首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Inhibition by secondary feed components can limit productivity and restrict process options for the production of ethanol by fermentation. New fermentation processes (such as vacuum or extractive fermentation), while selectively removing ethanol, can concentrate nonmetabolized feed components in the remaining broth. Stillage recycle to reduce stillage waste treatment results in the buildup of nonmetabolized feed components. Continuous culture experiments are presented establishing an inhibition order: CaCl(2), (NH(4))(2)xSO(4) > NaCl, NH(4)Cl > KH(2)PO(4) > xylose, MgCl(2) > MgSO(4) > KCl. Reduction of the water activity alone is not an adequate predictor of the variation in inhibitory concentration among the different components tested. As a general trend, specific ethanol productivity increases and cell production decreases as inhibitors are added at higher concentration. We postulate that these results can be interpreted in terms of an increase in energy requirements for cell maintenance under hypertonic (stressed) conditions. Ion and carbohydrate transport and specific toxic effects are reviewed as they relate to the postulated inhibition mechanism. Glycerol production increases under hypertonic conditions and glycerol is postulated to function as a nontoxic osmoregulator. Calcium was the most inhibitory component tested, causing an 80%decline in cell mass production at 0.23 mol Ca(2+)/L and calcium is present at substantial concentration in many carbohydrate sources. For a typical final cane molasses feed, stillage recycle must be limited to less than onethird of the feed rate; otherwise inhibitory effects will be observed.  相似文献   

2.
Inhibition by secondary fermentation products may limit the ultimate productivity of new glucose to ethanol fermentation processes. New processes are under development whereby ethanol is selectively removed from the fermenting broth to eliminate ethanol inhibition effects. These processes can concentrate minor secondary products to the point where they become toxic to the yeast. Vacuum fermentation selectively concentrates nonvolatile products in the fermentation broth. Membrane fermentation systems may concentrate large molecules which are sterically blocked from membrane transport. Extractive fermentation systems, employing nonpolar solvents, may concentrate small organic acids. By-product production rates and inhibition levels in continuous fermentation with Saccharomyces cerevisiae have been determined for acetaldehyde, glycerol, formic, lactic, and acetic acids, 1-propanol, 2-methyl-1-butanol, and 2,3-butanediol to assess the potential effects of these by-products on new fermentation processes. Mechanisms are proposed for the various inhibition effects observed.  相似文献   

3.
Five, highly flocculeng strains of Saccharomyces cerevisiae, isolated from wine, were immobilized in calcium alginate beads to optimize primary must fermentation. Three cell-recycle batch fermentations (CRBF) of grape musts were performed with the biocatalyst and the results compared with those obtained with free cells. During the CRBF process, the entrapped strains showed some variability in the formation of secondary products of fermentation, particularly acetic acid and acetaldehyde. Recycling beads of immobilized flocculent cells is a good approach in the development and application of the CRBF system in the wine industry.  相似文献   

4.
Summary Semicontinuous fed-batch glycerol fermentations with Saccharomyces cerevisiae cells immobilized in sintered glass Raschig rings were carried out in fixed-bed loop reactors with a working volume of either 0.8 l or 8 l. The influence of biomass, temperature and CO2 gassing on the glycerol yield was examined. The highest glycerol yield of 85 g l–1 was achieved at 30° C and average CO2 gassing rate of 0.4 v/v m with a theoretical glycerol yield of 67%. Fed-batch fermentations with free cells indicated an inhibition mechanism of the glycerol produced, affecting the fermentation capacity of the yeast strain used.Offprint requests to: H.-J. Rehm  相似文献   

5.
Fermentation of sugar by Saccharomyces cerevisiae, for production of ethanol in an immobilized cell reactor (ICR) was successfully carried out to improve the performance of the fermentation process. The fermentation set-up was comprised of a column packed with beads of immobilized cells. The immobilization of S. cerevisiae was simply performed by the enriched cells cultured media harvested at exponential growth phase. The fixed cell loaded ICR was carried out at initial stage of operation and the cell was entrapped by calcium alginate. The production of ethanol was steady after 24 h of operation. The concentration of ethanol was affected by the media flow rates and residence time distribution from 2 to 7 h. In addition, batch fermentation was carried out with 50 g/l glucose concentration. Subsequently, the ethanol productions and the reactor productivities of batch fermentation and immobilized cells were compared. In batch fermentation, sugar consumption and ethanol production obtained were 99.6% and 12.5% v/v after 27 h while in the ICR, 88.2% and 16.7% v/v were obtained with 6 h retention time. Nearly 5% ethanol production was achieved with high glucose concentration (150 g/l) at 6 h retention time. A yield of 38% was obtained with 150 g/l glucose. The yield was improved approximately 27% on ICR and a 24 h fermentation time was reduced to 7 h. The cell growth rate was based on the Monod rate equation. The kinetic constants (K(s) and mu(m)) of batch fermentation were 2.3 g/l and 0.35 g/lh, respectively. The maximum yield of biomass on substrate (Y(X-S)) and the maximum yield of product on substrate (Y(P-S)) in batch fermentations were 50.8% and 31.2% respectively. Productivity of the ICR were 1.3, 2.3, and 2.8 g/lh for 25, 35, 50 g/l of glucose concentration, respectively. The productivity of ethanol in batch fermentation with 50 g/l glucose was calculated as 0.29 g/lh. Maximum production of ethanol in ICR when compared to batch reactor has shown to increase approximately 10-fold. The performance of the two reactors was compared and a respective rate model was proposed. The present research has shown that high sugar concentration (150 g/l) in the ICR column was successfully converted to ethanol. The achieved results in ICR with high substrate concentration are promising for scale up operation. The proposed model can be used to design a lager scale ICR column for production of high ethanol concentration.  相似文献   

6.
Chipped tobacco stalks were subjected to steam pretreatment at 205 °C for either 5 or 10 min before enzymatic hydrolysis. Glucose (15.4–17.1 g/l) and xylose (4.5–5.0 g/l) were the most abundant monosaccharides in the hydrolysates. Mannose, galactose and arabinose were also detected. The hydrolysate produced by pretreatment for 10 min contained higher levels of all sugars than the 5 min-pretreated hydrolysate. The amounts of inhibitory compounds found in the hydrolysates were relatively low and increased with increasing pretreatment time. The hydrolysates were fermented with baker's yeast. Ethanol yield, maximum volumetric productivity and specific productivity were used as criteria of fermentability of the hydrolysates. The fermentation of the hydrolysates was only slightly inhibited compared to reference solutions having a similar composition of fermentable sugars. The ethanol yield in the hydrolysates was 0.38–0.39 g/g of initial fermentable sugars, whereas it was 0.42 g/g in the reference. The biomass yield was twofold lower in the hydrolysates than in the reference. The fermentation inhibition caused by the tobacco stalk hydrolysates was less than that caused by sugarcane bagasse hydrolysates obtained under the same hydrolysis conditions.  相似文献   

7.
A biocatalyst was prepared by immobilizing a commercial Saccharomyces cerevisiae strain (baker's yeast) on orange peel pieces for use in alcoholic fermentation and for fermented food applications. Cell immobilization was shown by electron microscopy and by the efficiency of the immobilized biocatalyst for alcoholic fermentation of various carbohydrate substrates (glucose, molasses, raisin extracts) and at various temperatures (30-15 degrees C). Fermentation times in all cases were low (5-15 h) and ethanol productivities were high (av. 150.6 g/ld) showing good operational stability of the biocatalyst and suitability for commercial applications. Reasonable amounts of volatile by-products were produced at all the temperatures studied, revealing potential application of the proposed biocatalyst in fermented food applications, to improve productivities and quality.  相似文献   

8.
Summary Cells of Saccharomyces cerevisiae were immobilized in K-Carrageenan. Addition of sodium sulfite to the fermentation medium up to four percent led to glycerol yields of 25 to 27 g/l at temperatures below 31°C.These results demonstrate that it is possible to direct the metabolism of immobilized cells from ethanol fermentation to glycerol fermentation by sulfite.  相似文献   

9.
The effects of osmoprotectants (such as glycine betaine and proline) and particulate materials on the fermentation of very high concentrations of glucose by the brewing strain Saccharomyces cerevisiae (uvarum) NCYC 1324 were studied. The yeast growing at 20 degrees C consumed only 15 g of the sugar per 100 ml from a minimal medium which initially contained 35% (wt/vol) glucose. Supplementing the medium with a mixture of glycine betaine, glycine, and proline increased the amount of sugar fermented to 30.5 g/100 ml. With such supplementation, the viability of the yeast cells was maintained above 80% throughout the fermentation, while it dropped to less than 12% in the unsupplemented controls. Among single additives, glycine was more effective than proline or glycine betaine. On incubating the cultures for 10 days, the viability decreased to only 55% with glycine, while it dropped to 36 and 27%, respectively, with glycine betaine and proline. It is suggested that glycine and proline, known to be poor nitrogen sources for growth, may serve directly or indirectly as osmoprotectants. Nutrients such as tryptone, yeast extract, and a mixture of purine and pyrimidine bases increased the sugar uptake and ethanol production but did not allow the population to maintain the high level of cell viability. While only 43% of the sugar was fermented in unsupplemented medium, the presence of particulate materials such as wheat bran, wheat mash insolubles, alumina, and soy flour increased sugar utilization to 68, 75, 81, and 82%, respectively.  相似文献   

10.
Summary Glutathione was continuously produced by an immobilized Saccharomyces cerevisiae IFO 2044 cell column. The production of glutathione was strongly influenced by the level of activity of the glycolytic pathway. This activity was maintained constant by the addition of NAD.Abbreviations ADP adenosine-5-diphosphate - ATP adenosine-5-triphosphate - NAD nicothinamide adenine dinucleotide  相似文献   

11.
Summary The most suitable conditions for the hardening of alginate bioparticles by Al3+ obtained were: Al3+, 0.3 M; time of treatment 5 min and yeast concentration in the gel, 3 g dry weight/L. The hardened biocatalyst was used to carry out an ethanolic fermentation process in a semi-pilot packed-bed reactor and no breakage of the bioparticles was observed, although the lower part beads had a flat shape, which caused a 11% decrease in bed height. Ethanol productivities up to 31 g/L·h were obtained.  相似文献   

12.
Continuous fermentation experiments in a well-stirred fermentor with Saccharomyces cerevisiae cells immobilized in Ca-alginate beads of small diameter (approx. 1 mm) have been performed in order to discover their intrinsic fermentation kinetics, and compare them to the fermentation kinetics for free cells, by fitting both sets of results to the same model. The results show similar kinetic parameters for free and immobilized cells. The changes in cell concentration inside the beads and microscopical observations of transverse sections throughout the experiments, allowed discernment of two different scenarios of cell growth inside the beads: low cell density and fully developed growth. Correspondence to: F. Gòdia  相似文献   

13.
Glucose was converted to ethanol by calcium-alginate-entrapped Saccharomyces cerevisiae NRRL Y-2034 cells that were 24, 48, 72, and 96 h old in continuous-flow and static repeated-batch fermentors. In general, older yeast cells were more efficient than younger ones. In most cases, the continuous fermentations were better than the static ones in producing maximum ethanol yields (5.11 g/10 g of glucose) over extended time periods. The best static fermentation (with 24-h-old cells) converted 100% of the glucose to ethanol for about 12 days, whereas the best continuous fermentation (with 96-h-old cells) converted 100% of the glucose for a remarkable period of about 3 months.  相似文献   

14.
High-molecular weight pectic acid with a STAUDINGER index of 210 ml/g and a degree of esterification of 3%was used as matrix material for the immobilization of Saccharomyces cerevisiae cells. In discontinuous and continuous fermentation tests the gel beads obtained exhibited the same biomass loading capacity (152–155 g dry wt. cells/kg gel) and about the same maximum specific productivity (103.0 g ethanol/kg gel · h) as alginate immobilizates. But there were distinct differences in the swelling behaviour of the two gels. Under the same experimental conditions the increase of bead volume amounted to 27% only for pectate gel in comparison to 129% for alginate gel. In continuous fermentation experiments performed in a horizontal-column packed-bed reactor with liquid recycling a mean steady-state ethanol concetration of 69.1 g/l and a mean productivity of 24.7 g ethanol/lh could be kept constant over a period of more than 10 days.  相似文献   

15.
Summary The continuous production of mead was achieved with whole cells of Saccharomyces cerevisiae immobilized in calcium alginate gels. The alcohol production was stable in the pH range of 2.5–6.0 and a temperature range of 18–30°C with a sharp increase at 35°C. The process reduced the problems of contamination and secondary fermentation which are associated with traditional mead production.  相似文献   

16.
Summary Cells of Saccharomyces cerevisiae were immobilized in sintered glass Raschig rings for the production of glycerol. It can be shown that sintered glass with a porosity of 60% and pore dimensions of 60 to 100 m has a good adsorption capacity for cells of S. cerevisiae. This sintered glass was used in a fixed-bed loop reactor with a working volume of 81. Eight glycerol fermentations were carried out semicontinuously and led to glycerol yields of 26.2 to 29.5 g/l.  相似文献   

17.
Rapid fermentation of cane molasses into ethanol has been studied in batch, continuous (free-cell and cell-immobilized systems) by a strain of Saccharomyces cerevisiae at temperature 30 degrees C and pH 5.0. The maximum productivity of ethanol obtained in immobilized system was 28.6 g L(-1) h(-1). The cells were immobilized by natural mode on a carrier of natural origin and retention of 0.132 g cells/g carrier was achieved. The immobilized-cell column was operated continuously at steady state over a period of 35 days. Based on the parameter data monitored from the system, mathematical analysis has been made and rate equations proposed, and the values of specific productivity of ethanol and specific growth rate for immobilized cells computed. It has been established that immobilized cells exhibit higher specific rate of ethanol formation compared to free cells but the specific growth rate appears to be comparatively low. The yield of ethanol in the immobilized-cell system is also higher than in the free-cell system.  相似文献   

18.
A repeated batch fermentation system was used to produce ethanol using an osmotolerant Saccharomyces cerevisiae (VS3) immobilized in calcium alginate beads. For comparison free cells were also used to produce ethanol by repeated batch fermentation. Fermentation was carried for six cycles with 125, 250 or 500 beads using 150, 200 or 250 g glucose L−1 at 30°C. The maximum amount of ethanol produced by immobilized VS3 using 150 g L−1 glucose was only 44 g L−1 after 48 h, while the amount of ethanol produced by free cells in the first cycle was 72 g L−1. However in subsequent fed batch cultures more ethanol was produced by immobilized cells compared to free cells. The amount of ethanol produced by free cells decreased from 72 g L−1 to 25 g L−1 after the fourth cycle, while that of immobilized cells increased from 44 to 72 g L−1. The maximum amount of ethanol produced by immobilized VS3 cells using 150, 200 and 250 g glucose L−1 was 72.5, 93 and 87 g ethanol L−1 at 30°C. Journal of Industrial Microbiology & Biotechnology (2000) 24, 222–226. Received 16 September 1999/ Accepted in revised form 22 December 1999  相似文献   

19.
Saccharomyces cerevisiae cells from a stationary culture were permeabilized with 1% toluene, 4% ethanol and 0.075% Triton X-100. Not only sugars but also ATP, NAD+, magnesium and inorganic phosphate must be simultaneously added to initiate the ethanol fermentation. The optimal pH for the fermentation was between 6.9 to 7.0. Sucrose was a better substrate than glucose. Ethanol fermentation was greatly stimulated by the addition of 1 mM arsenate. Under this condition, permeabilized cells continued to produce ethanol for more than one hour at the rate of 0.141 mmol ethanol/min/mg protein. Methanol inhibited the fermentation with intact cells but did not inhibit the one using permeabilized cells. In contrast, propanol inhibited fermentations both with intact and permeabilized cells.  相似文献   

20.
Summary A procedure which does not involve the use of an immiscible organic solvent phase is described for the entrapment of yeast cells in porous beads of polyacrylamide gel. The cells are rapidly dispersed at 4° C in an aqueous solution containing sodium alginate and acrylamide-N,Nmethylene-bis-acrylamide monomer, and the suspension is immediately dropped into a solution of calcium formate to give calcium alginate coated beads. Polyacrylamide gel forms within the bead. The calcium alginate is subsequently leached out of the composite bead with either sodium citrate or potassium phosphate buffer solution. Cells of Saccharomyces uvarum ATCC 26 602 entrapped in such polyacrylamide beads ferment cane molasses in batch mode at higher specific ethanol productivity than a free cell suspension. Their volumetric productivity in continuous fermentation is higher than that of Ca2+-alginate immobilized cells.NCL Communication No. 4383  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号