in diploid populations theoretically. However, in this study, we further compared the evolution of segmental gene duplication in haploid vs. diploid populations by numerical and simulation approaches under the DNR and HI selective models. We observed that haploid and diploid populations with the same-size gene pool are very similar under the DNR model and the same recombination rate. Recombination enlarges the probability of preservation of duplicate genes in either haploid or diploid populations via originalization, and haplo-insufficiency reinforces this effect. The loss of duplicate genes at the ancestor locus might be limited under recombination, while under complete linkage, the loss of duplicate genes is random at the ancestor and newly duplicated loci. According to these results, we propose a model with which to explain the revolutionary genomic transition from haploidy to diploidy.  相似文献   

14.
Summary This paper describes a method of screening mutagenised populations of an E. coli gal A gal B F-prime merodiploid for mutants defective in recombination. The method relies on scoring colonies on Eosin-Methylene Blue agar that have fewer than normal numbers of Gal+ papillae. With a suitable choice of gal mutations most of the papillae arise by recombination and some of those colonies with less than normal numbers prove to be defective in some aspect of recombination or DNA repair. In addition to strains carrying mutations that can be ascribed to known loci, several novel mutant phenotypes were identified.  相似文献   

15.
The human mutation rate is an essential parameter for studying the evolution of our species, interpreting present-day genetic variation, and understanding the incidence of genetic disease. Nevertheless, our current estimates of the rate are uncertain. Most notably, recent approaches based on counting de novo mutations in family pedigrees have yielded significantly smaller values than classical methods based on sequence divergence. Here, we propose a new method that uses the fine-scale human recombination map to calibrate the rate of accumulation of mutations. By comparing local heterozygosity levels in diploid genomes to the genetic distance scale over which these levels change, we are able to estimate a long-term mutation rate averaged over hundreds or thousands of generations. We infer a rate of 1.61 ± 0.13 × 10−8 mutations per base per generation, which falls in between phylogenetic and pedigree-based estimates, and we suggest possible mechanisms to reconcile our estimate with previous studies. Our results support intermediate-age divergences among human populations and between humans and other great apes.  相似文献   

16.
The major histocompatibility complex (MHC) harbours some of the most polymorphic loci in vertebrate genomes. MHC genes are thought to be subject to some form of balancing selection, most likely pathogen‐mediated selection. Hence, MHC genes are excellent candidates for exploring adaptive processes. In this study, we investigated the genetic variation at exon 2 of the DRB class II MHC locus in 191 alpine chamois (Rupicapra rupicapra) from 10 populations in the eastern Alps of Italy. In particular, we were interested in distinguishing and estimating the relative impact of selective and demographic factors, while taking into account the confounding effect of recombination. The extremely high dn/ds ratio and the presence of trans‐species polymorphisms suggest that a strong long‐term balancing selection effect has been operating at this locus throughout the evolutionary history of this species. We analysed patterns of genetic variation within and between populations, and the mitochondrial D‐loop polymorphism patterns were analysed to provide a baseline indicator of the effects of demographic processes. These analyses showed that (i) the chamois experienced a demographic decline in the last 5000–30 000 years, most likely related to the postglacial elevation in temperature; (ii) this demographic process can explain the results of neutrality tests applied to MHC variation within populations, but cannot justify the much weaker divergence between populations implied by MHC as opposed to mitochondrial DNA; (iii) similar sets of divergent alleles are probably maintained with similar frequencies by balancing selection in different populations, and this mechanism is also operating in small isolated populations, which are strongly affected by drift.  相似文献   

17.

Background

Speciation corresponds to the progressive establishment of reproductive barriers between groups of individuals derived from an ancestral stock. Since Darwin did not believe that reproductive barriers could be selected for, he proposed that most events of speciation would occur through a process of separation and divergence, and this point of view is still shared by most evolutionary biologists today.

Results

I do, however, contend that, if so much speciation occurs, the most likely explanation is that there must be conditions where reproductive barriers can be directly selected for. In other words, situations where it is advantageous for individuals to reproduce preferentially within a small group and reduce their breeding with the rest of the ancestral population. This leads me to propose a model whereby new species arise not by populations splitting into separate branches, but by small inbreeding groups "budding" from an ancestral stock. This would be driven by several advantages of inbreeding, and mainly by advantageous recessive phenotypes, which could only be retained in the context of inbreeding. Reproductive barriers would thus not arise as secondary consequences of divergent evolution in populations isolated from one another, but under the direct selective pressure of ancestral stocks. Many documented cases of speciation in natural populations appear to fit the model proposed, with more speciation occurring in populations with high inbreeding coefficients, and many recessive characters identified as central to the phenomenon of speciation, with these recessive mutations expected to be surrounded by patterns of limited genomic diversity.

Conclusions

Whilst adaptive evolution would correspond to gains of function that would, most of the time, be dominant, this type of speciation by budding would thus be driven by mutations resulting in the advantageous loss of certain functions since recessive mutations very often correspond to the inactivation of a gene. A very important further advantage of inbreeding is that it reduces the accumulation of recessive mutations in genomes. A consequence of the model proposed is that the existence of species would correspond to a metastable equilibrium between inbreeding and outbreeding, with excessive inbreeding promoting speciation, and excessive outbreeding resulting in irreversible accumulation of recessive mutations that could ultimately only lead to extinction.

Reviewer names

Eugene V. Koonin, Patrick Nosil (nominated by Dr Jerzy Jurka), Pierre Pontarotti  相似文献   

18.
Recombination is critical both for accelerating adaptation and purging deleterious mutations. Chromosomal inversions can act as recombination modifiers that suppress local recombination in heterozygotes and thus, under some conditions, are predicted to accumulate such mutations. In this study, we investigated patterns of recombination, transposable element abundance, and coding sequence evolution across the genomes of 1,445 individuals from three sunflower species, as well as within nine inversions segregating within species. We also analyzed the effects of inversion genotypes on 87 phenotypic traits to test for overdominance. We found significant negative correlations of long terminal repeat retrotransposon abundance and deleterious mutations with recombination rates across the genome in all three species. However, we failed to detect an increase in these features in the inversions, except for a modest increase in the proportion of stop codon mutations in several very large or rare inversions. Consistent with this finding, there was little evidence of overdominance of inversions in phenotypes that may relate to fitness. On the other hand, significantly greater load was observed for inversions in populations polymorphic for a given inversion compared to populations monomorphic for one of the arrangements, suggesting that the local state of inversion polymorphism affects deleterious load. These seemingly contradictory results can be explained by the low frequency of inversion heterozygotes in wild sunflower populations, apparently due to divergent selection and associated geographic structure. Inversions contributing to local adaptation represent ideal recombination modifiers, acting to facilitate adaptive divergence with gene flow, while largely escaping the accumulation of deleterious mutations.  相似文献   

19.
The fast accumulation of mutant mouse strains in recent years has provided an invaluable resource for phenotype-based genetic screens. However, study of lymphoid phenotypes can be obscured or impractical if homozygous mutations cause early embryonic defects. To aid phenotype screening of germ line mutations in the lymphoid system, we developed a method to induce loss of heterozygosity (LOH) in developing lymphocytes through chromosome deletion. Chromosome deletion was triggered by Cre/loxP-mediated inverse sister chromatid recombination in the G2/M phase of the cell cycle, leading to the generation of daughter cells missing part of or the entire recombinant chromosome. We show that the resulting cells were viable and capable of additional rounds of cell division, thus providing raw materials for subsequent phenotypic assessment. We used the recombination system to induce LOH at the E2A locus in developing B cells. A significant loss of pro-B and pre-B cells was observed when the wild-type allele was removed by chromosome deletion from the E2A heterozygous mice, a result consistent with the required role for E2A in B cell development. We also demonstrated the effectiveness of Cre-mediated chromosome deletion in the LOH assay for HEB function in T cell development. Thus, the Cre-mediated chromosome deletion provides a new and effective method for genome-wide assessment of germ line mutations in the lymphoid system.  相似文献   

20.
Abundance and degree of dispersion of genomic d(GA) n ·d(TC) n sequences   总被引:5,自引:0,他引:5  
Summary The abundance of d(GA) n ·d(TC) n tracts was determined in genomes of rodents and primates. Dot blot hybridization assays revealed that such tracts constitute 0.40%, 0.30%, and 0.40%, respectively, of the rat, hamster, and mouse genomes, but only 0.07% and 0.05% of the human and monkey genomes. A plaque hybridization assay of rat and human genomic libraries showed that 37% and 16%, respectively, of the recombinant phages in these libraries contain d(GA) n ·d(TC) n tracts. A survey of sequences stored in the GenBank data bank showed that a significant fraction of the stored rodent genes (about 2.0%) contain long d(GA) n ·d(TC) n tracts (n> 30) with <10% mismatching. The primate genes contain only shorter tracts (n<15) with <10% mismatching. In addition, the rodent and the primate genes contain tracts with larger degrees of mismatching. The chicken, which represents an entirely different branch of the evolutionary tree, was found to be as low in d(GA) n ·d(TC) n tracts as the primates. It is suggested that a common ancestor of the rodents has acquired the ability to amplify d(GA) n ·d(TC) n tracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号