首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
α-Glucan produced by crude dextransucrase (CEP) of Streptococcus mutans E49 was separated into the following three fractions: a water-insoluble glucan fraction (designated as IG), a water-soluble glucan fraction with a wide distribution of molecular weight (SG-1) and an oligosaccharide (SG-2). Formation of these products, which had characteristic courses, were remarkably reduced in the presence of ribocitrin. Production of IG and SG-1 by CEP and the inhibitory activity of ribocitrin were highly pH-dependent. With regard to dextran T10, ribocitrin inhibited IG production competitively.  相似文献   

2.
The appearance and continuing growth of extracellular material on Streptococcus mutans HS6 cells in sucrose-containing Merthiolated buffer was observed in a scanning electron microscope and was found to be related to the glucan synthesis on the cell and to adherence of the cell to a smooth surface. Cells grown in broth completely deprived of sucrose by invertase (HS6-IV) had a characteristic, slightly rugged surface structure. On incubation of HS6-IV in the sucrose-containing buffer, a few small globular particles appeared on the surface and grew to an irregular shape (globular to fibrilar) after several hours. The increase in the total glucan content of the cells paralleled the growth of the globular material, to which ferritin-conjugated anti-dextran globulin was found to bind. On the cell surface of cells harvested from conventional broth, both small globular and irregular structures, which possibly formed from sucrose in the broth, existed originally and continued to grow during incubation, along with the material newly appearing on the surface. The accumulation of glucan on the cells resulted in their adherence to a glass surface. The inhibition of growth of the extracellular material on the cells by trypsin, dextranase or anti-glucosyltransferase corresponded to the decrease in glucan synthesis and the loss of adhering ability. These results indicated that the material growing on the cell surface was glucan synthesized by glucosyltransferases.  相似文献   

3.
Enzymes participating in glucan synthesis by Streptococcus mutans E49 were separated into two fractions with distinctly different activities by chromatography on DEAE Bio-Gel A. The insoluble glucan (IG) was revealed to be formed by the coupling reaction of these two enzymes, dextransucrase (SGE), which synthesizes soluble glucan from sucrose, and a glucan insolubilizing enzyme (IGE), which forms IG from soluble glucan.

Ribocitrin was found to inhibit IG synthesis by inhibiting SGE.  相似文献   

4.
Mouth-dissolving fibers with antibacterial activity for the oral cavity were prepared by an electrospinning technique. Propolis extract was used as an active ingredient and polyvinylpyrrolidone (PVP) K90 as the polymer matrix. The morphology and diameter of the fibers were characterized by scanning electron microscopy. Antibacterial activity against Streptococcus mutans and the inhibition of S. mutans adhesion on a smooth glass surface during the biofilm formation were tested. Propolis, 5% (w/v), was combined with a PVP K90 solution, 8% (w/v), with or without Tween 80 including flavor additives and electrospun with an applied voltage of 15 kV. Uniform and smooth fibers of propolis-PVP K90 were obtained. The results showed that electrospun fibers with propolis extract can dissolve and release the propolis in water. Propolis-PVP electrospun fibers showed better antibacterial activity by reduction of bacteria adhesion on a smooth glass surface when compared to some commercial mouthwash products. These results indicated the potential of electrospun fibers to be used as mouth-dissolving fibers for effective antibacterial activity in the oral cavity.KEY WORDS: antibacterial activity, electrospun fibers, inhibition of adherence, propolis, Streptococcus mutans  相似文献   

5.
The oral pathogen, Streptococcus mutans, was grown under glucose limitation in a chemostat at pH 7.0 and a dilution rate of 0.1 h(-1) to mimic the conditions prevailing in a healthy human oral cavity in between meal times. Solubilized cellular and extracellular proteins were separated by two-dimensional gel electrophoresis (2-DE) and, following tryptic digestion, 421 protein spots analyzed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry or electrospray ionization-tandem mass spectrometry. Analyses of the mass spectral data showed that the proteins matched the translation products of 200 different open reading frames (ORFs) deduced from contigs of the S. mutans UA159 genome and thus represented proteins derived from approximately 11% of the total ORFs of the bacterium. Of the identified proteins, 172 (including one surface protein) were characterized in the cellular fraction, and the remaining 28 (including two surface proteins) were uniquely identified from the culture fluid. The expression and therefore the existence of 30 proteins previously designated as 'hypothetical' or with no known function was confirmed. 2-DE of whole cell lysates revealed only a single intrinsic membrane protein. This is consistent with proteomic analyses of other Gram-positive bacteria where hydrophilic proteins represent the vast majority of those characterized.  相似文献   

6.
7.
The galK gene, encoding galactokinase of the Leloir pathway, was insertionally inactivated in Streptococcus mutans UA159. The galK knockout strain displayed only marginal growth on galactose, but growth on glucose or lactose was not affected. In strain UA159, the sugar phosphotransferase system (PTS) for lactose and the PTS for galactose were induced by growth in lactose and galactose, although galactose PTS activity was very low, suggesting that S. mutans does not have a galactose-specific PTS and that the lactose PTS may transport galactose, albeit poorly. To determine if the galactose growth defect of the galK mutant could be overcome by enhancing lactose PTS activity, the gene encoding a putative repressor of the operon for lactose PTS and phospho-β-galactosidase, lacR, was insertionally inactivated. A galK and lacR mutant still could not grow on galactose, although the strain had constitutively elevated lactose PTS activity. The glucose PTS activity of lacR mutants grown in glucose was lower than in the wild-type strain, revealing an influence of LacR or the lactose PTS on the regulation of the glucose PTS. Mutation of the lacA gene of the tagatose pathway caused impaired growth in lactose and galactose, suggesting that galactose can only be efficiently utilized when both the Leloir and tagatose pathways are functional. A mutation of the permease in the multiple sugar metabolism operon did not affect growth on galactose. Thus, the galactose permease of S. mutans is not present in the gal, lac, or msm operons.  相似文献   

8.
The galK gene, encoding galactokinase of the Leloir pathway, was insertionally inactivated in Streptococcus mutans UA159. The galK knockout strain displayed only marginal growth on galactose, but growth on glucose or lactose was not affected. In strain UA159, the sugar phosphotransferase system (PTS) for lactose and the PTS for galactose were induced by growth in lactose and galactose, although galactose PTS activity was very low, suggesting that S. mutans does not have a galactose-specific PTS and that the lactose PTS may transport galactose, albeit poorly. To determine if the galactose growth defect of the galK mutant could be overcome by enhancing lactose PTS activity, the gene encoding a putative repressor of the operon for lactose PTS and phospho-beta-galactosidase, lacR, was insertionally inactivated. A galK and lacR mutant still could not grow on galactose, although the strain had constitutively elevated lactose PTS activity. The glucose PTS activity of lacR mutants grown in glucose was lower than in the wild-type strain, revealing an influence of LacR or the lactose PTS on the regulation of the glucose PTS. Mutation of the lacA gene of the tagatose pathway caused impaired growth in lactose and galactose, suggesting that galactose can only be efficiently utilized when both the Leloir and tagatose pathways are functional. A mutation of the permease in the multiple sugar metabolism operon did not affect growth on galactose. Thus, the galactose permease of S. mutans is not present in the gal, lac, or msm operons.  相似文献   

9.
Streptococcus mutans and certain other oral lactic-acid bacteria were found to have the ability to carry out malolactic fermentation involving decarboxylation of L-malate to yield L-lactic acid and concomitant reduction in acidity. The activity was inducible by L-malate in S. mutans UA159 growing in suspensions or biofilms. The optimal pH for the fermentation was c. 4.0 for both suspensions and biofilms, although the pH optimum for malolactic enzyme in permeabilized cells of S. mutans UA159 was close to 5.5. Although malate did not serve as a catabolite for growth of S. mutans, it did serve to protect the organism against acid killing and to maintain ATP pool levels during starvation. Alkalinization associated with malolactic fermentation resulted in pH rise or increased need to add standardized HCl solution to maintain a set pH value in pH-stat experiments. The net conclusion is that malate has the potential to be effective for alkalinization of dental plaque, although the fermentation is sensitive to fluoride and triclosan, which are commonly added to oral care products.  相似文献   

10.
S Sato  T Koga  T Yakushiji  S Nagasawa  M Inoue 《Microbios》1982,34(136):99-112
Production of water-insoluble glucan (ISG) from sucrose by cell-free Streptococcus mutans AHT glucosyltransferase (GTF) first rapidly increased, and then sharply declined, as the amounts of water-soluble Dextrans T20 approximately T500 present, were increased. The decline of ISG synthesis was accompanied by an increased synthesis of the water-soluble fraction (SG). Prolonged incubation, however, induced enhanced synthesis of ISG even at higher dextran concentrations. The concentration of dextran required to stimulate or suppress ISG synthesis depended on the amounts of GTF used, but the extent of the stimulation was almost identical for the same GTF/dextran ratio. Thus, ISG synthesis is stimulated by the presence of dextrans at relatively low concentrations, but retarded at higher concentrations by being shifted to SG synthesis. ISG produced in the presence of dextrans contained higher proportions of alpha-1,6 glucosidic linkage and lower molecular size fractions, and possessed lower viscosity. These ISG products did not exhibit the coalescence of two component fibrils as observed with control ISG. These changes combined may contribute to the reduction of ISG-dependent adherence to glass of S. mutans cells by the presence of soluble dextrans, irrespective of their molecular size and concentration.  相似文献   

11.
Glutathione (γ-GluCysGly, GSH) is not found in most gram-positive bacteria, but some appear to synthesize it and others, including Streptococcus mutans ATCC 33402, import it from their growth medium. Import of oxidized glutathione (GSSG) by S. mutans 33402 in 7H9 medium was shown to require glucose and to occur with an apparent Km of 18 ± 5 μM. GSSG, GSH, S-methylglutathione, and homocysteine-glutathione mixed disulfide (hCySSG) were imported at comparable rates (measured by depletion of substrate in the medium), as was the disulfide of γ-GluCys. In contrast, the disulfide of CysGly was not taken up at a measurable rate, indicating that the γ-Glu residue is important for efficient transport. During incubation with GSSG, little GSSG was detected in cells but GSH and γ-GluCys accumulated during the first 30 min and then declined. No significant intracellular accumulation of Cys or sulfide was found. Transient intracellular accumulation of d/l-homocysteine, as well as GSH and γ-GluCys, was observed during import of hCySSG. Although substantial levels of GSH were found in cells when S. mutans was grown on media containing glutathione, such GSH accumulation had no effect on the growth rate. However, the presence of cellular GSH did protect against growth inhibition by the thiol-oxidizing agent diamide. Import of glutathione by S. mutans ATCC 25175, which like strain 33402 does not synthesize glutathione, occurred at a rate comparable to that of strain 33402, but three species which appear to synthesize glutathione (S. agalactiae ATCC 12927, S. pyogenes ATCC 8668, and Enterococcus faecalis ATCC 29212) imported glutathione at negligible or markedly lower rates.Bacteria import peptides composed of two to eight residues by means of a number of different multiprotein uptake systems or permeases (14). Of the bacterial permeases, those of Escherichia coli, Lactococcus lactis, and Salmonella typhimurium are the best studied (6, 7). In these organisms, there are individual permeases that have high affinity for dipeptides, tripeptides, dipeptides and tripeptides, or oligopeptides. Among the bacterial peptide permeases (14), there seems to be no discrimination of the specific amino acids of the transported peptides. However, switching the stereochemistry of Cα from l to d or modifying the C-terminal carboxylate or N-terminal amine of transported peptides significantly reduces the rate of transport. One transport system which does seem to recognize peptide residue side chains has been reported to exist in Enterococcus faecalis; this system transports only peptides that possess an N-terminal Asp or Glu (13).In 1978, we reported that glutathione (γ-GluCysGly, GSH) is not synthesized by most gram-positive bacteria (4), apparent exceptions being Streptococcus agalactiae and L. lactis (previously Streptococcus lactis). However, some of the gram-positive bacteria appeared to acquire GSH by import of another form of GSH from the growth medium. Uptake of glutathione by Streptococcus mutans was later studied by Thomas (16), who found that total cellular thiol content, and radioactivity from labeled GSH or oxidized GSH (GSSG), increased with the same kinetics. A careful study of L. lactis subsp. cremoris by Wiederholt and Steele (17) established that strain Z8 efficiently accumulates GSH when grown in medium supplemented with GSH but is unable to synthesize it, whereas strain C2 can neither import nor synthesize GSH. Species of Peptostreptococcus and Fusobacterium have been shown to markedly increase their production of H2S, apparently derived by import of glutathione from the growth medium (2). Finally, cellular accumulation of radioactivity from radiolabeled GSH or GSSG added to the incubation medium has been demonstrated in Streptococcus pneumoniae, and a mutant in which the apparent transport of glutathione is blocked has been found (9).In a recent report (10), we provided evidence for accumulation of GSH through transport and synthesis of GSH by streptococci and enterococci, but the occurrence of these processes appeared to be species dependent and even, for some species, strain dependent. Such strain dependence appears most variable for L. lactis, where different strains can synthesize GSH, accumulate GSH by import, or do neither (4, 17). In the present research, we expand on our studies of streptococci in order to gain insight into the nature of the glutathione species transported, the fate of the glutathione once it enters the cell, and the function of glutathione in the cell.  相似文献   

12.
Transport and metabolism of citrate by Streptococcus mutans   总被引:3,自引:0,他引:3       下载免费PDF全文
Streptococcus mutans, a normal inhabitant of dental plaque, is considered a primary etiological agent of dental caries. Two virulence determinants of S. mutans are its acidogenicity and aciduricity (the ability to produce acid and the ability to survive and grow at low pH, respectively). Citric acid is ubiquitous in nature; it is a component of fruit juices, bones, and teeth. In lactic acid bacteria citrate transport has been linked to increased survival in acidic conditions. We identified putative citrate transport and metabolism genes in S. mutans, which led us to investigate citrate transport and metabolism. Our goals in this study were to determine the mechanisms of citrate transport and metabolism in S. mutans and to examine whether citrate modulates S. mutans aciduricity. Radiolabeled citrate was used during citrate transport to identify citrate metal ion cofactors, and thin-layer chromatography was used to identify metabolic end products of citrate metabolism. S. mutans was grown in medium MM4 with different citrate concentrations and pH values, and the effects on the growth rate and cell survival were monitored. Intracellular citrate inhibited the growth of the bacteria, especially at low pH. The most effective cofactor for citrate uptake by S. mutans was Fe(3+). The metabolic end product of citrate metabolism was aspartate, and a citrate transporter mutant was more citrate tolerant than the parent.  相似文献   

13.
The oral microbial flora consists of many beneficial species of bacteria that are associated with a healthy condition and control the progression of oral disease. Cooperative interactions between oral streptococci and the pathogens play important roles in the development of dental biofilms in the oral cavity. To determine the roles of oral streptococci in multispecies biofilm development and the effects of the streptococci in biofilm formation, the active substances inhibiting Streptococcus mutans biofilm formation were purified from Streptococcus salivarius ATCC 9759 and HT9R culture supernatants using ion exchange and gel filtration chromatography. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry analysis was performed, and the results were compared to databases. The S. salivarius HT9R genome sequence was determined and used to indentify candidate proteins for inhibition. The candidates inhibiting biofilms were identified as S. salivarius fructosyltransferase (FTF) and exo-beta-d-fructosidase (FruA). The activity of the inhibitors was elevated in the presence of sucrose, and the inhibitory effects were dependent on the sucrose concentration in the biofilm formation assay medium. Purified and commercial FruA from Aspergillus niger (31.6% identity and 59.6% similarity to the amino acid sequence of FruA from S. salivarius HT9R) completely inhibited S. mutans GS-5 biofilm formation on saliva-coated polystyrene and hydroxyapatite surfaces. Inhibition was induced by decreasing polysaccharide production, which is dependent on sucrose digestion rather than fructan digestion. The data indicate that S. salivarius produces large quantities of FruA and that FruA alone may play an important role in multispecies microbial interactions for sucrose-dependent biofilm formation in the oral cavity.  相似文献   

14.
Streptococcus mutans has at least six pairs of open reading frames that are homologous to bacterial two-component regulatory systems. Putative response regulators from five out of six of these pairs were successfully mutated by insertion of a kanamycin resistance marker and the effects of inactivation of the genes on the ability of the cells to form biofilms in an in vitro model were assessed. Disruption of the response regulators of four systems had no effect on biofilm formation, whereas disruption of one response regulator caused a substantial decrease in biofilm formation as compared to the wild-type S. mutans.  相似文献   

15.
Incorporation of fatty acids by Streptococcus mutans   总被引:1,自引:0,他引:1  
In a series of investigations into the cariogenicity of Streptococcus mutans, we studied the incorporation of exogenous fatty acids with reference to glucosyltransferase secretion and membrane fatty acid changes. When cells were grown with different fatty acids, both saturated and unsaturated fatty acids were readily incorporated into the membrane lipids and were biotransformed and elongated preferentially to the longer 16- and 18-carbon-chain fatty acids. This incorporation and chain-elongation led to significant changes in fatty acids composition. By adding fatty acids to the medium, it was possible to appropriately modify the degree of unsaturation and the relative ratio between specific fatty acids in the membrane lipids of S. mutans.  相似文献   

16.
17.
Production of mutacin-like substances by Streptococcus mutans   总被引:1,自引:0,他引:1  
Production of inhibitory substances by strains of the Streptococcus mutans group is well documented, but the nature of the substances implied is often unknown. Of nine laboratory strains known to produce inhibitory substances, the optimal conditions for producing inhibition zones on solid media were found to vary between strains but good production was generally obtained on all-purpose media with Tween 80 at 37 degrees C after 2-4 days of aerobic incubation. Streptococcus sanguis Ny101 was found to be more sensitive than Streptococcus rattus LG-1 to all inhibitory substances produced by the S. mutans strains tested. While all strains showed some inhibition, only six showed inhibition after neutralization; arginine incorporated in agar at 0.75% completely eliminated all inhibition zones. However 1% arginine in the overlays did not affect the production of inhibition zones by strains of S. mutans C67-1, Ny257, Ny266, and T8. These strains were shown to elaborate (in a reproducible fashion) inhibitory substances which were not organic acids. Inhibitory activity was never obtained in liquid preparations, except for strains Ny257 and T8 where it was found to be very unstable.  相似文献   

18.
Summary: Streptococci readily colonize mucosal tissues in the nasopharynx; the respiratory, gastrointestinal, and genitourinary tracts; and the skin. Each ecological niche presents a series of challenges to successful colonization with which streptococci have to contend. Some species exist in equilibrium with their host, neither stimulating nor submitting to immune defenses mounted against them. Most are either opportunistic or true pathogens responsible for diseases such as pharyngitis, tooth decay, necrotizing fasciitis, infective endocarditis, and meningitis. Part of the success of streptococci as colonizers is attributable to the spectrum of proteins expressed on their surfaces. Adhesins enable interactions with salivary, serum, and extracellular matrix components; host cells; and other microbes. This is the essential first step to colonization, the development of complex communities, and possible invasion of host tissues. The majority of streptococcal adhesins are anchored to the cell wall via a C-terminal LPxTz motif. Other proteins may be surface anchored through N-terminal lipid modifications, while the mechanism of cell wall associations for others remains unclear. Collectively, these surface-bound proteins provide Streptococcus species with a “coat of many colors,” enabling multiple intimate contacts and interplays between the bacterial cell and the host. In vitro and in vivo studies have demonstrated direct roles for many streptococcal adhesins as colonization or virulence factors, making them attractive targets for therapeutic and preventive strategies against streptococcal infections. There is, therefore, much focus on applying increasingly advanced molecular techniques to determine the precise structures and functions of these proteins, and their regulatory pathways, so that more targeted approaches can be developed.  相似文献   

19.

The diffusion of poly(ethylene glycol) (PEG) (MW varying between 200 and 10,000), and of three different types of micelles was examined in Streptococcus mutans biofilms using infrared spectroscopy. PEGs were used because they show limited interactions with biological materials and their weight can be selected in order to cover a wide range of size. The study showed that a considerable fraction at the base of the biofilm was not accessible to the diffusing solute molecules and this inaccessible fraction was very dependent on the size of the diffusing molecules. In parallel, it was found that the diffusion coefficients of these solutes in the biofilms were less than those in water and this reduction was less pronounced for large macromolecules, an effect proposed to be related to their limited penetration. Triton X-100, a neutral detergent, forms micelles that behave like PEG, suggesting that the behaviour observed for neutral macromolecules can be extrapolated to neutral macroassemblies. However, the diffusion, as well as the penetration of sodium dodecylsulphate micelles (a negatively charged surfactant) and cetylpyridinium chloride micelles (positively charged), in the biofilms appeared to be significantly influenced by electrostatic interactions with biofilm components. The present findings provide useful insights associated with the molecular parameters required to efficiently penetrate bacterial biofilms. The study suggests a rationale for the limited bactericidal power of some antibiotics (the large ones). The restricted accessibility of macromolecules and macroassemblies to biofilms must be examined carefully in order to offer guidelines in the development of novel antibacterial treatments.  相似文献   

20.
Disulfide reduction and sulfhydryl uptake by Streptococcus mutans   总被引:4,自引:0,他引:4       下载免费PDF全文
Incubation of Streptococcus mutans cells with certain disulfide compounds resulted in accumulation of reduced sulfhydryl compounds in the extracellular medium or in both the medium and the cells. Oxidized lipoic acid and lipoamide competed for reduction. At high concentrations, these compounds were reduced at rates comparable to that of glucose metabolism, and all of the increase in sulfhydryls was in the medium. Cystamine did not compete with these compounds for reduction but was also reduced at high rates and low apparent affinity, and all of the cysteamine produced from cystamine accumulated in the medium. In contrast, glutathione disulfide (GSSG) and L-cystine were reduced slowly but with high apparent affinity, and 60 to 80% of the increase in sulfhydryls was intracellular. NADH-dependent lipoic acid or lipoamide reductase activity was present in the particulate (wall-plus-membrane) fraction, whereas NADPH-dependent GSSG reductase activity was present in the soluble (cytoplasmic) fraction. Two transport systems for disulfide and sulfhydryl compounds were distinguished. GSSG, L-cystine, and reduced glutathione competed for uptake. L-Cysteine was taken up by a separate system that also accepted L-penicillamine and D-cysteine as substrates. Uptake of glutathione or L-cysteine, or the uptake and reduction of GSSG or L-cystine, resulted in up to a 10-fold increase in cell sulfhydryl content that raised intracellular concentrations to between 30 and 40 mM. These reductase and transport systems enable S. mutans cells to create a reducing environment in both the extracellular medium and the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号