首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polarized ir and Raman spectra have been obtained on oriented films of α-helical poly(L -alanine) (α-PLA) and its N-deuterated derivative. These improved spectra permit a more complete assignment of observed bands to A-, E1-, and E2-species modes. A new empirical force field has been refined, based on ab initio force fields of N-methylacetamide and L -alanyl-L -alanine, which reproduces observed frequencies above 200 cm−1 to less than 5 cm−1. A new transition dipole coupling treatment avoids the weak coupling and perturbation approximations, and can now account for the newly observed and reassigned amide I (E2) mode. As a result of this improved force field, several other observed bands have also been reassigned. © 1998 John Wiley & Sons, Inc. Biopoly 46: 283–317, 1998  相似文献   

2.
The preferred conformations of N-acetyl-N′-methyl amides of some dialkylglycines have been determined by empirical conformational-energy calculations; minimum-energy conformations were located by minimizing the energy with respect to all the dihedral angles of the molecules. The conformational space of these compounds is sterically restricted, and low-energy conformations are found only in the regions of fully extended and helical structures. Increasing the bulkiness of the substituents on the Cα, the fully extended conformation becomes gradually more stable than the helical structure preferred in the cases of dimethylglycine. This trend is, however, strongly dependent on the bond angles between the substituents on the Cα atom: In particular, helical structures are favored by standard values (111°) of the N-Cα-C′ angle, while fully extended conformations are favored by smaller values of the same angle, as experimentally observed, for instance, in the case of α,α-di-n-propylglycine.  相似文献   

3.
The solid‐state conformations of two αγ hybrid peptides Boc‐[Aib‐γ4(R)Ile]4‐OMe 1 and Boc‐[Aib‐γ4(R)Ile]5‐OMe 2 are described. Peptides 1 and 2 adopt C12‐helical conformations in crystals. The structure of octapeptide 1 is stabilized by six intramolecular 4 → 1 hydrogen bonds, forming 12 atom C12 motifs. The structure of peptide 2 reveals the formation of eight successive C12 hydrogen‐bonded turns. Average backbone dihedral angles for αγ C12 helices are peptide 1 , Aib; φ (°) = ?57.2 ± 0.8, ψ (°) = ?44.5 ± 4.7; γ4(R)Ile; φ (°) = ?127.3 ± 7.3, θ1 (°) = 58.5 ± 12.1, θ2 (°) = 67.6 ± 10.1, ψ (°) = ?126.2 ± 16.1; peptide 2 , Aib; φ (°) = ?58.8 ± 5.1, ψ (°) = ?40.3 ± 5.5; ψ4(R)Ile; φ (°) = ?123.9 ± 2.7, θ1 (°) = 53.3 θ 4.9, θ 2 (°) = 61.2 ± 1.6, ψ (°) = ?121.8 ± 5.1. The tendency of γ4‐substituted residues to adopt gauche–gauche conformations about the Cα–Cβ and Cβ–Cγ bonds facilitates helical folding. The αγ C12 helix is a backbone expanded analog of α peptide 310 helix. The hydrogen bond parameters for α peptide 310 and α‐helices are compared with those for αγ hybrid C12 helix. Copyright © 2016 European Peptide Society and John Wiley & Sons.  相似文献   

4.
To obtain general rules of peptide design using α,β-dehydro-residues, a sequence with two consecutive ΔPhe-residues, Boc-L -Val-ΔPhe–ΔPhe- L -Ala-OCH3, was synthesized by azlactone method in solution phase. The peptide was crystallized from its solution in an acetone/water mixture (70:30) in space group P61 with a=b=14.912(3) Å, c= 25.548(5) Å, V=4912.0(6) Å3. The structure was determined by direct methods and refined by a full matrix least-squares procedure to an R value of 0.079 for 2891 observed [I?3σ(I)] reflections. The backbone torsion angles ?1=?54(1)°, ψ1= 129(1)°, ω1=?177(1)°, ?2 =57(1)°, ψ2=15(1)°, ω2 =?170(1)°, ?3=80(1)°, ψ3 =7(2)°, ω3=?177(1)°, ?4 =?108(1)° and ψT4=?34 (1)° suggest that the peptide adopts a folded conformation with two overlapping β-turns of types II and III′. These turns are stabilized by two intramolecular hydrogen bonds between the CO of the Boc group and the NH of ΔPhe3 and the CO of Val1 and the NH of Ala4. The torsion angles of ΔPhe2 and ΔPhe3 side chains are similar and indicate that the two ΔPhe residues are essentially planar. The folded molecules form head-to- tail intermolecular hydrogen bonds giving rise to continuous helical columns which run parallel to the c-axis. This structure established the formation of two β-turns of types II and III′ respectively for sequences containing two consecutive ΔPhe residues at (i+2) and (i+3) positions with a branched β-carbon residue at one end of the tetrapeptide.  相似文献   

5.
The αII-helix (? = ?70.47°, ψ = ?35.75°) is a structure having the same n and h as the (standard) αI-helix (? = ?57.37°, ψ = ?47.49°). Its conformational angles are commonly found in proteins. Using an improved α-helix force field, we have compared the vibrational frequencies of these two structures. Despite the small conformational differences, there are significant predicted differences in frequencies, particularly in the amide A, amide I, and amide II bands, and in the conformation-sensitive region below 900 cm?1. This analysis indicates that αII-helices are likely to be present in bacteriorhodopsin [Krimm, S. & Dwivedi, A. M. (1982) Science 216 , 407–408].  相似文献   

6.
The crystal state conformations of three peptides containing the α,α-dialkylated residues. α,α-di-n-propylglycine (Dpg) and α,α-di-n-butylglycine (Dbg), have been established by x-ray diffraction. Boc-Ala-Dpg-Alu-OMe (I) and Boc-Ala-Dbg-Ala-OMe (III) adopt distorted type II β-turn conformations with Ala (1) and Dpg/Dbg (2) as the corner residues. In both peptides the conformational angles at the Dxg residue (I: ? = 66.2°, ψ = 19.3°; III: ? = 66.5°. ψ = 21.1°) deviate appreciably from ideal values for the i + 2 residue in a type II β-turn. In both peptides the observed (N…O) distances between the Boc CO and Ala (3) NH groups are far too long (1: 3.44 Å: III: 3.63 Å) for an intramolecular 4 → 1 hydrogen bond. Boc-Ala-Dpg-Ata-NHMe (II) crystallizes with two independent molecules in the asymmetric unit. Both molecules HA and HB adopt consecutive β-turn (type III-III in HA and type III-I in IIB) or incipient 310-helical structures, stabilized by two intramolecular 4 → 1 hydrogen bonds. In all four molecules the bond angle N-Cα-C′ (τ) at the Dxg residues are ≥ 110°. The observation of conformational angles in the helical region of ?,ψ space at these residues is consistent with theoretical predictions. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
A multiple regression analysis has established a nonlinear relationship between the backbone dihedral angles and the Cα coordinates obtained from the x-ray crystal structures of 14 proteins. The regression equations have been applied to predict specific dihedral angles of each residue in the backbone of 24 proteins. Overall this method (Nonlinear Regression Distance Torsion) predicts values of ϕ and ψ within a ±45° window of those found in the x-ray structure with an accuracy of 94 and 91% and within a ±30° window of 88 and 81%. Two methods for the assignment of motif from Cα coordinates are reported. For the first method, motif is assigned from the dihedral angles predicted using the regression equations. By the second method, motif of the ith residue is assigned from the distance Cαi-1 to Cαi+2 (v6) and torsional angle Cαi-1, Cαi, Cαi+1, Cαi+2 (v13). For the 24 proteins, 23.7% of the residues by the former method and 19.6% by the latter method are assigned differently than in the Protein Data Bank. © 1997 John Wiley & Sons, Inc.  相似文献   

8.
In 1968 C. Venkatachalam (Biopolymers, Vol. 6, pp. 1425–1436) predicted the ideal forms of β-turns (type I, type II, etc.) based entirely on theoretical calculations. Subsequently, over a thousand x-ray structures of different globular proteins have been analyzed, with results suggesting that the most important form among the hairpin conformers is the type I β-turn. For the latter type of hairpin conformation, the original computations had predicted ϕi+1 = −60°, ψi+1 = −30°, ϕi+2 = −90°, and ψi+2 = 0° as backbone torsion angle values, and these have been used from that time as reference values for the identification of the type I β-turn. However, it has never been clarified whether these “ideal” backbone torsion angle values exist in real structures, or whether these torsion angles are only “theoretical values.” Using the most recent release of the Protein Data Bank (1994), a survey has been made to assign amino acid pairs that approach the ideal form of the type I β-turn. The analysis resulted in four sequences where the deviation from ideal values for any main-chain torsion angles was less than 2°. In order to determine whether such a backbone fold is possible only in proteins owing to fortuitous cooperation of different folding effects, or whether it occurs even in short peptides, various attempts have been made to design the optimal amino acid sequence. Such a peptide model compound adopting precisely the predicted torsion angle values [ϕi+1 = −60°, ψi+1 = −30°, ϕi+2 = −90°, and ψi+2 = 0°] could provide valuable information. The solid state conformation of cyclo[(δ) Ava-Gly-Pro-Thr (O1Bu)-Gly] reported herein, incorporating the -Pro-Thr- subunit, yields values suggesting that the “ideal” type I β-turn is even possible for a peptide where there are no major environmental effects present. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
Conformational energy computations on a derivative and a homo-dipeptide of Cα,α-diethylglycine were performed. In both cases the N- and C-terminal groups are blocked as acetamido and methylamido moieties, respectively. It was found that the Cα,α-diethylglycine residues are conformationally restricted and that the minimum energy conformation corresponds to the fully extended C5 structure when the N? Cα? C′ bond angle is smaller than 108° (as experimentally observed). The results of the theoretical analysis are in agreement with the crystal-state structural propensity of the complete series of N-trifluoroacetylated homo-peptides of this Cα,α-dialkylated residue from monomer to pentamer, determined by x-ray diffraction and also described in this work. Interestingly, for the first time, a crystallographically planar peptide backbone was observed (in the protected tripeptide). A comparison with peptides of Cα,α-dimethylglycine, Cα-methyl, Cα-ethylglycine, and Cα,α-di-n-propylglycine indicates that the fully extended conformation becomes more stable than the helical structures when both amino acid side-chain Cβ atoms are substituted.  相似文献   

10.
N. V. Joshi  V. S. R. Rao 《Biopolymers》1979,18(12):2993-3004
Conformational energies of α- and β-D -glucopyranoses were computed by varying all the ring bond angles and torsional angles using semiempirical potential functions. Solvent accessibility calculations were also performed to obtain a measure of solvent interaction. The results indicate that the 4C1 (D ) chair is the most favored conformation, both by potential energy and solvent accessibility criteria. The 4C1 (D ) chair conformation is also found to be somewhat flexible, being able to accommodate variations up to 10° in the ring torsional angles without appreciable change in energy. Observed solid-state conformations of these sugars and their derivatives lie in the minimum-energy region, suggesting that the substituents and crystal field forces play a minor role in influencing the pyranose ring conformation. Theory also predicts the variations in the ring torsional angles, i.e., CCCC < CCCO < CCOC, in agreement with the experimental results. The boat and twist-boat conformations are found to be at least 5 kcal mol?1 higher in energy compared to the 4C1 (D ) chair, suggesting that these forms are unlikely to be present in a polysaccharide chain. The 1C4 (D ) chair has energy intermediate between that of the 4C1 (D ) chair and that of the twist-boat conformation. The calculated energy barrier between 4C1 (D ) and 1C4 (D ) conformations is high—about 11 kcal mol?1.  相似文献   

11.
A series of model compounds containing 3‐amino‐1H‐pyrazole‐5‐carboxylic acid residue with N‐terminal amide/urethane and C‐terminal amide/hydrazide/ester groups were investigated by using NMR, Fourier transform infrared, and single‐crystal X‐ray diffraction methods, additionally supported by theoretical calculations. The studies demonstrate that the most preferred is the extended conformation with torsion angles ? and ψ close to ±180°. The studied 1H‐pyrazole with N‐terminal amide/urethane and C‐terminal amide/hydrazide groups solely adopts this energetically favored conformation confirming rigidity of that structural motif. However, when the C‐terminal ester group is present, the second conformation with torsion angles ? and ψ close to ±180° and 0°, respectively, is accessible. The conformational equilibrium is observed in NMR and Fourier transform infrared studies in solution in polar environment as well as in the crystal structures of other related compounds. The observed conformational preferences are clearly related to the presence of intramolecular interactions formed within the studied residue. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
Pivaloyl-L -Pro-Aib-N-methylamide has been shown to possess one intramolecular hydrogen bond in (CD3)2SO solution, by 1H-nmr methods, suggesting the existence of β-turns, with Pro-Aib as the corner residues. Theoretical conformational analysis suggests that Type II β-turn conformations are about 2 kcal mol?1 more stable than Type III structures. A crystallographic study has established the Type II β-turn in the solid state. The molecule crystallizes in the space group P21 with a = 5.865 Å, b = 11.421 Å, c = 12.966 Å, β = 97.55°, and Z = 2. The structure has been refined to a final R value of 0.061. The Type II β-turn conformation is stabilized by an intramolecular 4 → 1 hydrogen bond between the methylamide NH and the pivaloyl CO group. The conformational angles are ?Pro = ?57.8°, ψPro = 139.3°, ?Aib = 61.4°, and ψAib = 25.1°. The Type II β-turn conformation for Pro-Aib in this peptide is compared with the Type III structures observed for the same segment in larger peptides.  相似文献   

13.
A single-crystal x-ray diffraction analysis of Boc-L -Ala-D -aIle-L -Ile-OMe has been carried out. The analysis has shown (a) that the tripeptide molecules have in part an α-extended conformation, the torsion angles of the L -Ala and D -aIle residues being φ1 = ?75.1° and ψ1 = ?25.8° and φ2 = 67.3° and ψ2 = 44.1°, respectively, and (b) that the molecules are organized in rippled planes where they occur in relative antiparallel orientation linked together side by side by H bonds. This molecular organization of the tripeptide corresponds closely to that of an antiparallel α-pleated sheet, and likely constitutes the first example of a structure of this kind for which a characterization at the atomic level has been achieved. A molecular dynamics study has shown that the molecular conformation of the tripeptide in the crystalline state is determined primarily by intermolecular interactions. © 1994 John Wiley & Sons, Inc.  相似文献   

14.
The conformational energy surfaces of analogues of the dipeptide unit of polypeptides and proteins are calculated by ab initio methods using extended basis sets.The calculations are not particularly sensitive to the choice of (extended) basis set.The calculations are shown to support a particular empirical method parameterized with respect to crystal data. Non-hydrogen bonded conformations agree to within 3 kcal mol?1, even for conformations in which quite considerable degrees of atomic overlap occur.Hydrogen bonded conformations, are, however, in less satisfactory agreement and it is the ab initio calculations which appear to be at fault.A simple correction is applied to the ab initio energy for hydrogen bonded conformations, and with the use of the empirical energy surface a full quantum mechanical conformational energy map is interpolated for the alanyl dipeptide.The effect of flexibility in the peptide backbone is taken into account, and supports recent empirical findings that distortions in valence angles must be considered in calculations of the conformational behaviour of peptides.  相似文献   

15.
The nonbonded interaction energy of disaccharides, mannobiose and galactobiose and polysaccharides mannan and galactan have been computed as a function of dihedral angles (?,ψ). The conformation (40°, ?20°) has been preferred for the mannan chain from nonbonded interaction energy considerations. The O5…O3′ type of intramolecular hydrogen bond has been found to be possible in the above conformation. Comparison of the allowed region of mannan with those of cellulose and xylan indicates that the monomer unit, in mannan chain has slightly higher freedom of rotation than that of cellulose and less than that of xylan. As in cellulose and mannan, the freedom of rotation of the monomer units in β-1,4′ galactan is highly restricted. Unlike mannan (which prefers an extended conformation) the β-1,4′ galactan prefers a helical conformation similar to amylose. Just as in amylose the O2…O3′ type hydrogen bond between contiguous residues is also possible in β-1,4′ galactan.  相似文献   

16.
The dynamics of a finite α-helix have been studied in the harmonic approximation by a vibrational analysis of the atomic motions about their equilibrium positions. The system were represented by an empirical potential energy function, and all degrees of freedom (bond lengths, bond angles, and torsional angles) were allowed to vary. The complete results were compared with a more restrictive model in which the peptide dihedral angle was kept rigid; also, a model potential excluding hydrogen bonds was examined. Thermal fluctuations in the backbone dihedral angles ? and ψ are 12° to 15°. The fluctuations of adjacent dihedral angles are highly correlated, and the correlation pattern is affected by the flexibility of the peptide dihedral angle. Time-dependent autocorrelations in the motion of ? and ψ appear to decay due to dephasing in less than 1 psec, while the motions of the carbonyl oxygen and amide hydrogens out of the peptide plane are more harmonic. Length fluctuations have been evaluated and exhibit a strong end effect; the calculated elastic modulus is in agreement with other values. Rigid and adiabatic total energy surfaces corresponding to dihedral angle rotations in the middle of the helix have been obtained and compared with the quadratic approximation to those surfaces. The magnitudes and correlations between the fluctuations obtained by averaging over the adiabatic energy surface most closely resemble the vibrational results. Of particular interest is the fact that hydrogen bonds play a relatively small role in the local dihedral angle fluctuations, though the hydrogen bonds are important in the energy of overall length changes.  相似文献   

17.
The structure of thermally denatured Type I collagen has been studied using laser light scattering. The results indicate that the diffusion coefficients of α-chains and β- and γ-components are 1.550 ± 0.08 × 10?7, 1.000 ± 0.05 × 10?7, and 0.835 ± 0.04 × 10?7 cm2/sec, respectively, at temperatures between 20 and 40°C. It is concluded from diffusion data that these species have hydrodynamic radii of about 13.8 nm (α-chain), 21.5 nm (β-component), and 25.7 nm (γ-component), consistent with previous studies of thermal denaturation by light scattering. It is also concluded, based on volume calculations, that a large volume increase occurs when the triple helix unfolds. Homodyne correlation functions for two component mixtures of α-chains and β-and γ-components appeared to decay exponentially. In all but one case discussed the correlation function could be fitted with a single component having a translational diffusion coefficient which was an intensity weighted average of the diffusion coefficient of each component present.  相似文献   

18.
The conformational preference of Cα,α-diphenylglycinc (Døg) and Cα,α-dibenzylglycine (Dbz) residues was assessed in selected derivatives and small peptides by conformational energy computations, ir absorption, 1H-nmr, and x-ray diffraction. Conformational energy computations on the two monopeptides strongly support the view that these Cα,α-symmetrically disubstituted glycines are conformationally restricted and that their minimum energy conformation falls in the fully extended (C5) region. The results of the theoretical analyses appear to be in agreement with the solution and crystal-state structural propensities of three derivatives and seven di-and tripeptides.  相似文献   

19.
Conformations of the α-l -Rhap(1-2)-β-d -Glc1-OMe and β-d -Galp(1-3)-β-d -Glc1-OMe disaccharides and the branched title trisaccharide were examined in DMSO-d6 solution by 1H-nmr. The distance mapping procedure was based on rotating frame nuclear Overhauser effect (NOE) constraints involving C- and O-linked protons, and hydrogen-bond constraints manifested by the splitting of the OH nmr signals for partially deuteriated samples. An “isotopomer-selected NOE” method for the unequivocal identification of mutually hydrogen-bonded hydroxyl groups was suggested. The length of hydrogen bonds thus detected is considered the only one motionally nonaveraged nmr-derived constraint. Molecular mechanics and molecular dynamics methods were used to model the conformational properties of the studied oligosaccharides. Complex conformational search, relying on a regular Φ,Ψ-grid based scanning of the conformational space of the selected glycosidic linkage, combined with simultaneous modeling of different allowed orientations of the pendant groups and the third, neighboring sugar residue, has been carried out. Energy minimizations were performed for each member of the Φ,Ψ grid generated set of conformations. Conformational clustering has been done to group the minimized conformations into families with similar values of glycosidic torsion angles. Several stable syn and anti conformations were found for the 1→2 and 1→3 bonds in the studied disaccharides. Vicinal glycosylation affected strongly the occupancy of conformational states in both branches of the title trisaccharide. The preferred conformational family of the trisaccharide (with average Φ,Ψ values of 38°, 17° for the 1→2 and 48°, 1° for the 1→3 bond, respectively) was shown by nmr to be stabilized by intramolecular hydrogen bonding between the nonbonded Rha and Gal residues. © 1998 John Wiley & Sons, Inc. Biopoly 46: 417–432, 1998  相似文献   

20.
Molecular mechanics and dynamics calculations were carried out on the disaccharides α-L-Rhap-(1 → 2)-α-L-Rhap-(1 → OMe) (1) and α-L-Rhap-(1 → 3)-α-L-Rhap-(1 OMe) (2), and the trisaccharide α-L-Rhap-(1 → 2)-α-L-Rhap-(1 → 3)-α-L-Rhap-(1 → OMe) (3). The semiflexible conformational behavior of these molecules was characterized by the occupation of a combination of different glycosidic linkage and side-chain conformational positions whose relative occupations were sensitive to dielectric screening. Molecular dynamics simulations of the trisaccharide 3 showed little difference between the linkage conformations in the trisaccharide and the component disaccharides 1 and 2. Experimental optical rotation data of 1 and 2 were obtained as a function of temperature in varying solvents. The molecular models were combined with the semiempirical theory of Stevens and Sathyanarayana to yield calculated optical rotations. Interpretation of the data of both 1 and 2 implied that a combination of conformations, both in glycosidic and side-chain positions, could explain the experimental data. Solvents effects were important in influencing the conformational mix and averaged optical rotation. Three-bond heteronuclear coupling constants 3JC, H were obtained for the glycosidic linkages of 1 and 2 in D2O and DMSO. Analysis of the coupling constants with a Karplus curve showed that small reductions in the glycosidic torsion angles of the conformations of the models used here of ca. 10°–15° in ϕ and 5°–10° in ψ were required to give better agreement with experiment; a combination of conformations for both 1 and 2 was consistent with the data. There was a negligible influence on the coupling constants of 1 on changing the solvent from D2O to DMSO. © 1997 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号