首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phylogenetic relationships of the late Eocene anthropoids Catopithecus browni and Proteopithecus sylviae are currently a matter of debate, with opinion divided as to whether these taxa are stem or crown anthropoids. The phylogenetic position of Catopithecus is of particular interest, for, unlike the highly generalized genus Proteopithecus, this taxon shares apomorphic dental and postcranial features with more derived undoubted catarrhines that appear in the same region 1-2 Ma later. If these apomorphies are homologous and Catopithecus is a stem catarrhine, the unique combination of plesiomorphic and apomorphic features preserved in this anthropoid would have important implications for our understanding of the crown anthropoid morphotype and the pattern of morphological character transformations that occurred during the early phases of stem catarrhine evolution.Well-preserved astragali referrable to Proteopithecus, Catopithecus, and the undoubted early Oligocene stem catarrhine Aegyptopithecus have provided additional morphological evidence that allows us to further evaluate competing hypotheses of interrelationships among Eocene-Oligocene Afro-Arabian anthropoids. Qualitative observations and multivariate morphometric analyses reveal that the astragalar morphology of Proteopithecus is very similar to that of early Oligocene parapithecids and living and extinct small-bodied platyrrhines, and strengthens the hypothesis that the morphological pattern shared by these taxa is primitive within crown Anthropoidea. In contrast, Catopithecus departs markedly from the predicted crown anthropoid astragalar morphotype and shares a number of apomorphic features (e.g., deep cotylar fossa, laterally projecting fibular facet, trochlear asymmetry, mediolaterally wide astragalar head) with Aegyptopithecus and Miocene-Recent catarrhines. The evidence from the astragalus complements other independent data from the dentition, humerus and femur of Catopithecus that support this taxon's stem catarrhine status, and we continue to maintain that oligopithecines are stem catarrhines that constitute the sister group of a clade containing propliopithecines and Miocene-Recent catarrhines.  相似文献   

2.
This paper presents a review of the evolutionary relationships of the early catarrhine primates. The first stage of the analysis involves the reconstruction of the inferred ancestral morphotypes of the major groups of extant anthropoids. The introduction of the fossil taxa into the phylogenetic scheme represents the second and final stage of the analysis. The results of this cladistic analysis suggests that: (1) the parapithecids are a specialized group of basal anthropoids, (2) Oligopithecus savagei may represent the earliest recognizable catarrhine, (3) Propliopithecus (= Aegvptopithecus) and Pliopithecus apparently represent the successive sister taxa to the modern catarrhines, (4) Dendropithecus and Proconsul are best regarded as basal catarrhines of modern aspect, and (5) Victoriapithecus is a primitive cercopithecoid monkey which represents the siter taxon of the extant Old World monkeys.  相似文献   

3.
A well‐preserved calcaneus referrable to Proteopithecus sylviae from the late Eocene Quarry L‐41 in the Fayum Depression, Egypt, provides new evidence relevant to this taxon's uncertain phylogenetic position. We assess morphological affinities of the new specimen using three‐dimensional geometric morphometric analyses with a comparative sample of primate calcanei representing major extinct and extant radiations (n = 58 genera, 106 specimens). Our analyses reveal that the calcaneal morphology of Proteopithecus is most similar to that of the younger Fayum parapithecid Apidium. Principal components analysis places Apidium and Proteopithecus in an intermediate position between primitive euprimates and crown anthropoids, based primarily on landmark configurations corresponding to moderate distal elongation, a more distal position of the peroneal tubercle, and a relatively “unflexed” calcaneal body. Proteopithecus and Apidium are similar to cercopithecoids and some omomyiforms in having an ectal facet that is more tightly curved, along with a larger degree of proximal calcaneal elongation, whereas other Fayum anthropoids, platyrrhines and adapiforms have a more open facet with less proximal elongation. The similarity to cercopithecoids is most plausibly interpreted as convergence given the less tightly curved ectal facets of stem catarrhines. The primary similarities between Proteopithecus and platyrrhines are mainly in the moderate distal elongation and the more distal position of the peroneal tubercle, both of which are not unique to these groups. Proteopithecus and Apidium exhibit derived anthropoid features, but also a suite of primitive retentions. The calcaneal morphology of Proteopithecus is consistent with our cladistic analysis, which places proteopithecids as a sister group of Parapithecoidea. Am J Phys Anthropol 151:372–397, 2013.© 2013 Wiley Periodicals, Inc.  相似文献   

4.
Anatomy of the bony pelvis in parapithecid primates   总被引:1,自引:0,他引:1  
Four partial innominate bones, attributed to the parapithecid primates Parapithecus grangeri and Apidium phiomense, have recently been recovered from Oligocene deposits in the Fayum of Egypt. These fossils provide the first documentation of pelvic morphology for early anthropoids. In pelvic anatomy, parapithecids show definite similarities to higher primates rather than to prosimians, but cannot be clearly allied with any one extant group. Functionally, the fossils indicate quadrupedal or leaping habits rather than suspensory or bipedal behaviors.  相似文献   

5.
The model of primate dental homologies and development recently proposed by Schwartz ('75, '78) is re-evaluated in view of documented exceptions to his account of postcanine supernumerary teeth in both anthropoids and prosimians. Schwartz concluded that catarrhines and living indriids retain only two true molars in each dental quadrant. As many as six molars on one side of the jaw can develop in rare instances in catarrhines, and supernumerary molars are also known for a wide range of other primates, including Cebidae, Adapidae, and subfossil Indriidae. Polydontia cannot be explained exclusively by atavistic development. More convincing explanations regard supernumerary teeth as the result of excessive growth of the dental lamina or localized twinning of tooth buds during early development. Conventional dental formulae of catarrhines and indriids including three permanent molars remain the most plausible.  相似文献   

6.
Revised age estimates for the primate-bearing localities of the Jebel Qatrani Formation (Fayum area, northern Egypt) have provided a new perspective on primate response to early Oligocene climate change in North Africa. Environmental changes associated with early Oligocene cooling might have driven the local extinction of at least 4 strepsirrhine primate clades (adapids, djebelemurines, plesiopithecids and galagids). Contrary to previous suggestions, oligopithecid (and possibly proteopithecid) anthropoids persisted beyond the Eocene-Oligocene boundary (EOB) in the Fayum area, and the former group evidently continued to diversify through the early Oligocene at lower latitudes. Propliopithecids and parapithecine parapithecids first appear in the Jebel Qatrani Formation millions of years after the EOB, so their derived dental and gnathic features can no longer be interpreted as sudden adaptive morphological responses to earliest Oligocene climatic events. Evidence for latitudinal contraction of Afro-Arabian primate distribution through the early Oligocene suggests that the profound late Oligocene restructuring of Afro-Arabian primate communities is most likely to have occurred in equatorial and low-latitude tropical Africa.  相似文献   

7.
A partial skeleton attributed to Proconsul nyanzae (KNM-MW 13142) is described. The fossils were found at a site on Mfangano Island, Kenya, which dates to 17.9 ± .1 million years ago. KNM-MW 13142 consists of six partial vertebrae (T12-S1), a nearly complete hipbone, most of the right femur and left femoral shaft, a fragmentary tibia and fibula, and a nearly complete talus and calcaneus. This skeleton provides the first pelvic fossil known for any East African Miocene hominoid. The new Proconsul specimen is compared to a large sample of extant anthropoids to determine its functional and phylogenetic affinities. In most aspects of its anatomy, KNM-MW 13142 closely resembles nonhominoid anthropoids. This individual had a long, flexible spine, narrow torso, and habitually pronograde posture, features characteristic of most extant monkeys. Evidence of spinal musculature suggests a generalized condition intermediate between that of cercopithecoids and hylobatids. The hindlimb of KNM-MW 13142 exhibits relatively mobile hip and ankle joints, with structural properties of the femur like those of hominoids. This mix of features implies a pattern of posture and locomotion that is unlike that of any extant primate. Many aspects of the Proconsul nyanzae locomotor skeleton may represent the primitive catarrhine condition. © 1993 Wiley-Liss, Inc.  相似文献   

8.
Abstract

Paleontological field work in the Fayum Depression of Egypt has produced a remarkable diversity of fossil anthropoids, and this, combined with advances in genetic analyses of living anthropoids, has led to establishment of a temporal and phylogenetic framework for anthropoids that is achieving some degree of consensus. Less well understood are the evolutionary mechanisms and selective factors behind the origin and early diversification of anthropoids. One area that has remained under explored is investigation into the life history patterns of early anthropoids, a major omission given that understanding patterns of growth and development is essential for interpreting the paleobiology of fossil species. Here we detail dental emergence sequences for five species in four families of early anthropoid primates from the Fayum, and use these data to test Schultz’s Rule concerning the timing of emergence of molars versus premolars in mammals. Two important results are generated: (1) only one species had a dental eruption sequence identical to that observed among crown catarrhine primates; and (2) in all cases, the permanent canine was the last post-incisor dental element to fully erupt, a finding that may be significant for interpreting early anthropoid behavioral strategies.  相似文献   

9.
Many studies in primate and human evolution focus on aspects of cranial morphology to address issues of systematics, phylogeny, and functional anatomy. However, broad analyses of cranial diversity within Primates as an Order are notably absent. In this study, we present a 3D geometric morphometric analysis of primate cranial morphology, providing a multivariate comparison of the major patterns of cranial shape change during primate evolution and quantitative assessments of cranial diversity among different clades. We digitized a set of 18 landmarks designed to capture overall cranial shape on male and female crania representing 66 genera of living primates. The landmark data were aligned using a Generalized Procrustes Analysis and then subjected to a principal components analysis to identify the major axes of cranial variation. Cranial diversity among clades was compared using multivariate measurements of variance. The first principal component axis reflects differences in cranial flexion, orbit size and orientation, and relative neurocranial volume. In general, it separates strepsirrhines from anthropoids. The second axis reflects differences in relative cranial height and snout length and primarily describes differences among anthropoids. Eulemur, Mandrillus, Pongo, and Homo are among the extremes in cranial shape. Anthropoids, catarrhines, and haplorhines show a higher variance than prosimians or strepsirrhines. Hominoids show the highest variance in cranial shape among extant primate clades, and much of this diversity is driven by the unique cranium of Homo sapiens. Am J Phys Anthropol 142:565–578, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Among the earliest fossil anthropoid primates known are Catopithecus browni, Serapia eocaena, Arsinoea kallimos, and Proteopithecus sylviae, from the late Eocene quarry L-41, Fayum Depression, Egypt. Two of these taxa, C. browni and S. eocaena, may be the oldest known members of the Propliopithecidae and Parapithecidae, respectively, while A. kallimos and P. sylviae are archaic anthropoids of less certain familial affiliation. Dental features of C. browni, S. eocaena, A. kallimos, and P. sylviae are compared with those of younger propliopithecids and parapithecids from the Fayum in order to determine the morphocline polarities of dental features among these early anthropoids. From this, a basal African anthropoid dental morphotype is constructed. Among the features of this morphotype are: dental formula of 2.1.3.3; incisors subvertically implanted and somewhat spatulate; p2 as large as p3, both lacking paraconids; p4 weakly obliquely oriented but not exodaenodont; all lower molars with small paraconids present; upper anterior premolars lacking protocone; upper molars with small, cingular hypocones, all cheek teeth nonbunodont; and canines projecting but not necessarily sexually dimorphic. Comparisons are made between this African anthropoid morphotype and two of the best-represented proposed basal anthropoids, Eosimias and Djebelemur, with the result that neither appears to be a good candidate to have been ancestral to the African anthropoids. Other possible basal simians such as Algeripithecus, Tabelia, and Biretia also are evaluated but are too poorly known for adequate analysis. The larger-bodied Asian primates Pondaungia, Amphipithecus, and Siamopithecus also are not likely ancestors for African anthropoids, but like Eosimias they may share a common ancestry. Despite many recent claims of an Asian origin for anthropoids, the evidence remains far from compelling. The true origins of Anthropoidea remain obscure.  相似文献   

11.
A mandibular specimen from the Bolivian Early Oligocene is provisionally assigned toBranisella boliviana. The crown anatomy of the single preserved tooth, an M2, indicates platyrrhine affinities and several details of the broken jaw are suggestive of symphyseal fusion. Like the African Oligocene parapithecids,Branisella contrasts with extant anthropoids in the relative shallowness of its mandible.Branisella is the most ancient, and seemingly the most primitive, fossil platyrrhine monkey, lacking any of the derived features of the two major clades of modern ceboids. Taxonomically, it is best regarded as family incertae sedis.  相似文献   

12.
Genes of the DAZ (Deleted in AZoospermia) gene family, DAZ, DAZL (DAZ-Like), and BOULE, encode closely related RNA-binding proteins that are required for fertility in numerous organisms, yet the genomes of different organisms possess different complements of DAZ family genes. Thus, invertebrates such as flies and worms contain just a single DAZ homolog, boule, while genomes of vertebrates, other than catarrhine primates (Old World monkeys and hominids), possess both Boule and Dazl genes. Finally, catarrhine primates possess BOULE, DAZL, and DAZ genes. Since the DAZ genes arose recently in evolution in the catarrhine lineage, we sought to examine how the sequences and expression of this gene family may have changed after the introduction of a new member, DAZ. Based on previous results, we hypothesized that the introduction of a new member of the DAZ gene family into catarrhines could reduce functional constraint on DAZL. Surprisingly, however, we found that platyrrhine DAZL demonstrated significantly more sequence divergence than catarrhine DAZL (p=0.0006 for nucleotide and p=0.05 for amino acid sequence); however, comparison of K a/K s ratios suggests that the DAZL and BOULE genes are under similar functional constraints regardless of lineage. Thus, our data are most consistent with the hypothesis that the introduction of DAZ did not affect the evolution of DAZL or BOULE, and that a higher neutral mutation rate in platyrrhines than in catarrhines, along with the greater tolerance of DAZL for variation relative to BOULE, may be the foundation for the observed differences in sequence divergence in this gene family.  相似文献   

13.
The specialized grasping feet of primates, and in particular the nature of the hallucal grasping capabilities of living strepsirrhines and tarsiers (i.e., ‘prosimians’), have played central roles in the study of primate origins. Prior comparative studies of first metatarsal (Mt1) morphology have documented specialized characters in living prosimians that are indicative of a more abducted hallux, which in turn is often inferred to be related to an increased ability for powerful grasping. These include a well-developed peroneal process and a greater angle of the proximal articular surface relative to the long axis of the diaphysis. Although known Mt1s of fossil prosimians share these characters with living non-anthropoid primates, Mt1 morphology in the earliest crown group anthropoids is not well known. Here we describe two Mt1s from the Fayum Depression of Egypt - one from the latest Eocene (from the ∼34 Ma Quarry L-41), and one from the later early Oligocene (from the ∼29-30 Ma Quarry M) - and compare them with a sample of extant and fossil primate Mt1s. Multivariate analyses of Mt1 shape variables indicate that the Fayum specimens are most similar to those of crown group anthropoids, and likely belong to the stem catarrhines Catopithecus and Aegyptopithecus specifically, based on analyses of size. Also, phylogenetic analyses with 16 newly defined Mt1 characters support the hypotheses that “prosimian”-like Mt1 features evolved along the primate stem lineage, while crown anthropoid Mt1 morphology and function is derived among primates, and likely differed from that of basal stem anthropoids. The derived loss of powerful hallucal grasping as reflected in the Mt1 morphology of crown anthropoids may reflect long-term selection for improved navigation of large-diameter, more horizontal branches at the expense of movement in smaller, more variably inclined branches in the arboreal environment.  相似文献   

14.
A fifth anthropoid (= anthropoidean, simian or simiiform) genus and species from the late Eocene Fayum Quarry L-41, Abuqatrania basiodontos gen. et sp. nov., further augments the already remarkable primate diversity from this locality and provides the first convincing extension of the enigmatic family Parapithecidae into the oldest productive vertebrate fossil-bearing stratum of the Jebel Qatrani Formation. A. basiodontos exhibits no clear autapomorphies nor any apomorphies that are shared exclusively with any other parapithecid species, and it is most parsimoniously interpreted as the sister taxon of a Qatrania-Parapithecus-Apidium clade. Reevaluation of two contemporaries of A. basiodontos, Serapia and Arsinoea, suggests that neither genus should be ranked as a basal parapithecid. Serapia is more derived than primitive parapithecids in the morphology of the lower fourth premolar and exhibits greater overall similarity to Proteopithecus in cusp placement and the shape and proportions of its lower teeth; accordingly, we place Serapia in the family Proteopithecidae. Arsinoea is much more problematic and does not fit well with any hitherto known Afro-Arabian anthropoid group; we place this genus in a new anthropoid family, Arsinoeidae.  相似文献   

15.
The last decade has witnessed enormous gains in our knowledge of early anthro-poidean primates,
  • 1 “Anthropoidean” refers to members of the suborder Anthropoidea, whch contaings New and Old world monkeys, apes, and humans. These primates are also often called “simians,” “simiiforms” or “anthropoids;” the latter term is potentially confusing because it has often been used to refer only to the great apes.
  • the oldest known relatives of monkeys, apes and humans. Recent fossil finds in Egypt, Algeria, Tunisia, and Oman, along with the associated geological research at these sites, have radically changed our models of anthro-poidean origins and differentiation. Instead of first appearing as robust-jawed herbivorous primates in the earliest Oligocene, it is now apparent that there was radiation of small-bodied, fruit-and-insect-eating anthropoideans during the Eocene. These early forms included at least two oligopithecines (squirrel-monkey-sized primates with a catarrhine dental formula) and two early “parapithecid monkeys” (three-premolared primates with lumpy, bunodont dentitions). In addition, several smaller species from Algeria and Egypt, ranging in size from pygmy marmosets to tamarins, are not definitely assignable to previously known families. Alongside the early anthropoideans, there are also at least four recently identified prosimian families. The continental Eocene of Africa—for years, little more than a blank on the paieontologi-cal map—now comprises an increasingly productive field source of new data that is important in deciphering phyletic and adaptive aspects of the prosimian-anthropoid transition.  相似文献   

    16.
    During the 1998–2003 field seasons of the Uganda Palaeontology Expedition, dental remains of three catarrhine species were recovered from Moroto II, Uganda. Micromammals from the locality indicate a late Early Miocene to basal Middle Miocene (ca 17.5–17 Ma) age, younger than Rusinga (17.8 Ma), but similar in age to Buluk (17.2 Ma) and Kalodirr (17.2 Ma). This paper describes and interprets new catarrhines from the site, one of which is a victoriapithecid monkey, the second a new genus and species of small-bodied ape, and the third a large hominoid. A fourth species collected in the 1960's is attibuted to Afropithecus turkanensis. To cite this article: M. Pickford et al., C. R. Palevol 2 (2003).  相似文献   

    17.
    Over the last 90 years, Eocene and Oligocene aged sediments in the Fayum Depression of Egypt have yielded at least 17 genera of fossil primates. However, of this diverse sample the diets of only four early Oligocene anthropoid genera have been previously studied using quantitative methods. Here we present dietary assessments for 11 additional Fayum primate genera based on the analysis of body mass and molar shearing crest development. These studies reveal that all late Eocene Fayum anthropoids were probably frugivorous despite marked subfamilial differences in dental morphology. By contrast, late Eocene Fayum prosimians demonstrated remarkable dietary diversity, including specialized insectivory (Anchomomys), generalized frugivory (Plesiopithecus), frugivory+insectivory (Wadilemur), and strict folivory (Aframonius). This evidence that sympatric prosimians and early anthropoids jointly occupied frugivorous niches during the late Eocene reinforces the hypothesis that changes in diet did not form the primary ecological impetus for the origin of the Anthropoidea. Early Oligocene Fayum localities differ from late Eocene Fayum localities in lacking large-bodied frugivorous and folivorous prosimians, and may document the first appearance of primate communities with trophic structures like those of extant primate communities in continental Africa. A similar change in primate community structure during the Eocene-Oligocene transition is not evident in the Asian fossil record. Putative large anthropoids from the Eocene of Asia, such as Amphipithecus mogaungensis, Pondaungia cotteri, and Siamopithecus eocaenus, share with early Oligocene Fayum anthropoids derived features of molar anatomy related to an emphasis on crushing and grinding during mastication. However, these dental specializations are not seen in late Eocene Fayum anthropoids that are broadly ancestral to the later-occurring anthropoids of the Fayum's upper sequence. This lack of resemblance to undisputed Eocene African anthropoids suggests that the "progressive" anthropoid-like dental features of some large-bodied Eocene Asian primates may be the result of dietary convergence rather than close phyletic affinity with the Anthropoidea.  相似文献   

    18.
    An isolated petrosal bone belonging to a diminutive primate is reported from Middle Eocene fissure-fills near Shanghuang (southern Jiangsu Province, People's Republic of China), the type locality of several newly described primates (Eosimias sinensis, a basal anthropoid; Adapoides troglodytes, a basal adapinan; Tarsius eocaenus, a congener of extant tarsiers; and Macrotarsius macrorhysis, the first Asian representative of an otherwise exclusively North American genus). Because of its fragmentary condition and unique combination of characters, the Shanghuang petrosal cannot be assigned unambiguously to any of the Shanghuang primate taxa known from dental remains. However, the possibility that the petrosal represents either an adapid or a tarsiid can be dismissed because it lacks defining basicranial apomorphines of these groups. By contrast, the element does present arterial features consistent with its being haplorhine. Deciding between the likeliest candidates for its allocation—Omomyidae and Eosimiidae—is difficult, in part because it is not known what (or even whether) basicranial characters can be used to distinguish these clades. If the Shanghuang petrosal is that of an cosimiid, as both direct and indirect evidence appears to indicate, the following implications emerge: (1) as long suspected on other grounds, anthropoids share a closer evolutionary history with Omomyidae (and Tarsiiformes) than they do with Adapidae (and Strepsirhini); (2) the specialised basicranial anatomy of extant anthropoids and their immediate cladistic relatives is derived from a primitive precursor whose otic morphology was like that of omomyids in most known respects; (3) the evolution of the defining dental and basicranial apomorphies of extant Anthropoidea has been distinctly mosaic in pattern.  相似文献   

    19.
    Cytochrome c oxidase (COX) is a multi-subunit enzyme complex that catalyzes the final step of electron transfer through the respiratory chain on the mitochondrial inner membrane. Up to 13 subunits encoded by both the mitochondrial (subunits I, II, and III) and nuclear genomes occur in eukaryotic organisms ranging from yeast to human. Previously, we observed a high number of amino acid replacements in the human COX IV subunit compared to mouse, rat, and cow orthologues. Here we examined COX IV evolution in the two groups of anthropoid primates, the catarrhines (hominoids, cercopithecoids) and platyrrhines (ceboids), as well as one prosimian primate (lorisiform), by sequencing PCR-amplified portions of functional COX4 genes from genomic DNAs. Phylogenetic analysis of the COX4 sequence data revealed that accelerated nonsynonymous substitution rates were evident in the early evolution of both catarrhines and, to a lesser extent, platyrrhines. These accelerated rates were followed later by decelerated rates, suggesting that positive selection for adaptive amino acid replacement became purifying selection, preserving replacements that had occurred. The evidence for positive selection was especially pronounced along the catarrhine lineage to hominoids in which the nonsynonymous rate was first faster than the synonymous rate, then later much slower. The rates of three types of ``neutral DNA' nucleotide substitutions (synonymous substitutions, pseudogene nucleotide substitutions, and intron nucleotide substitutions) are similar and are consistent with previous observations of a slower rate of such substitutions in the nuclear genomes of hominoids than in the nuclear genomes of other primate and mammalian lineages. Received: 22 May 1996 / Accepted: 24 November 1996  相似文献   

    20.
    Chorionic gonadotropin (CG) is a critical signal in establishing pregnancy in humans and some other primates, but this placentally expressed hormone has not been found in other mammalian orders. The gene for one of its two subunits (CG beta subunit [CGbeta]) arose by duplication from the luteinizing hormone beta subunit gene (LHbeta), present in all mammals tested. In this study, 14 primate and related mammalian species were examined by Southern blotting and DNA sequencing to determine where in mammalian phylogeny the CGbeta gene originated. Bats (order Chiroptera), flying lemur (order Dermoptera), strepsirrhine primates, and tarsiers do not have a CGbeta gene, although they possess one copy of the LHbeta gene. The CGbeta gene first arose in the common ancestor of the anthropoid primates (New World monkeys, Old World monkeys, apes, and humans), after the anthropoids diverged from tarsiers. At least two subsequent duplication events occurred in the catarrhine primates, all of which possess multiple CGbeta copies. The LHbeta-CGbeta family of genes has undergone frequent gene conversion among the catarrhines, as well as periods of strong positive selection in the New World monkeys (platyrrhines). In addition, newly generated DNA sequences from the promoter of the CG alpha subunit gene indicate that platyrrhine monkeys use a different mechanism of alpha gene expression control than that found in catarrhines.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号