首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experiment was conducted to investigate the freezing ability of canine epididymal spermatozoa after cool storage at 5 degrees C for 2 or 4 days. Spermatozoa were collected from the caudae epididymidis from 16 dogs. Total motility, plasma membrane integrity and acrosome integrity were evaluated immediately on harvesting, and after 2 and 4 days of storage at 5 degrees C, and at 0 and 2 h post-thaw at 37 degrees C. Sperm motility decreased significantly during cold storage, compared to freshly harvested spermatozoa (P < 0.001). Although there was no significant effect of pre-freeze storage time on post-thaw motility, there was a tendency towards decreased motility in spermatozoa that had been stored for 4 days, compared to spermatozoa that were frozen immediately after collection (P = 0.09). The number of post-thaw spermatozoa with an intact plasma membrane was decreased in spermatozoa cold-stored for 4 days (P < 0.001). There was no significant effect of pre-freeze storage time on the acrosomal status of post-thaw spermatozoa. In conclusion, canine epididymal spermatozoa were stored at 5 degrees C for up to 4 days without a clear detrimental effect on post-thaw motility and acrosome integrity, but storage may have decreased post-thaw motility. Results were, however, generally low.  相似文献   

2.
The study was carried out to evaluate the potential impact of butylated hydroxytoluene (BHT) on the frozen-thawed semen quality of Nili-Ravi buffalo bulls. Ejaculated bull semen was extended in a Tris-citrate egg yolk extender containing various concentrations of BHT (0.5, 1.0, 2.0 and 3.0 mM). Semen was frozen at −196 °C using 50 × 106 spermatozoa per 0.5 mL straws. Five straws from each treatment were thawed to assess the semen quality in terms of sperm motility, viability, plasma membrane integrity and acrosomal integrity. Post-thawed sperm motility was determined using a phase-contrast microscope. Viability, plasma membrane integrity and acrosomal integrity were evaluated by the supravital staining, hypo-osmotic swelling test and normal acrosomal reaction, respectively. The highest (P < 0.05) motility, acrosomal integrity and hypo-osmotic swelling response of spermatozoa was achieved by addition of 1.0 and 2.0 mM BHT to semen extender. However, highest (P < 0.05) viability of spermatozoa was achieved by inclusion of 2.0 mM BHT. The higher concentration of BHT (3.0 mM) reduced the motility, acrosomal integrity, viability and hypo-osmotic swelling response of the spermatozoa compared to other concentration used. In conclusion, BHT when added in the semen extender can improve the semen quality of buffalo bulls.  相似文献   

3.
All cells have an intrinsic biophysical property related to their ability to undergo osmotically driven volume changes. This project is of fundamental importance to our understanding of the basic cryobiology of mouse spermatozoa. The objectives of this study were to determine the osmotic tolerance limits for (1) motility, (2) acrosome integrity, and (3) membrane integrity of mouse spermatozoa from multiple genetic backgrounds including: C57BL/6, BALB/c, FVB, C3H, 129/SVS2 hsd B6C3F1, CB6F1, and ICR. The maintenance of acrosomal and plasma membrane integrity was not affected by genetic background (p=0.13), however, there was an interaction between genetic background and osmolality. In addition, acrosome and plasma membrane integrity was highly correlated within each strain (p<0.01). In contrast to acrosome and plasma membrane integrity, the motility of spermatozoa from different genetic backgrounds fell sharply on both sides of isosmolality, both with and without return to isosmotic conditions. Exposure to hyposmotic conditions caused morphological changes in the spermatozoa, which inhibited motility. However, this morphological change was not reversible in all cases when returned to isosmotic conditions. The ability to maintain motility in an anisosmotic media was affected by genetic background, osmolality as well as the interaction between genetic background and osmolality (p<0.05). In conclusion, mice with different genetic backgrounds appear to have similar tolerance to osmotic changes in terms of sperm acrosome and plasma membrane integrity; however, the ability to maintain motility differs between genetic backgrounds.  相似文献   

4.
The aims of this study were to find out if dog spermatozoa can be stored chilled for 1 or 2 days prior to freezing without a deterioration in post-thaw vitality and longevity, and to compare two extenders; the Uppsala Equex-2 (UE-2) and a TRIS egg yolk extender (EYT). Pooled dog semen was frozen immediately after collection, or was extended and stored at 4 degrees C for 1 or 2 days before freezing. Sperm motility and acrosome integrity were evaluated before freezing and for 6h post thaw at 38 degrees C, while sperm plasma membrane integrity was evaluated post thaw. There were no effects of pre-freeze storage time or extender on post-thaw motility or plasma membrane integrity, but a significant effect of extender (P < 0.0153) on post-thaw acrosomal integrity was found, UE-2 being better than EYT. There was a significant (P < 0.0001) negative effect of post-thaw storage time on acrosome integrity, but this was not influenced by pre-freeze storage time or extender. In conclusion, we found that dog spermatozoa can be frozen after 1 or 2 days of cold storage without significant deterioration in post-thaw motility, acrosome integrity or sperm plasma membrane integrity compared to when frozen immediately after collection. The UE-2 extender was superior to the EYT extender for freezing of cold stored dog spermatozoa.  相似文献   

5.
Preservation of liquid semen at 5 degrees C is an important technique in the breeding management of horses. Oxidative damage to spermatozoa during storage is a potential cause of the decline in motility and fertility during hypothermic storage of liquid semen. The objective of this study was to evaluate the use of water-soluble and lipid-soluble antioxidants to improve the maintenance of motility of equine spermatozoa at 5 degrees C during storage for 72 to 96 h. In Experiment 1, the effect of addition of catalase on the maintenance of motility, viability and acrosomal integrity was determined. Semen was collected, and these treatments were applied: catalase (0, 100 or 200 U/mL) in nonfat, dried skim milk extender (NFDSM; with or without seminal plasma) or 10% seminal plasma + NFDSM. Motility was determined by computerized semen analysis (CASA) at 0, 24, 48 and 72 h. Viability and acrosomal integrity were determined at 72 h of storage. There was no significant treatment effect on the maintenance of sperm motility during 72 h storage. In Experiment 2, the effect of adding lipid-soluble antioxidants on maintenance of motility was evaluated. Semen was diluted to a final concentration of 25 x 10(6) sperm/mL in NFDSM containing butylated hydroxytoluene (BHT; 2.0, 1.0, or 0.5 mM), Vitamin E (4.0, 2.0, 1.0 mM), or Tempo (2.0, 1.0, or 0.5 mM). Although the addition of BHT significantly reduced (P < 0.05) progressive motility during storage compared to the control, there were no positive treatment effects of either Vitamin E or Tempo on maintenance of motility. In Experiment 3, the effect of adding water-soluble antioxidants on maintenance of motility was evaluated. Semen was diluted in NFDSM containing these treatments: Trolox (2.0 mM), Tempo (1.0 mM), Vitamin C (0.45 mg/mL), BSA (3% w/v), combinations of these antioxidants, or control. Adding these water-soluble antioxidants did not significantly improve the maintenance of motility during cooled storage at 5 degrees C. In conclusion, adding the enzyme scavenger, catalase, or a variety of lipid- and water-soluble antioxidants did not significantly improve the maintenance of motility during liquid semen storage at 5 degrees C.  相似文献   

6.
Seminal plasma is generally removed from equine spermatozoa prior to cryopreservation. Two experiments were designed to determine if adding seminal plasma back to spermatozoa, prior to cryopreservation, would benefit the spermatozoa. Experiment 1 determined if different concentrations of seminal plasma affected post-thaw sperm motility, viability and acrosomal integrity of frozen/thawed stallion spermatozoa. Semen was washed through 15% Percoll to remove seminal plasma and spermatozoa resuspended to 350 x 10(6)sperm/mL in a clear Hepes buffered diluent containing either 0, 5, 10, 20, 40 or 80% seminal plasma for 15 min, prior to being diluted to a final concentration of 50 x 10(6)sperm/mL in a Lactose-EDTA freezing diluent and cryopreserved. Sperm motility was analyzed at 10 and 90 min after thawing, while sperm viability and acrosomal integrity were analyzed 20 min after thawing. Seminal plasma did not affect sperm motility, viability or acrosomal integrity (P>0.05). Experiment 2 tested the main affects of seminal plasma level (5 or 20%), incubation temperature (5 or 20 degrees C) and incubation time (2, 4 or 6 h) prior to cryopreservation. In this experiment, spermatozoa were incubated with 5 or 20% seminal plasma for up to 6h at either 5 or 20 degrees C prior to cryopreservation in a skim milk, egg yolk freezing extender. Samples cooled immediately to 5 degrees C, prior to freezing had higher percentages of progressively motile spermatozoa than treatments incubated at 20 degrees C (31 versus 25%, respectively; P<0.05), when analyzed 10 min after thawing. At 90 min post-thaw, total motility was higher for samples incubated at 5 degrees C (42%) compared to 20 degrees C (35%; P<0.05). In addition, samples containing 5% seminal plasma had higher percentages of total and progressively motile spermatozoa (45 and 15%) than samples exposed to 20% seminal plasma (33 and 9%; P<0.05). In conclusion, although the short-term exposure of sperm to seminal plasma had no significant effect on the motility of cryopreserved equine spermatozoa, prolonged exposure to seminal plasma, prior to cryopreservation, was deleterious.  相似文献   

7.
Ejaculated spermatozoa from cynomolgus monkeys and rhesus monkeys were frozen in straws with six different extenders (TTE, DM, mDM, LG-DM, G-DM, and TCG) containing glycerol. Sperm motility and head membrane and acrosomal integrity were evaluated after freezing and thawing, and the cryoprotective effects were compared among the extenders and the two species studied. The results showed that sperm motility and motility recovery with the six extenders were comparable for the cynomolgus and rhesus monkeys. There was no significant difference in sperm motility and head membrane integrity among the six extenders in either the cynomolgus or rhesus monkeys (P>0.05). However, a slightly but statistically lower percentage of acrosomal integrity was found with TCG in both species compared to the other extenders (P<0.05). These findings demonstrate that TTE, DM, mDM, LG-DM, G-DM, and TCG are equally suitable extenders for the cryopreservation of spermatozoa from cynomolgus and rhesus monkeys.  相似文献   

8.
Cryopreservation of epididymal spermatozoa is a potentially valuable tool for preserving genetic material from individuals of endangered species that die accidentally. Improvement of sperm-freezing protocols would increase the efficacy of gene banking from endangered felids, and the domestic cat can be used as a model for the wild felids. Addition of the detergent Equex STM paste to semen freezing extenders has been found to improve post-thaw survival and longevity of spermatozoa from various species but has never been tested for cat spermatozoa. Spermatozoa from cats with a high percentage of morphologically abnormal spermatozoa are more susceptible for cold injury and osmotic stress than spermatozoa from normozoospermic cats. Therefore, the aims of this study were to investigate: (a) if addition of Equex STM paste to a semen freezing extender would improve post-thaw sperm survival, and (b) if there is a relation between the percentage of morphologically normal spermatozoa and cryopreservation induced damage in cat epididymal spermatozoa. Spermatozoa harvested from epididymides of 10 male cats were frozen in a Tris egg yolk extender with or without the addition of Equex STM paste (0.5%, v/v). Sperm motility, membrane integrity and acrosomal status were evaluated immediately after harvesting, and at 0, 2, 4 and 6 h post-thaw. Sperm membrane integrity and acrosomal status were also evaluated after cooling to 4 degrees C, just before freezing. Cooling did not cause significant damage to the spermatozoa, whereas freezing damaged sperm membranes and acrosomes. Addition of Equex to the freezing extender had a significant positive effect on the percentage of intact acrosomes immediately after thawing (P > 0.05), but had a negative effect on the longevity of the spermatozoa; the percentages of membrane intact and motile spermatozoa being significantly lower in the presence of Equex than in the controls at 6h after thawing. The percentage of morphologically normal spermatozoa was not found to be correlated with either cryopreservation induced acrosome or plasma membrane damage, or with post-thaw motility (P > 0.05). The results clearly show that addition of Equex STM paste in the freezing extender protects the acrosomes of cat epididymal spermatozoa during the freezing--thawing process, but reduces the sperm longevity during in vitro incubation at 38 degrees C. Our results also indicate that the percentage of morphologically normal epididymal spermatozoa is not correlated with cryopreservation induced sperm damage using the described freezing protocol.  相似文献   

9.
This study was carried out to investigate the cryoprotective efficacy of Equex STM Paste on the quality of canine post-thaw epididymal spermatozoa. Following castration, spermatozoa were flushed from the cauda epididymides. Epididymal spermatozoa from 13 of 16 dogs with a sperm motility of >70% were frozen in an egg yolk-Tris extender, supplemented with Equex STM Paste (0.5%, v/v); the extender free of Equex STM Paste served as a control cryoprotective diluent. The quality of spermatozoa, judged by its motility, plasma membrane integrity and acrosome integrity, was evaluated on four occasions, immediately after collection, after equilibration and at 0 and 2h post-thaw. Reducing the temperature to 4 degrees C for 2h prior to freezing decreased sperm motility (P=0.001), but had no effects on membrane integrity or acrosome integrity. Immediately after thawing, the percentage of acrosome-intact spermatozoa significantly decreased in samples frozen without Equex STM Paste compared to freshly collected or Equex-treated samples. After incubation at 37 degrees C for 2h post-thaw, a greater percentage of motile spermatozoa (P=0.018) and spermatozoa with intact acrosomes (P=0.001) were observed in Equex-treated samples compared with the control. The percentage of membrane-intact spermatozoa did not differ significantly between Equex-treated and control samples at any time. Supplementation with Equex STM Paste in the semen extender was effective for freezing canine epididymal spermatozoa because it protected acrosome integrity against damage induced by cryopreservation and it prolonged post-thaw sperm motility during in vitro incubation at 37 degrees C.  相似文献   

10.
Previous cryopreservation studies with buffalo cauda epididymal spermatozoa have reported a deleterious effect of seminal plasma heparin binding protein (HBP). The amount of HBP used in these studies was meager compared to the normal level of HBP in the buffalo ejaculate, still the damage induced upon the spermatozoa was substantial when compared to that incurred to the spermatozoa during routine freezing of ejaculated semen. Thus there might be some factor(s) in the seminal plasma, which reduce the deleterious effect of HBP on spermatozoa during cryopreservation of ejaculated semen. This study was conducted to investigate for the presence of any such factor in buffalo seminal plasma. Seminal plasma proteins were separated on their heparin binding properties as heparin binding (HBP) and non-heparin binding (NHBP). The separated proteins were added to the extender of buffalo cauda epididymal semen for cryopreservation either alone or in combination. The spermatozoa were assessed for progressive motility, viability, acrosomal integrity and response to hypo-osmotic solution test (HOST) at prefreeze and post-thaw stages of cryopreservation. NHBP was found to provide some degree of protection to buffalo spermatozoa against cryopreservation stress as well as the deleterious effect of HBP during cryopreservation.  相似文献   

11.
The very large acrosome of Pteropus species spermatozoa is prone to damage during cooling procedures. Cryogenic succuss has been linked to membrane composition, therefore the lipid composition of five Pteropus species sperm acrosomal and plasma membranes were investigated to provide insight into reasons for cold shock susceptibility. Rapid chilling and re-warming of spermatozoa from three Pteropus species resulted in a decrease (< 0.05) in acrosomal integrity. Biochemical analysis of lipids revealed that stearic acid (18:0) was the predominant saturated fatty acid and oleic acid (18:1, n-9) the predominant unsaturated fatty acid in both acrosomal and plasma membranes. Linolenic acid (18:3, n-3) was only detected in plasma membranes of Pteropus hypomelanus and was detected in acrosomal membranes of all Pteropus spp. studied (except Pteropus giganteus). Although detected in both plasma and acrosomal membranes of Pteropus vampyrus, docosahexaenoic acid (22:6) was not detected at all in Pteropus poliocephalus, only in trace levels in the acrosomal and plasma membranes of P. giganteus and P. hypomelanus and not in acrosomal membranes of Pteropus rodricensis. No difference was seen in the levels of polyunsaturated fatty acids (PUFAs) within plasma membranes, however PUFAs were lower (< 0.05) in acrosomal membranes of P. giganteus compared with P. vampyrus. Pteropus spp. spermatozoa have a very low ratio of unsaturated/saturated membrane fatty acids (<0.5). Membranes containing more PUFAs are more fluid, so the use of cryogenic media which improves membrane fluidity should improve Pteropus spp. spermatozoal viability post-thaw.  相似文献   

12.
Sex-sorting of boar spermatozoa is an emerging biotechnology, still considered suboptimal owing to the slowness of the process, which requires long sorting periods to obtain an adequate number of spermatozoa to perform a non-surgical insemination. This period involves storage of sorted cells that could impair their functional capacity. Here, we have studied how the storage of sex-sorted boar spermatozoa affects their functional capacity. Sorted spermatozoa were assessed at various times (0, 2, 5h or 10h) during storage after sorting and compared with diluted and unsorted spermatozoa for sperm motility patterns, plasma membrane and acrosomal integrity and their ability to penetrate homologous IVM oocytes. Sex-sorted sperm motility and membrane integrity only decreased significantly (p<0.05) by the end of the storage period (10h) compared to unsorted spermatozoa. Sperm velocity, ALH and Dance increased significantly (p<0.05), immediately post-sorting, returning to unsorted sperm values during storage. Acrosome integrity was not seriously affected by the sorting process, but decreased (p<0.05) during storage after sorting. Sorted spermatozoa stored 2h after sorting did not differ from unsorted in penetration rates and numbers of spermatozoa per oocyte, reaching the highest (p<0.05) penetration rates and sperm numbers per oocyte, when co-cultured for 6 or more hours. Non-storage or storage for 5h or 10h negatively (p<0.05) affected sperm penetration ability. In conclusion, although flow cytometrically sex-sorted spermatozoa are able to maintain motility, viability and acrosomal integrity at optimal levels until 10h of storage after sorting, fertilizing ability is maintained only over shorter storage times (<5h).  相似文献   

13.
Felid spermatozoa are sensitive to cryopreservation-induced damage, but functional losses can be mitigated by post-thaw swim-up or density gradient processing methods that selectively recover motile or structurally-normal spermatozoa, respectively. Despite the importance of sperm energy production to achieving fertilization, there is little knowledge about the influence of cryopreservation or post-thaw processing on felid sperm metabolism. We conducted a comparative study of domestic cat and cheetah sperm metabolism after cryopreservation and post-thaw processing. We hypothesized that freezing/thawing impairs sperm metabolism and that swim-up, but not density gradient centrifugation, recovers metabolically-normal spermatozoa. Ejaculates were cryopreserved, thawed, and processed by swim-up, Accudenz gradient centrifugation, or conventional washing (representing the 'control'). Sperm glucose and pyruvate uptake, lactate production, motility, and acrosomal integrity were assessed. Mitochondrial membrane potential (MMP) was measured in cat spermatozoa. In both species, lactate production, motility, and acrosomal integrity were reduced in post-thaw, washed samples compared to freshly-collected ejaculates. Glucose uptake was minimal pre- and post-cryopreservation, whereas pyruvate uptake was similar between treatments due to high coefficients of variation. In the cat, swim-up, but not Accudenz processing, recovered spermatozoa with increased lactate production, pyruvate uptake, and motility compared to controls. Although confounded by differences in non-specific fluorescence among processing methods, MMP values within treatments were positively correlated to sperm motility and acrosomal integrity. Cheetah spermatozoa isolated by either selection method exhibited improved motility and/or acrosomal integrity, but remained metabolically compromised. Collectively, findings revealed a metabolically-robust subpopulation of cryopreserved cat, but not cheetah, spermatozoa, recovered by selecting for motility rather than morphology.  相似文献   

14.
A new triple fluorescent staining method was developed to evaluate frozen-thawed dog spermatozoa. This method was used to compare functional parameters of canine spermatozoa cryopreserved using 2 different freezing-thawing protocols. One ejaculate from each of 10 dogs was split into 2 aliquots and processed using the Andersen method or the CLONE method. Semen samples were evaluated immediately after thawing and after 3 h of incubation at 37 degrees C. Plasma membrane integrity and acrosomal status of the spermatozoa were evaluated simultaneously by flow cytometry using a combination of 3 fluorescent dyes: Carboxy-SNARF-1 (SNARF), to identify the live spermatozoa; propidium iodide (PI), which only stains dead cells or cells with damaged membranes; and fluorescein isothiocyanate (FITC)-conjugated Pisum sativum agglutinin (PSA), which binds to the acrosomal content of spermatozoa with damaged plasma and outer acrosomal membranes. The accuracy of this new staining method in quantifying the proportions of live and dead spermatozoa by flow cytometry was evaluated by comparing it with the staining technique using carboxyfluorescein diacetate and propidium iodide (CFDA-PI), which yielded high correlation coefficients. The triple-stained sperm samples were also analyzed by epifluorescence microscopy, and both methods proved to be highly correlated. Post-thaw progressive motility and plasma membrane integrity were similar for the 2 freezing procedures, but the proportion of damaged acrosomes after thawing was lower using the Andersen method and the spermatozoa had a higher thermoresistance. This new triple staining method for assessing canine sperm viability and acrosomal integrity provides an efficient procedure for evaluating frozen-thawed dog semen samples either by flow cytometry or fluorescence microscopy.  相似文献   

15.
The purpose of this study was to assess the sperm motility, the plasma membrane integrity and the morphology of red deer spermatozoa when maintained within epididymides stored for 4 days at 5 degrees C, and to evaluate whether such stored spermatozoa are able to withstand a refrigeration process. Thirty pairs of testes, with attached epididymides, were collected from 30 hunter-killed mature stags (Cervus elaphus hispanicus), and spermatozoa from each one of the pairs were immediately collected in Triladyl medium, evaluated and refrigerated (Control Group). The remaining testes and epididymides were gradually cooled to 5 degrees C and stored for 1, 2, 3, and 4 days (Experimental Groups), after which spermatozoa were processed as described previously for the control group. The effects on spermatozoa that had been stored within epididymides for various times were determined by assaying sperm motility index (SMI), plasma membrane integrity and sperm morphology (SM). In the same way, SMI and SM were assessed after spermatozoa refrigeration at 5 degrees C for 3 hours in different groups (SMI-R, SM-R). There was no significant decrease in plasma membrane integrity of spermatozoa recovered from epididymides stored at 5 degrees C for 4 days. Similarly, the percentage of morphologically normal spermatozoa remained unaffected during the first 3 days of storage. In contrast, during storage sperm motility evaluation revealed significantly (P<0.05) lower SMI values for samples from epididymides stored 2, 3, and 4 days (47.7+/-3.6, 45.5+/-4.4, 44.1+/-5.2) than that of the control group (57.6+/-1.6). Similar results were obtained after refrigeration of spermatozoa in Triladyl at 5 degrees C. These data suggest that it might be possible to recover functional spermatozoa from red deer epididymides stored at 5 degrees C during several days when epididymal spermatozoa cannot be collected and cryopreserved immediately.  相似文献   

16.
《Cryobiology》2013,66(3):224-229
The very large acrosome of Pteropus species spermatozoa is prone to damage during cooling procedures. Cryogenic succuss has been linked to membrane composition, therefore the lipid composition of five Pteropus species sperm acrosomal and plasma membranes were investigated to provide insight into reasons for cold shock susceptibility. Rapid chilling and re-warming of spermatozoa from three Pteropus species resulted in a decrease (P < 0.05) in acrosomal integrity. Biochemical analysis of lipids revealed that stearic acid (18:0) was the predominant saturated fatty acid and oleic acid (18:1, n-9) the predominant unsaturated fatty acid in both acrosomal and plasma membranes. Linolenic acid (18:3, n-3) was only detected in plasma membranes of Pteropus hypomelanus and was detected in acrosomal membranes of all Pteropus spp. studied (except Pteropus giganteus). Although detected in both plasma and acrosomal membranes of Pteropus vampyrus, docosahexaenoic acid (22:6) was not detected at all in Pteropus poliocephalus, only in trace levels in the acrosomal and plasma membranes of P. giganteus and P. hypomelanus and not in acrosomal membranes of Pteropus rodricensis. No difference was seen in the levels of polyunsaturated fatty acids (PUFAs) within plasma membranes, however PUFAs were lower (P < 0.05) in acrosomal membranes of P. giganteus compared with P. vampyrus. Pteropus spp. spermatozoa have a very low ratio of unsaturated/saturated membrane fatty acids (<0.5). Membranes containing more PUFAs are more fluid, so the use of cryogenic media which improves membrane fluidity should improve Pteropus spp. spermatozoal viability post-thaw.  相似文献   

17.
The abundance of data pertaining to the metabolism of lipids in relation to mammalian fertilization has warranted an effort to assemble a molecular membrane model for the comprehensive visualization of the biochemical events involved in sperm capacitation and the acrosome reaction. Derived both from earlier models as well as from current concepts, our membrane model depicts a lipid bilayer assembly of space-filling molecular models of sterols and phospholipids in dynamic equilibrium with peripheral and integral membrane proteins. A novel feature is the possibility of visualizing individual lipid molecules such as phosphatidylcholine, phosphatidylethanolamine, lysophospholipids, fatty acids, and free or esterified cholesterol. The model illustrates enzymatic reactions which are believed to regulate the permeability and integrity of the plasma membrane overlying the acrosome during interactions between the male gamete and capacitation factors present in fluids of the female genital tract. The use of radioactive lipids as molecular probes for monitoring the metabolism of cholesterol and phosphatidylcholine revealed the presence of (1) steroid sulfatase in hamster cumulus cells, (2) lecithin: cholesterol acyltransferase in human follicular fluid, (3) phospholipase A2, and (4) lysophospholipase in human spermatozoa. These enzymatic reactions can be integrated into a pathway that provides a link between the concepts of lysophospholipid accumulation in the sperm membranes and alteration of the cholesterol/phospholipid ratio as factors involved in the preparation of the membranes for the acrosome reaction. Capacitation is viewed as a reversible phenomenon which, upon completion, results in a decrease in negative surface charge, an efflux of membrane cholesterol, and an influx of calcium between the plasma and outer acrosomal membranes. Triggered by the entry of calcium, the acrosome reaction involves phospholipase A2 activation followed by a transient accumulation of unsaturated fatty acids and lysophospholipids implicated in membrane fusion which occurs during the formation of membrane vesicles in spermatozoa undergoing the acrosome reaction.  相似文献   

18.
Boar spermatozoa acquired resistance to cold shock immediately after exposure to 2.0 mmol butylated hydroxytoluene (BHT) l-1 when Beltsville thawing solution was used as a basic diluent, as judged by motility (the proportion of motile spermatozoa) and acrosomal integrity. The concentration of BHT could be reduced to 0.2 mmol l-1 without decreasing the protective action. However, motility was altered in the presence of greater than 0.15 mmol BHT l-1. Beltsville freezing 5 (BF5) diluent was more effective than Beltsville thawing solution in protecting spermatozoa from cold shock, but addition of BHT to BF5 diluent did not affect the motility and acrosomal morphology of spermatozoa before or after cold shock. Dilution of BHT-treated spermatozoa with BF5 diluent did not restore motility and did not afford further protection against cold shock; it was detrimental to spermatozoa treated with 2 mmol BHT l-1 for greater than 15 min. Egg yolk or lecithin had a detrimental effect. When spermatozoa were treated with 0.05-0.10 mmol BHT l-1 before slow cooling to 5 degrees C, the progressive motility and acrosomal integrity were maintained better after storage for 6 days than in untreated spermatozoa.  相似文献   

19.
Bissett C  Bernard RT 《Theriogenology》2005,63(6):1592-1604
The objectives of this study were to investigate the effects of prolonged storage of cauda epididymides at 4 degrees C on spermatozoa, and to determine the practicality of utilising epididymal sperm, harvested from testes collected during routine culling of game animals, in assisted reproductive technologies. Testes from eland (Taurotragus oryx) were collected and epididymides removed and maintained at 4 degrees C. Sperm motility, viability, morphology and membrane integrity were examined at 12 h intervals for 108 h. Sperm motility and viability were significantly lower at the end of the experiment than at the start (P < 0.05) and there was individual variation in the rate at which motility and viability declined. The total number of normal sperm decreased significantly with prolonged storage at 4 degrees C. Midpiece defects were the most common and head and tail abnormalities were rare. A significant decrease in acrosomal and nuclear membrane integrity was observed with prolonged cold storage but there was no significant change in cell membrane integrity. However, about 30% of epididymal sperm survived for 3 days at 4 degrees C and more than 10% survived for 4 days, and it should be possible to use sperm from culled animals in some assisted reproductive technologies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号