首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anal papillae of Drosophila melanogaster larvae showed strong developmental plasticity in media with different osmotic pressure. The size of the papillae decreased with increasing salt content of the medium, which supports the hypothesis of its absorptive function. We showed that CI-transport at the site of the anal papillae decreased with increasing salt concentration, which also supports the hypothesis, that the function of anal papillae in osmoregulation is absorption at low salt content and not excretion at high salt content. The inactive area between the anal papillae increased with increased salt concentration, and thus contributed to the decreasing size of the anal papillae. Remnants of this area in pupae were mistakenly measured as anal papillae in a study on salt adaptation by Waddington (1959).  相似文献   

2.
Summary A single locus model of the interaction between natural selection and artificial selection for a quantitative character in a finite population, assuming heterozygote superiority in natural fitness but additive action on the character, has been studied using transition probability matrices.If natural selection is strong enough to create a selection plateau in which genetic variance declines relatively slowly, then the total response to artificial selection prior to the plateau will be much less than that expected in the absence of natural selection, and the half-life of response will be shorter. Such a plateau is likely to have a large proportion, if not all, of the original genetic variance still present. In selection programmes using laboratory animals, it seems likely that the homozygote favoured by artificial selection must be very unfit before such a plateau will occur. A significant decrease in population fitness as a result of artificial selection does not necessarily imply that the metric character is an important adaptive character.These implications of this model of natural selection are very similar to those derived by James (1962) for the optimum model of natural selection. In fact, there seems to be no aspect of the observable response to artificial selection that would enable anyone to distinguish between these two models of natural selection.  相似文献   

3.
Summary The effect of simulated opposing natural selection on the response to mass selection for 18-day pupa weight of Tribolium castaneum was studied for 10 generations of selection. Natural selection was simulated in replicated treatment lines by imposing a negative relationship between mid-parent genetic value for pupa weight and fertility. Responses to selection and realized heritabilities were smaller (P < 0.05 and P < 0.10, respectively) for the treatment lines than for control lines under selection for pupa weight only. One treatment, line E3G1, reached an intermediate selection plateau by generation 10, and responded linearly to 4 generations of artificial selection after natural selection had been discontinued. Possible explanations for the different behaviors of the replicate lines E3G1 and E3G2 were also discussed.  相似文献   

4.
Meffert LM  Regan JL  Hicks SK  Mukana N  Day SB 《Genetica》2006,128(1-3):419-427
When a population faces long-term inbreeding, artificial selection, in principle, can enhance natural selection processes for purging the exposed genetic load. However, strong purge pressures might actually decrease fitness through the inadvertent fixation of deleterious alleles and allelic combinations. We tested lines of the housefly (Musca domestica L.) for the effectiveness of artificial selection to promote the adaptation to small population size. Specifically, replicate populations were held at average census sizes of 54 for nine generations or 30 for 14 generations while being subjected to artificial selection pressure for increased fitness in overall mating propensity (i.e., the proportion of virgin male–female pairs initiating copulation within 30 min), while also undergoing selection to create differences among lines in multivariate components of courtship performance. In the 14-generation experiment, a subset of the lines were derived from a founder-flush population (i.e., derived from three male–female pairs). In both experiments, we also maintained parallel non-selection lines to assess the potential for natural purging through serial inbreeding alone. Sub-populations derived from a stock newly derived from the wild responded to artificial selection for increased mating propensity, but only in the short-term, with eventual rebounds back to the original levels. Serial inbreeding in these lines simply reduced mating propensity. In sub-populations derived from the same base population, but 36 generations later, both artificial selection and serial inbreeding increased mating propensity, but mainly to restore the level found upon establishment in the laboratory. Founder-flush lines responded as well as the non-bottlenecked controls, so we base our major conclusions on the comparisons between fresh-caught and long-term laboratory stocks. We suggest that the effectiveness of the alternative purge protocols depended upon the amount of genetic load already exposed, such that prolonged periods of relaxed or altered selection pressures of the laboratory rendered a population more responsive to purging protocols.  相似文献   

5.
Diploid hybrid speciation in plants is often accompanied by rapid ecological divergence between incipient neospecies and their parental taxa. One plausible means by which novel adaptation in hybrid lineages may arise is transgressive segregation, that is, the generation of extreme phenotypes that exceed those of the parental lines. Early generation (BC2) hybrids between two wild, annual sunflowers, Helianthus annuus and Helianthus petiolaris, were used to study directional selection on transgressive characters associated with the origin of Helianthus paradoxus, a diploid hybrid species adapted to extremely saline marshes. The BC2 plants descended from a single F1 hybrid backcrossed toward H. petiolaris. The strength of selection on candidate adaptive traits in the interspecific BC2 was measured in natural H. paradoxus salt marsh habitat. Positive directional selection was detected for leaf succulence and Ca uptake, two traits that are known to be important in salt stress response in plants. Strong negative directional selection operated on uptake of Na and correlated elements. A significant decrease in trait correlations over time was observed in the BC2 population for Na and Ca content, suggesting an adaptive role for increased Ca uptake coupled with increased net exclusion of Na from leaves. Patterns of directional selection in BC2 hybrids were concordant with character expression in the natural hybrid species, H. paradoxus, transplanted into the wild. Moreover, the necessary variation for generating the H. paradoxus phenotype existed only in the BC2 population, but not in samples of the two parental species, H. annuus and H. petiolaris. These results are consistent with the hypothesis that transgressive segregation of elemental uptake and leaf succulence contributed to the origin of salt adaptation in the diploid hybrid species H. paradoxus.  相似文献   

6.
Artificial selection of individuals has been determinant in the elaboration of the Darwinian theory of natural selection. Nowadays, artificial selection of ecosystems has proven its efficiency and could contribute to a theory of natural selection at several organisation levels. Here, we were not interested in identifying mechanisms of adaptation to selection, but in establishing the proof of principle that a specific structure of interaction network emerges under ecosystem artificial selection. We also investigated the limits in ecosystem artificial selection to evaluate its potential in terms of managing ecosystem function. By artificially selecting microbial communities for low CO2 emissions over 21 generations (n = 7560), we found a very high heritability of community phenotype (52%). Artificial selection was responsible for simpler interaction networks with lower interaction richness. Phenotype variance and heritability both decreased across generations, suggesting that selection was more likely limited by sampling effects than by stochastic ecosystem dynamics.  相似文献   

7.
The impact of sexual selection on the adaptive process remains unclear. On the one hand, sexual selection might hinder adaptation by favouring costly traits and preferences that reduce nonsexual fitness. On the other hand, condition dependence of success in sexual selection may accelerate adaptation. Here, we used replicate populations of Drosophila melanogaster to artificially select on male desiccation resistance while manipulating the opportunity for precopulatory sexual selection in a factorial design. Following five generations of artificial selection, we measured the desiccation resistance of males and females to test whether the addition of sexual selection accelerated adaptation. We found a significant interaction between the effects of natural selection and sexual selection: desiccation resistance was highest in populations where sexual selection was allowed to operate. Despite only selecting on males, we also found a correlated response in females. These results provide empirical support for the idea that sexual selection can accelerate the rate of adaptation.  相似文献   

8.
Local adaptation to predation often occurs in populations experiencing stable predator regimes. Under such conditions, prey species may respond by fine-tuning their behavioural defences towards a local optimum, although it is often difficult to ascertain whether such local adaptation is due to selection on fixed traits, developmental plasticity that is dependent on relatively long term exposure to environmental cues or phenotypic plasticity that can respond rapidly to a changing environment. Here we investigate whether anti-predator behaviour in two populations of the freshwater gastropod Lymnaea stagnalis responded to artificial selection. Previous work had shown that populations of this species showed a higher level of innate avoidance behaviour (crawling above the water line) in the presence of predatory fish compared with sites lacking this predation threat. By selectively breeding from high and low response selection lines, we demonstrated that this crawl-out behaviour responds rapidly to artificial selection: high response selection lines showed a significant increase and low response selection lines a significant decrease in avoidance compared with non-selected control lines. This suggests that the crawl out response in this species is heritable, and that there is potential for a response to selection in natural populations, which may produce the divergence in the plasticity of crawl out behaviour found between gastropod populations experiencing high and low predation intensity.  相似文献   

9.
Rapid diversification is common among herbivorous insects and is often the result of host shifts, leading to the exploitation of novel food sources. This, in turn, is associated with adaptive evolution of female oviposition behavior and larval feeding biology. Although natural selection is the typical driver of such adaptation, the role of sexual selection is less clear. In theory, sexual selection can either accelerate or impede adaptation. To assess the independent effects of natural and sexual selection on the rate of adaptation, we performed a laboratory natural selection experiment in a herbivorous bruchid beetle (Callosobruchus maculatus). We established replicated selection lines where we varied natural (food type) and sexual (mating system) selection in a 2 x 2 orthogonal design, and propagated our lines for 35 generations. In half of the lines, we induced a host shift whereas the other half was kept on the ancestral host. We experimentally enforced monogamy in half of the lines, whereas the other half remained polygamous. The beetles rapidly adapted to the novel host, which primarily involved increased host acceptance by females and an accelerated rate of larval development. We also found that our mating system treatment affected the rate of adaptation, but that this effect was contingent upon food type. As beetles adapted to the novel host, sexual selection reinforced natural selection whereas populations residing close to their adaptive peak (i.e., those using their ancestral host) exhibited higher fitness in the absence of sexual selection. We discuss our findings in light of current sexual selection theory and suggest that the net evolutionary effect of reproductive competition may critically depend on natural selection. Sexual selection may commonly accelerate adaptation under directional natural selection whereas sexual selection, and the associated load brought by sexual conflict, may tend to depress population fitness under stabilizing natural selection.  相似文献   

10.
Chill‐coma recovery (CCR) is an important trait for thermal adaptation in insects. Multiple phenotypes could be affected by selection on CCR if the trait is genetically correlated with other adaptive traits. To test for heritable (co‐)variation in CCR, we examined direct and correlated responses to bi‐directional selection on CCR. Drosophila buzzatii Patterson & Wheeler (Diptera: Drosophilidae) was artificially selected for decreased and increased recovery time following exposure to 0 °C. After 18 selected generations, the selection response in CCR was significant but qualitatively asymmetric, with replicated lines for slow CCR showing the highest response. Knockdown resistance to high temperature was not affected by CCR selection. Starvation resistance in the adult fly showed no clear pattern of correlated responses to CCR selection. Selection on CCR had no impact on developmental time and body size. Chill‐coma recovery shows no apparent genetic trade‐offs with any of the multiple traits included in this study. These results are largely consistent with recent studies on clines in D. buzzatii, which showed that CCR is not across‐population correlated with other clinally varying traits of thermal adaptation. Cold adaptation may evolve toward increased cold resistance independent of upper thermal limits.  相似文献   

11.
Both sexes of the planthopper Ribautodelphax imitans produce species specific acoustic signals. Earlier experiments have shown that isolation between Ribautodelphax species in captivity is at least partly due to male preference for calls of conspecific females. The genetic basis of the female call is studied by bi-directional artificial selection for large and small interpulse intervals (IPI). This resulted in non-overlapping distributions of IPI after only five generations. The mean of eight realized heritability estimates over five generations was above 80%; estimates over ten generations were generally well above 50%. The character is shown to be of a polygenic nature, determined by at least 6 segregating genetic factors. The other features of the female call, strophe duration, and modulation of pulse repetition frequency within the strophe, showed significantly correlated responses. Sexual isolation tests after 10 generations of selection revealed significant symmetrical assortative mating, but coselected males did not exhibit a significant preference for playback calls of females from their own selection line. In view of the high heritability for the call character, and the considerable ecological isolation among Ribautodelphax species, it seems unlikely that the female call differentiated as an adaptation to prevent hybridization (reinforcement). More likely, call and call preference were shaped by sexual selection during allopatry, and may have (had) incidentally an effect in species isolation.  相似文献   

12.
Meffert LM  Regan JL 《Genetica》2006,127(1-3):1-9
We compared the efficacy of artificial and natural selection processes in purging the genetic load of perpetually small populations. We subjected replicate lines of the housefly (Musca domestica L.), recently derived from the wild, to artificial selection for increased mating propensity (i.e., the proportion of male–female pairs initiating copulation within 30 min) in efforts to cull out the inbreeding depression effects of long-term small population size (as determined by a selection protocol for increased assortative mating). We also maintained parallel non-selection lines for assessing the spontaneous purge of genetic load due to inbreeding alone. We thus evaluated the fitness of artificially and ‘naturally’ purging populations held at census sizes of 40 individuals over the course of 18 generations. We found that the artificially selected lines had significant increases in mating propensity (up to 46% higher from the beginning of the protocol) followed by reversed selection responses back to the initial levels, resulting in non-significant heritabilities. Nevertheless, the ‘naturally’ selected lines had significantly lower fitness overall (a 28% reduction from the beginning of the protocol), although lower effective population sizes could have contributed to this effect. We conclude that artificial selection bolstered fitness, but only in the short-term, because the inadvertent fixation of extant genetic load later resulted in pleiotropic fitness declines. Still, the short-term advantage of the selection protocol likely contributed to the success of the speciation experiment since our recently-derived housefly populations are particularly vulnerable to inbreeding depression effects on mating behavior.  相似文献   

13.
Invasive species have widespread and pronounced effects on ecosystems and adaptive evolution of invaders is often considered responsible for their success. Despite the potential importance of adaptation to invasion, we still have limited knowledge of the agents of natural selection on invasive species. Bythotrephes longimanus, a cladoceran zooplankton, invaded multiple Canadian Shield lakes over the past several decades. Bythotrephes have a conspicuous caudal process (tail spine) that provides a morphological defense against fish predation. We measured viability selection on the longest component of the Bythotrephes spine, the distal spine segment, through a comparison of the lengths of first and second instar Bythotrephes collected from lakes differing in the dominance of gape‐limited predation (GLP) and nongape‐limited predation (NGLP) by fish. We found that natural selection varied by predator gape‐limitation, with strong selection (selection intensity: 0.20–0.79) for increased distal spine length in lakes dominated by GLP, and no significant selection in lakes dominated by NGLP. Further, distal spine length was 17% longer in lakes dominated by GLP, suggesting the possibility of local adaptation. As all study lakes were invaded less than 20 years prior to our collections, our results suggest rapid divergence in defensive morphology in response to selection from fish predators.  相似文献   

14.
Soto I  Cortese M  Carreira V  Folguera G  Hasson E 《Genetica》2006,127(1-3):199-206
We assessed the indirect response of longevity in lines selected for wing length (WL) and developmental time (DT). Longevity in selection lines was compared to laboratory control lines and the offspring of recently collected females. Wild flies (W lines), flies from lines selected for fast development (F lines), and for fast development and large wing length (L lines) outlived control laboratory lines (C lines) and lines selected for fast development and short wing (S lines). The decline in longevity in S lines is in line with the idea that body size and longevity are correlated and may be the result of the fixation of alleles at loci affecting pleiotropically the two traits under selection and longevity. In addition, inbreeding and artificial selection affected the correlation between wing length and longevity that occurs in natural populations of Drosophila buzzatii, suggesting that correlations between traits are not a perdurable feature in a population.  相似文献   

15.
Selection for phenotypic plasticity in Rana sylvatica tadpoles   总被引:1,自引:0,他引:1  
The hypothesis that phenotypic plasticity is an adaptation to environmental variation rests on the two assumptions that plasticity improves the performance of individuals that possess it, and that it evolved in response to selection imposed in heterogeneous environments. The first assumption has been upheld by studies showing the beneficial nature of plasticity. The second assumption is difficult to test since it requires knowing about selection acting in the past. However, it can be tested in its general form by asking whether natural selection currently acts to maintain phenotypic plasticity. We adopted this approach in a study of plastic morphological traits in larvae of the wood frog, Rana sybatica. First we reared tadpoles in artificial ponds for 18 days, in either the presence or absence of Anax dragonfly larvae (confined within cages to prevent them from killing the tadpoles). These conditioning treatments produced dramatic differences in size and shape: tadpoles from ponds with predators were smaller and had relatively short bodies and deep tail fins. We estimated selection by Anax on the two kinds of tadpoles by testing for non-random mortality in overnight predation trials. Dragonflies imposed strong selection by preferentially killing individuals with relatively shallow and short tail fins, and narrow tail muscles. The same traits that exhibited the strongest plasticity were under the strongest selection, except that tail muscle width exhibited no plasticity but experienced strong increasing selection. A laboratory competition experiment, testing for selection in the absence of predators, showed that tadpoles with deep tail fins grew relatively slowly. In the cattle tanks, where there were also no free predators, the predator-induced phenotype survived more poorly and developed slowly, but this cost was apparently not associated with particular morphological traits. These results indicate that selection is currently promoting morphological plasticity in R. sylvatica, and support the hypothesis that plasticity represents an adaptation to variable predator environments.  相似文献   

16.
Speciation is thought to often result from indirect selection for reproductive isolation. This will occur when reproductive traits that cause reproductive isolation evolve (i) as a by‐product of natural selection on traits with which they are genetically correlated or (ii) as an indirect result of diversifying sexual selection. Here, we use experimental evolution to study the degree of divergent evolution of reproductive traits by manipulating the intensity of natural and sexual selection in replicated selection lines of seed beetles. Following 40 generations of selection, we assayed the degree of divergent evolution of reproductive traits between replicate selection lines experiencing the same selection regime. The evolution of reproductive traits was significantly divergent across selection lines within treatments. The evolution of reproductive traits was both slower and, more importantly, significantly less divergent among lines experiencing stronger directional natural selection. This suggests that reproductive traits did not evolve as an indirect by‐product of adaptation. We discuss several ways in which natural selection may hamper divergent evolution among allopatric populations.  相似文献   

17.
We tested whether pollen grain size (PGS) shows heritable variation in three independent populations of Mimulus guttatus by imposing artificial selection for this character. In addition, we looked for correlated responses to selection in a range of 15 other floral characters. Heritable variation in PGS was found in all three populations, with heritabilities of between 19 and 40% (average 30%). After three generations, upward and downward lines differed on average by 30% in pollen volume. No consistent patterns of correlated response were found in other characters, indicating that PGS can respond to selective forces acting on PGS alone. Possible selection mechanisms on PGS in this species could include intermale selection, if large pollen grains produce more competitive gametophytes; or optimization of patterns of resource allocation, if local mate competition varies.  相似文献   

18.
In order to improve the efficiency of cassava (Manihot esculenta Crantz) transformation, two different selection systems were assessed, a positive one based on the use of mannose as the selective agent, and a negative one based on hygromycin resistance encoded by an intron-containing hph gene. Transgenic plants selected on mannose or hygromycin were regenerated for the first time from embryogenic suspensions cocultivated with Agrobacterium. After the initial selection using mannose and hygromycin, 82.6% and 100% of the respective developing embryogenic callus lines were transgenic. A system allowing plant regeneration from only transgenic lines was designed by combining chemical selection with histochemical GUS assays. In total, 12 morphologically normal transgenic plant lines were produced, five using mannose and seven using hygromycin. The stable integration of the transgenes into the nuclear genome was verified using PCR and Southern analysis. RT-PCR and northern analyses confirmed the transgene expression in the regenerated plants. A rooting test on mannose containing medium was developed as an alternative to GUS assays in order to eliminate escapes from the positive selection system. Our results show that transgenic cassava plants can be obtained by using either antibiotic resistance genes that are not expressed in the micro-organisms or an antibiotic-free positive selection system.  相似文献   

19.
Identification of the genes underlying adaptation sheds light on the biological functions targeted by natural selection. Searches for footprints of positive selection, in the form of rapid amino acid substitutions, and the identification of species‐specific genes have proved to be powerful approaches to identifying the genes involved in host specialization in plant‐pathogenic fungi. We used an evolutionary comparative genomic approach to identify genes underlying host adaptation in the ant‐infecting genus Ophiocordyceps, which manipulates ant behaviour. A comparison of the predicted genes in the genomes of species from three species complexes—O. unilateralis, O. australis and O. subramanianii—revealed an enrichment in pathogenesis‐associated functions, including heat‐labile enterotoxins, among species‐specific genes. Furthermore, these genes were overrepresented among those displaying significant footprints of positive selection. Other categories of genes suspected to be important for virulence and pathogenicity in entomopathogenic fungi (e.g., chitinases, lipases, proteases, core secondary metabolism genes) were much less represented, although a few candidate genes were found to evolve under positive selection. An analysis including orthologs from other entomopathogenic fungi in a broader context showed that positive selection on enterotoxins was specific to the ant‐infecting genus Ophiocordyceps. Together with previous studies reporting the overexpression of an enterotoxin during behavioural manipulation in diseased ants, our findings suggest that heat‐labile enterotoxins are important effectors in host adaptation and co‐evolution in the Ophiocordyceps entomopathogenic fungi.  相似文献   

20.
Definitive genetic studies of the soybean cyst nematode (Heterodera glycines)-soybean (Glycine max) relationship are complicated by the use of soybean lines with many genes for resistance to heterogeneous, amphimictic nematode populations. Inbreeding and artificial selection of cyst nematodes decreased their ability to form cysts on specific soybean lines assumed to have few genes for resistance. In the initial sib selection, single cysts were used to inoculate two-seedling units consisting of a seedling of one soybean line to evaluate the nematodes' ability to form cysts on it and a seedling of another line for comparison and maintenance of the nematode inbreds being developed. This method permitted some selection but was slow and labour-intensive. A better method of artificial selection for fewer cysts on specific soybean lines was to inbreed nematodes for about four generations, then to evaluate the inbreds for ability to form cysts on the soybean lines before selecting particular inbreds with poor ability to form cysts for the development of more inbreds. This increased the frequencies of specific nematode genes for avirulence or alleles for incompatibility with soybean lines containing the interacting [gene-for-gene] alleles for incompatibility (genes for resistance). The artificial selection apparently was for at least two nematode alleles for incompatibility since at least two soybean alleles were indicated in the segregation from crosses of soybean lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号