首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mouse liver microsomes were solubilized in various detergent systems, and the resulting aggregate structures associated with cytochrome P-450, cytochrome c reductase, and UDP glucuronosyltransferase were sized by gel filtration chromatography. Cholate or its derivative, CHAPS, in combination with Emulgen 911 or Lubrol 12A9 were necessary to generate a particle of about 140 k daltons, the smallest structure associated with cytochrome P-450. Cholate or CHAPS alone was sufficient to generate a minimally sized aggregate of 200 k daltons associated with NADPH cytochrome c reductase activity. Cholate in combination with Emulgen 911 or Lubrol 12A9 generated particles of about 280 k daltons associated with UDP glucuronosyltransferase activity. CHAPS alone also generated similarly sized particles under conditions in which UDP glucuronosyltransferase activity toward 1-naphthol and morphine was two to about twenty times greater, respectively, than with the combination of detergents. This finding suggests that the zwitterionic CHAPS is superior to other detergent systems for studies concerned with the purification of transferase enzymes, a microsomal system in which investigation of the number of different forms has been hampered by the instability of the enzyme upon solubilization and subsequent manipulation.  相似文献   

2.
The resolved liver microsomal hydroxylation system required lipid for benzphetamine N-demethylation. Certain nonionic detergents, such as Emulgen 911, Triton N-101, and Triton X-100, at appropriate concentrations could substitute for lipid. These results suggest that lipid and detergent activate the cytochrome P-450-containing hydroxylation system by a similar mechanism, probably by enhancing the interaction between cytochrome P-450 and NADPH-cytochrome c reductase.  相似文献   

3.
Cytochrome P450p (IIIA1) has been purified from rat liver microsomes by several investigators, but in all cases the purified protein, in contrast to other P450 enzymes, has not been catalytically active when reconstituted with NADPH-cytochrome P450 reductase and dilauroylphosphatidylcholine. We now report the successful reconstitution of testosterone oxidation by cytochrome P450p, which was purified from liver microsomes from troleandomycin-treated rats. The rate of testosterone oxidation was greatest when purified cytochrome P450p (50 pmol/ml) was reconstituted with a fivefold molar excess of NADPH-cytochrome P450 reductase, an equimolar amount of cytochrome b5, 200 micrograms/ml of a chloroform/methanol extract of microsomal lipid (which could not be substituted with dilauroylphosphatidylcholine), and the nonionic detergent, Emulgen 911 (50 micrograms/ml). Testosterone oxidation by cytochrome P450p was optimal at 200 mM potassium phosphate, pH 7.25. In addition to their final concentration, the order of addition of these components was found to influence the catalytic activity of cytochrome P450p. Under these experimental conditions, purified cytochrome P450p converted testosterone to four major and four minor metabolites at an overall rate of 18 nmol/nmol P450p/min (which is comparable to the rate of testosterone oxidation catalyzed by other purified forms of rat liver cytochrome P450). The four major metabolites were 6 beta-hydroxytestosterone (51%), 2 beta-hydroxytestosterone (18%), 15 beta-hydroxytestosterone (11%) and 6-dehydrotestosterone (10%). The four minor metabolites were 18-hydroxytestosterone (3%), 1 beta-hydroxytestosterone (3%), 16 beta-hydroxytestosterone (2%), and androstenedione (2%). With the exception of 16 beta-hydroxytestosterone and androstenedione, the conversion of testosterone to each of these metabolites was inhibited greater than 85% when liver microsomes from various sources were incubated with rabbit polyclonal antibody against cytochrome P450p. This antibody, which recognized two electrophoretically distinct proteins in liver microsomes from troleandomycin-treated rats, did not inhibit testosterone oxidation by cytochromes P450a, P450b, P450h, or P450m. The catalytic turnover of microsomal cytochrome P450p was estimated from the increase in testosterone oxidation and the apparent increase in cytochrome P450 concentration following treatment of liver microsomes from troleandomycin- or erythromycin-induced rats with potassium ferricyanide (which dissociates the cytochrome P450p-inducer complex). Based on this estimate, the catalytic turnover values for purified, reconstituted cytochrome P450p were 4.2 to 4.6 times greater than the rate catalyzed by microsomal cytochrome P450p.  相似文献   

4.
The aim of the present study was to examine a recent proposal that inhibitory isozyme:isozyme interactions explain why membrane-bound isozymes of rat liver microsomal cytochrome P-450 exert only a fraction of the catalytic activity they express when purified and reconstituted with saturating amounts of NADPH-cytochrome P-450 reductase and optimal amounts of dilauroylphosphatidylcholine. The different pathways of testosterone hydroxylation catalyzed by cytochromes P-450a (7 alpha-hydroxylation), P-450b (16 beta-hydroxylation), and P-450c (6 beta-hydroxylation) enabled possible inhibitory interactions between these isozymes to be investigated simultaneously with a single substrate. No loss of catalytic activity was observed when purified cytochromes P-450a, P-450b, or P-450c were reconstituted in binary or ternary mixtures under a variety of incubation conditions. When purified cytochromes P-450a, P-450b, and P-450c were reconstituted under conditions that mimicked a microsomal system (with respect to the absolute concentration of both the individual cytochrome P-450 isozyme and NADPH-cytochrome P-450 reductase), their catalytic activity was actually less (69-81%) than that of the microsomal isozymes. These results established that cytochromes P-450a, P-450b, and P-450c were not inhibited by each other, nor by any of the other isozymes in the liver microsomal preparation. Incorporation of purified NADPH-cytochrome P-450 reductase into liver microsomes from Aroclor 1254-induced rats stimulated the catalytic activity of cytochromes P-450a, P-450b, and P-450c. Similarly, purified cytochromes P-450a, P-450b, and P-450c expressed increased catalytic activity in a reconstituted system only when the ratio of NADPH-cytochrome P-450 reductase to cytochrome P-450 exceeded that normally found in liver microsomes. These results indicate that the inhibitory cytochrome P-450 isozyme:isozyme interactions described for warfarin hydroxylation were not observed when testosterone was the substrate. In addition to establishing that inhibitory interactions between different cytochrome P-450 isozymes is not a general phenomenon, the results of the present study support a simple mass action model for the interaction between membrane-bound or purified cytochrome P-450 and NADPH-cytochrome P-450 reductase during the hydroxylation of testosterone.  相似文献   

5.
The interaction between P-450C21 and NADPH-cytochrome P-450 reductase, both purified from bovine adrenocortical microsomes, has been investigated in a reconstituted system with a nonionic detergent, Emulgen 913, by kinetic analysis and gel filtrations. Steady state kinetic data in progesterone 21-hydroxylation showed formation of an equimolar complex between the two enzyme proteins at low Emulgen concentration. Steady state kinetic studies on the electron transfer from NADPH to P-450C21 via the reductase showed that a stable complex formation between the two enzyme proteins was not involved in the steady state electron transfer at high Emulgen concentration. In stopped flow experiments, a time course of the P-450C21 reduction showed biphasic kinetics composed of fast and slow phases. The dependence of kinetic parameters on Emulgen concentration indicates that the fast phase corresponds to the electron transfer within the complex and the slow phase to the electron transfer through a random collision between P-450C21 and the reductase. The stable complex formation between P-450C21 and the reductase has been clearly demonstrated by gel filtration. The stable complex was composed of several molecules of the two enzyme proteins at an equimolar ratio, which was active for progesterone 21-hydroxylation and had a tendency to dissociate at high Emulgen concentration.  相似文献   

6.
A constitutive cytochrome P-450 catalyzing 25-hydroxylation of C27-steroids and vitamin D3 was purified from rat liver microsomes. The enzyme fraction contained 16 nmol of cytochrome P-450/mg of protein and showed only one protein band with a minimum molecular weight of 51,000 upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified cytochrome P-450 catalyzed 25-hydroxylation of 5 beta-cholestane-3 alpha, 7 alpha-diol, 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol, and 1 alpha-hydroxyvitamin D3 up to 50 times more efficiently, and 25-hydroxylation of vitamin D3 about 150 times more efficiently than the microsomes. The cytochrome P-450 showed no detectable 25-hydroxylase activity towards vitamin D2 and was inactive in cholesterol 7 alpha-hydroxylation as well as in 12 alpha- and 26-hydroxylations of C27-steroids. It catalyzed hydroxylations of testosterone and demethylation of ethylmorphine at the same rates as, or lower rates than, microsomes. The 25-hydroxylation of 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol and vitamin D3 with the purified cytochrome P-450 was not stimulated by addition of phospholipid or cytochrome b5 to the reconstituted system. Emulgen inhibited 25-hydroxylase activity towards both substrates. The possibility that 25-hydroxylation of C27-steroids and vitamin D3 is catalyzed by the same species of cytochrome P-450 is discussed.  相似文献   

7.
In this report we provide data, for the first time, demonstrating the conversion of the heme moiety of certain cytochrome P-450 and P-420 preparations, to biliverdin, catalyzed by heme oxygenase. We have used purified preparations of cytochromes P-450c, P-450b, P-450/P-420c, or P-450/P-420b as substrates in a heme oxygenase assay system reconstituted with heme oxygenase isoforms, HO-2 or HO-1, NADPH-cytochrome c (P-450) reductase, biliverdin reductase, NADPH, and Emulgen 911. With cytochrome P-450b or P-450/P-420b preparations, a near quantitative conversion of degraded heme to bile pigments was observed. In the case of cytochrome P-450/P-420c approximately 70% of the degraded heme was accounted for as bilirubin but only cytochrome P-420c was appreciably degraded. The role of heme oxygenase in this reaction was supported by the following observations: (i) bilirubin formation was not observed when heme oxygenase was omitted from the assay system; (ii) the rate of degradation of the heme moiety was at least threefold greater with heme oxygenase and NADPH-cytochrome c (P-450) reductase than that observed with reductase alone; and (iii) the presence of Zn- or Sn-protoporphyrins (2 microM), known competitive inhibitors of heme oxygenase, resulted in 70-90% inhibition of bilirubin formation.  相似文献   

8.
In contrast to other P450 enzymes purified from rat liver microsomes, purified P450 IIIA1 (P450p) is catalytically inactive when reconstituted with NADPH-cytochrome P450 reductase and the synthetic lipid, dilauroylphosphatidylcholine. However, purified P450 IIIA1 catalyzes the oxidation of testosterone when reconstituted with NADPH-cytochrome P450 reductase, cytochrome b5, an extract of microsomal lipid, and detergent (Emulgen 911). The present study demonstrates that the microsomal lipid extract can be replaced with one of several naturally occurring phospholipids, but not with cholesterol, sphingosine, sphingomyelin, ceramide, cerebroside, or cardiolipin. The ratio of the testosterone metabolites formed by purified P450 IIIA1 (i.e., 2 beta-, 6 beta-, and 15 beta-hydroxytestosterone) was influenced by the type of phospholipid added to the reconstitution system. The ability to replace microsomal lipid extract with several different phospholipids suggests that the nature of the polar group (i.e., choline, serine, ethanolamine, or inositol) is not critical for P450 IIIA1 activity, which implies that P450 IIIA1 activity is highly dependent on the fatty acid component of these lipids. To test this possibility, P450 IIIA1 was reconstituted with a series of synthetic phosphatidylcholines. Those phosphatidylcholines containing saturated fatty acids were unable to support testosterone oxidation by purified P450 IIIA1, regardless of the acyl chain length (C6 to C18). In contrast, several unsaturated phosphatidylcholines supported testosterone oxidation by purified P450 IIIA1, and in this regard dioleoylphosphatidylcholine (PC(18:1)2) was as effective as microsomal lipid extract and naturally occurring phosphatidylcholine or phosphatidylserine. These results confirmed that P450 IIIA1 activity is highly dependent on the fatty acid component of phospholipids. A second series of experiments was undertaken to determine whether microsomal P450 IIIA1, like the purified enzyme, is dependent on cytochrome b5. A polyclonal antibody against purified cytochrome b5 was raised in rabbits and was purified by affinity chromatography. Anti-cytochrome b5 caused a approximately 60% inhibition of testosterone 2 beta-, 6 beta-, and 15 beta-hydroxylation by purified P450 IIIA1 and inhibited these same reactions by approximately 70% when added to liver microsomes from dexamethasone-induced female rats. Overall, these results suggest that testosterone oxidation by microsomal cytochrome P450 IIIA1 requires cytochrome b5 and phospholipid containing unsaturated fatty acids.  相似文献   

9.
The zwitterionic detergent 3-(3-cholamidopropyl)-dimethylammonio-1-propanesulfonate (CHAPS) supports reconstituted cyclohexane hydroxylase activity of cytochrome P-450LM2 and NADPH-cytochrome reductase purified from phenobarbital-induced rabbit liver. Maximum activity (approximately 50% of that with phospholipid) was observed at 2 mM CHAPS. Inhibition took place at higher CHAPS, until at 20 mM CHAPS, no cyclohexane hydroxylase activity was observed. There was little denaturation of the two enzymes under these conditions. At 2 mM CHAPS, P-450LM2 was pentameric (Mr = 250,000) and reductase was dimeric (Mr = 139,500) by sedimentation equilibrium. P-450 was monomeric in 20 mM CHAPS. In addition, a stable complex between the two enzymes was not detected under conditions of maximum activity, even in the presence of saturating substrate. This confirms our previous conclusion that a stable complex between cytochrome P-450LM2 and NADPH-cytochrome P-450 reductase is not a prerequisite for reconstituted xenobiotic hydroxylation (Dean, W. L., and Gray, R. D. (1982) J. Biol. Chem. 257, 14679-14685). Difference spectra of ferric P-450LM2 revealed that below 5 mM CHAPS, the high spin form of the cytochrome was slightly stabilized, while higher CHAPS levels stabilized the low spin form. Monomeric P-450LM2 formed with 20 mM CHAPS catalyzed the hydroxylation of toluene by cumene hydroperoxide. Thus, the reason that monomeric cytochrome P-450LM2 was inactive in NADPH-supported hydroxylation may either be because the bound detergent blocked productive interaction of the cytochrome with reductase or the monomer may be intrinsically incapable of interaction with reductase.  相似文献   

10.
Aromatase, the cytochrome P-450 that converts androgen to estrogen, has been solubilized from chicken ovarian microsomes with the nonionic detergent Emulgen 913. Following chromatography on gel filtration, anion exchange, dye affinity, and hydrophobic media, ovarian aromatase is purified up to 27-fold with 10-15% recovery. Separation of the cytochrome P-450 aromatase from NADPH cytochrome P-450 reductase is achieved during the purification. The partially purified enzyme is stable for as long as 6 months when frozen in liquid nitrogen in buffer containing dithiothreitol, glycerol, Emulgen and 150 mM KCl.  相似文献   

11.
Debromination of 1,2-dibromoethane (DBE) by a rabbit liver microsomal preparation and a reconstituted cytochrome P-450 enzyme system was investigated. The reaction was performed in our newly constructed reaction vessel, in which a bromide electrode was installed. During the reaction, the liberated bromide ion was continuously measured by the bromide electrode, and the amount was recorded. In the microsomal preparation, the DBE-debromination rate per nmol cytochrome P-450 was enhanced by phenobarbital-pretreatment of rabbits compared with the untreated microsomes, whereas it was diminished by 3-methylcholanthrene-pretreatment. The debromination reaction was reconstituted in a purified enzyme system containing phenobarbital-inducible rabbit liver microsomal cytochrome P-450 (P-450PB), NADPH-cytochrome P-450 reductase, and NADPH. The optimum conditions required the presence of dilauroylphosphatidylcholine and cytochrome b5. Cytochrome b5 was found not to be an obligatory component for the DBE-debromination in the reconstituted system, but it stimulated the activity about 3.4-fold. Preincubation of the reconstituted mixture with guinea pig anti-cytochrome P-450PB antiserum markedly inhibited the debromination reaction.  相似文献   

12.
A cytochrome P-450 catalyzing 26-hydroxylation of C27-steroids was purified from liver mitochondria of untreated rabbits. The enzyme fraction contained 10 nmol of cytochrome P-450/mg of protein and showed only one protein band with a minimum Mr = 53,000 upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified mitochondrial cytochrome P-450 showed apparent molecular weight similar to microsomal cytochromes P-450LM4 but differed in spectral and catalytic properties from these microsomal isozymes. The purified cytochrome P-450 catalyzed 26-hydroxylation of cholesterol, 5-cholestene-3 beta,7 alpha-diol, 7 alpha-hydroxy-4-cholesten-3-one, 5 beta-cholestane-3 alpha,7 alpha-diol, and 5 beta-cholestane-3 alpha,7 alpha,12 alpha-triol up to 1000 times more efficiently than the mitochondria. The cytochrome P-450 required both ferredoxin and ferredoxin reductase for catalytic activity. Microsomal NADPH-cytochrome P-450 reductase could not replace ferredoxin and ferredoxin reductase. The cytochrome P-450 was inactive in 7 alpha-, 12 alpha- and 25-hydroxylations of C27-steroids. The results suggest that mitochondrial 26-hydroxylation of various C27-steroids is catalyzed by the same species of cytochrome P-450.  相似文献   

13.
S L Wagner  W L Dean  R D Gray 《Biochemistry》1987,26(8):2343-2348
Hydroxylation of acetanilide catalyzed by purified cytochrome P-450LM4 and NADPH-cytochrome P-450 reductase was reconstituted with the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS). The optimum rate of production of 4-hydroxyacetanilide was observed between 3 and 7 mM CHAPS and was about half that with 0.05 mM dilauroylglyceryl-3-phosphocholine (di-12-GPC). At higher detergent concentrations, hydroxylase activity decreased until at 15-20 mM CHAPS the system was inactive. The effect of CHAPS on the state of aggregation of P-450LM4 and on interaction between the cytochrome and P-450 reductase alone and under turnover conditions was investigated by ultracentrifugation. At 4 mM CHAPS, P-450LM4 was hexameric to heptameric (Mr 369,000). Neither reductase nor reductase plus acetanilide and NADPH altered the state of P-450LM4 aggregation, suggesting that a stable 1:1 P-450/reductase complex did not form under turnover conditions. Replacing CHAPS with 0.05 mM di-12-GPC resulted in formation of heterogeneous P-450 oligomers (Mr greater than 480,000). At CHAPS concentrations where substrate hydroxylation did not occur (15 and 22 mM), P-450LM4 was shown by sedimentation equilibrium measurements to be dimeric and monomeric, respectively. P-450 reductase was shown to reduce monomeric P-450LM4 in the presence of NADPH. Thus, the dependence of hydroxylase activity on [CHAPS] may be related to the state of aggregation of the cytochrome. An apparent correlation between P-450 aggregation state and NADPH-supported hydroxylation was also observed with phenobarbital-inducible P-450LM2 in the presence of detergents [Dean, W.L., & Gray, R.D. (1982) J. Biol. Chem. 257, 14679-14685; Wagner, S.L., Dean, W.L., & Gray, R.D. (1984) J. Biol. Chem. 259, 2390-2395].  相似文献   

14.
Cytochrome P-450 was purified to a content of over 17 nmoles per mg of protein from liver microsomes of phenobarbital-treated rabbits by fractionation with polyethylene glycol 6000, DEAE-cellulose column chromatography, and hydroxylapatite column chromatography in the presence of Renex 690, a nonionic detergent. The purified preparation exhibited a single polypeptide band (molecular weight, 49,000 daltons) when submitted to SDS-polyacrylamide gel electrophoresis. Cytochromes P-420 and b5 and NADPH-cytochrome c reductase were absent. The reconstituted system containing purified cytochrome P-450, reductase, and phosphatidylcholine catalyzed the hydroxylation of benzphetamine, cyclohexane, aniline, and laurate.  相似文献   

15.
为分离纯化棉铃虫的细胞色素P450,比较了4种去垢剂对棉铃虫微粒体P450的增溶与变性作用。结果表明:CHAPS (3-[(3-cholamidopropyl)- dimethylammonio]-1-propanesulfonate)能有效地增溶中肠和脂肪体微粒体P450,而Lubrol PX(聚氧乙烯十二烷基乙醇醚)、Emulgen 911(聚氧乙烯壬基苯酚醚)和胆酸钠的增溶效果较差;CHAPS对中肠和脂肪体微粒体P450的最适增溶浓度分别为0.5%和0.5%~0.8%; 终浓度为0.5%时, 4种去垢剂对中肠和脂肪体微粒体P450的变性作用不明显。  相似文献   

16.
Mechanism of substitution of nonionic detergent Emulgen 913 for phospholipid as an activator of N-demethylase activity of cytochrome P450 form 2B4 (LM2) has been studied. It is shown that such an activation takes place at the detergent concentrations below values critical for micelle formation. Under these conditions, Emulgen does not affect the hexameric state of the cytochrome. The stimulating effect proved to be similar in reconstituted monooxygenase systems containing (a) cytochrome P450 2B4 and NADPH-cytochrome P-450 reductase and (b) cytochrome 2B4 and organic hydroperoxides. These results indicate that the activation is due to an effect of the detergent upon P450 2B4 per se rather than upon P450/flavoprotein complex formation. The above conclusion is supported by the sedimentation data and measurement of the CD spectra of cytochrome P450 2B4 at 380–450 nm.  相似文献   

17.
A reconstituted system from rat liver microsomes, consisting of partially purified fractions of cytochrome P-450 and NADPH-cytochrome P-450 reductase was shown to catalyze 7α-hydroxylation of cholesterol in the presence of NADPH and a synthetic phosphatidylcholine. The rate of 7α-hydroxylation of added [4-14C] cholesterol was linear with the concentration of cytochrome P-450 and increased with the concentration of NADPH-cytochrome P-450 reductase up to a certain level and then remained constant. Omission of phosphatidylcholine resulted only in a 20% decrease in cholesterol 7α-hydroxylase activity of the system. The rate of 7α-hydroxylation was 2–3 times higher in reconstituted systems with cytochrome P-450 from cholestyramine-treated rats than in those with cytochrome P-450 from untreated rats.  相似文献   

18.
Two new cytochrome P-450 forms were purified from liver microsomes of the marine fish Stenotomus chrysops (scup). Cytochrome P-450A (Mr = 52.5K) had a CO-ligated, reduced difference spectrum lambda max at 447.5 nm, and reconstituted modest benzo[a]pyrene hydroxylase activity (0.16 nmol/min/nmol P-450) and ethoxycoumarin O-deethylase activity (0.42 nmol/min/nmol P-450). Cytochrome P-450A reconstituted under optimal conditions catalyzed hydroxylation of testosterone almost exclusively at the 6 beta position (0.8 nmol/min/nmol P-450) and also catalyzed 2-hydroxylation of estradiol. Cytochrome P-450A is active toward steroid substrates and we propose that it is a major contributor to microsomal testosterone 6 beta-hydroxylase activity. Cytochrome P-450A had a requirement for conspecific (scup) NADPH-cytochrome P-450 reductase and all reconstituted activities examined were stimulated by the addition of purified scup cytochrome b5. Cytochrome P-450B (Mr = 45.9K) had a CO-ligated, reduced difference spectrum lambda max at 449.5 nm and displayed low rates of reconstituted catalytic activities. However, cytochrome P-450B oxidized testosterone at several different sites including the 15 alpha position (0.07 nmol/min/nmol P-450). Both cytochromes P-450A and P-450B were distinct from the major benzo[a]pyrene hydroxylating form, cytochrome P-450E, by the criteria of spectroscopic properties, substrate profiles, minimum molecular weights on NaDodSO4-polyacrylamide gels, peptide mapping and lack of cross-reaction with antibody raised against cytochrome P-450E. Cytochrome P-450E shares epitopes with rat cytochrome P-450c indicating it is the equivalent enzyme, but possible homology between scup cytochromes P-450A or P-450B and known P-450 isozymes in other vertebrate groups is uncertain, although functional analogs exist.  相似文献   

19.
D C Swinney  D E Ryan  P E Thomas  W Levin 《Biochemistry》1987,26(22):7073-7083
Quantitative high-pressure liquid chromatographic assays were developed that separate progesterone and 17 authentic monohydroxylated derivatives. The assays were utilized to investigate the hydroxylation of progesterone by 11 purified rat hepatic cytochrome P-450 isozymes and 8 different rat hepatic microsomal preparations. In a reconstituted system, progesterone was most efficiently metabolized by cytochrome P-450h followed by P-450g and P-450b. Seven different monohydroxylated progesterone metabolites were identified. 16 alpha-Hydroxyprogesterone, formed by 8 of the 11 isozymes, was the only detectable metabolite formed by cytochromes P-450b and P-450e. 2 alpha-Hydroxyprogesterone was formed almost exclusively by cytochrome P-450h, and 6 alpha-hydroxyprogesterone and 7 alpha-hydroxyprogesterone were only formed by P-450a. 6 beta-hydroxylation of progesterone was catalyzed by four isozymes with cytochrome P-450g being the most efficient, and 15 alpha-hydroxyprogesterone was formed as a minor metabolite by cytochromes P-450g, P-450h, and P-450i. None of the isozymes catalyzed 17 alpha-hydroxylation of progesterone, and only cytochrome P-450k had detectable 21-hydroxylase activity. 16 alpha-Hydroxylation catalyzed by cytochrome P-450b was inhibited in the presence of dilauroylphosphatidylcholine (1.6-80 microM), while this phospholipid either stimulated (up to 3-fold) or had no effect on the metabolism of progesterone by the other purified isozymes. Results of microsomal metabolism in conjunction with antibody inhibition experiments indicated that cytochromes P-450a and P-450h were the sole 7 alpha- and 2 alpha-hydroxylases, respectively, and that P-450k or an immunochemically related isozyme contributed greater than 80% of the 21-hydroxylase activity observed in microsomes from phenobarbital-induced rats.  相似文献   

20.
Cytochrome P-450-dependent digitoxin 12 beta-hydroxylase from cell cultures of foxglove (Digitalis lanata) was solubilized from microsomal membranes with CHAPS (3-[(3-cholamidopropyl)dimethylammonio]propane-1-sulphonic acid). Cytochrome P-450 was separated from NADPH: cytochrome c (P-450) reductase by ion-exchange chromatography on DEAE-Sephacel. NADPH:cytochrome c (P-450) reductase was further purified by affinity chromatography on 2',5'-ADP-Sepharose 4B. This procedure resulted in a 248-fold purification of the enzyme; on SDS/polyacrylamide-gel electrophoresis after silver staining, only one band, corresponding to a molecular mass of 80 kDa, was present. The digitoxin 12 beta-hydroxylase activity could be reconstituted by incubating partially purified cytochrome P-450 and NADPH:cytochrome c (P-450) reductase together with naturally occurring microsomal lipids and flavin nucleotides. This procedure yielded about 10% of the original amount of digitoxin 12 beta-hydroxylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号