首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A group of female hamsters was mated with males of proven fertility either several hours before or during ovulation. Another group of females was artificially inseminated several hours before ovulation. Females were killed at various times after the onset of mating or artificial insemination, oviducts were fixed and sectioned serially, and spermatozoa were counted individually as to their location in the oviduct. Regardless of the type or time of insemination, the vast majority of spermatozoa that entered the oviduct remained in the lower segments of the isthmus (the intramural and caudal isthmus) without ascending to the ampulla. The lower segments of the oviduct, particularly the caudal isthmus, appeared to be acting as a "sieve" and/or "sperm reservoir." In females mated or artificially inseminated prior to ovulation, virtually no spermatozoa reached the cephalic isthmus or ampulla until the commencement of ovulation. Although a few spermatozoa reached the ampulla by 1 h after the onset of mating, they were the exception rather than the rule. When females were mated during ovulation, spermatozoa spent a minimum of about 3 h in the caudal isthmus before ascending to the ampulla. The number of spermatozoa that entered the oviduct after artificial insemination was considerably lower than in naturally mated animals, but this low number was apparently large enough to ensure complete fertilization.  相似文献   

2.
Female hamsters were artificially inseminated at the time of ovulation with an equal concentration and volume of capacitated sperm suspension in one uterus and uncapacitated sperm suspension in the contralateral uterus. When oviducts were examined 3.5-4.0 h after insemination, a significantly (paired t-test, p less than 0.05) lower number of spermatozoa were found in the oviduct from the side inseminated with capacitated sperm suspension compared to the side inseminated with uncapacitated sperm suspension. The reduction in the number of spermatozoa entering the oviduct on the side inseminated with capacitated sperm suspension was particularly evident when nearly all the spermatozoa in the suspension were hyperactivated. These results suggest that hamster spermatozoa require a progressive linear type of motility pattern to pass efficiently through the uterotubal junction and that under normal conditions in vivo, fertilizing spermatozoa initiate hyperactivated motility after entering the oviduct.  相似文献   

3.
Eight animals, 3 heifers and 5 primiparous cows, were artificially inseminated by intrauterine deposition of frozen-thawed semen. The insemination dose comprised 20×106 or 200 × 106 spermatozoa, frozen in French mini straws. Four animals were inseminated at fixed time interval (72 or 84 h) after cloprostenol injection. The remaining 4 animals were inseminated in spontaneous oestrus. Slaughter took place 2 or 12 h after insemination. After fixation the oviducts were cut into segments, which were serial-sectioned and stained. Six sections per segment were examined under the microscope for sperm recovery. The number of spermatozoa recovered from the oviducts varied considerably among animals. Recovery was poor (less than 50 spermatozoa) in 4 animals. Recovery was low when insemination took place in induced oestrus and with the lower sperm number (20×106). In animals in which more than 50 spermatozoa were found the distribution varied both between animals and between oviducts within the same animal. Overall, more spermatozoa were found in the lower (UTJ, isthmus and AIJ) than in the upper (ampulla) parts of the oviducts. In 3 out of 4 animals more spermatozoa were recovered from the left than from the right oviduct. Only in 1 animal were the majority of spermatozoa found in the oviduct ipsilateral to the follicle-bearing ovary.  相似文献   

4.
This study investigated whether injections of synthetic ACTH (simulating short-term stress) in sows during standing oestrus have a negative effect on spermatozoa and the local intraluminal environment in the utero-tubal junction (UTJ) and isthmus. Seven of the 14 sows were given ACTH through a jugular catheter every 2 h from the onset of standing oestrus until the sow ovulated (ACTH-group), while the other seven sows were given NaCl solution (C-group). All sows were artificially inseminated before ovulation. Six hours after ovulation (detected with transrectal ultrasonography) the sows were anaesthetised, the right oviduct was fixed in toto by vascular perfusion with glutaraldehyde, and the UTJ and specimens from the isthmus were prepared for scanning electron microscopy (SEM). SEM revealed that a seemingly viable population of spermatozoa remained in the UTJ 6 h after ovulation. A majority of sows in the ACTH-group had moderately to exaggerated amounts of mucus in the intraluminal environment of the sperm reservoir. In conclusion, stress simulated by exogenous ACTH in sows may alter the intraluminal environment of the sperm reservoir.  相似文献   

5.
Effect of ovulation on sperm transport in the hamster oviduct   总被引:1,自引:0,他引:1  
When hamsters mate shortly after the onset of oestrus (4.5-6 h before the onset of ovulation), spermatozoa are stored in the caudal isthmus of the oviduct until near the time of ovulation. At this time, a few spermatozoa ascend to the ampulla to fertilize the eggs. Superovulation resulted in a significant increase in the number of spermatozoa in the caudal isthmus at 6 h post coitus (p.c.) and in the ampulla and bursal cavity at 12 h p.c. Precocious ovulation resulted in a highly significant reduction in the total number of spermatozoa in the oviduct at 3 and 6 h p.c. This effect was completely overcome by intrauterine artificial insemination, suggesting lack of cervical patency as the block to sperm transport in precociously ovulated animals. Ligation of the ampulla-infundibulum junction in naturally ovulating hamsters resulted in significantly fewer spermatozoa in the caudal isthmus and ampulla at 12 h p.c. Preclusion of ovulation also resulted in fewer spermatozoa in the caudal isthmus and ampulla at 12 h p.c., suggesting that the products of ovulation stimulate sperm transport in the oviduct.  相似文献   

6.
Eight heifers were artificially inseminated in the uterine body with 160×106 spermatozoa frozen in French mini-straws. The heifers were slaughtered 2 (n = 4) or 12 (n = 4) h after insemination and spermatozoa were recovered by flushing defined segments of the reproductive tract. The efficiency of the method was checked in different ways. There was a slight underestimation of the number of recovered spermatozoa. This underestimation was randomly distributed among heifers and genital tract segments. The total number of spermatozoa recovered was higher at 2 than at 12 h (14.6 vs 0.6 % of the total number inseminated). Most spermatozoa were found in the vagina both at 2 and 12 h after insemination and in greater number at 2 h. In uterus there was a slight decline in the number of spermatozoa recovered at 2 versus 12 h after insemination. The number of spermatozoa recovered from the oviducts were similar at 2 (89.6 × 103) and 12 h (71.5 × 103) after insemination. At 2 h spermatozoa were found in all parts of the oviduct with the majority located in the utero tubal junction, whereas at 12 h the most were recovered from isthmus. More spermatozoa were recovered from the left than from the right side of the tract in 6 of the 8 heifers. Only in 1 heifer were the majority of spermatozoa found in the oviduct ipsilateral to the follicle bearing ovary.  相似文献   

7.
The aim of present study was to investigate the influence of pre-compared with post-ovulatory insemination, on the distribution of spermatozoa in the oviduct, the accessory sperm counts on the zona pellucida and early embryonic development. Thirty-six crossbred multiparous sows (Swedish Landrace x Swedish Yorkshire) were artificially inseminated once either at 20-15 h before (group AIB) or at 15-20 h after (group AIA) ovulation by using a pooled semen of two boars. Thereafter, they were randomly allocated to one of five groups: slaughter at 5-6h after AI (group I-AIB), at 20-25 h after ovulation (groups II-AIB and II-AIA), at 70 h after ovulation (groups III-AIB and III-AIA), on day 11 (groups IV-AIB and IV-AIA, first day of standing oestrus=day 1) and on day 19 (groups V-AIB and V-AIA).The plasma levels of oestradiol-17beta and progesterone differed significantly (P相似文献   

8.
When hamsters mate shortly after the onset of estrus, spermatozoa are stored in the lower oviduct (isthmus) during the preovulatory period. The present study was performed to determine what proportion of the spermatozoa in the isthmus survive until fertilization. Females were mated 5 to 6.5 h before ovulation. When spermatozoa in the isthmus were observed through the wall of oviducts excised 2 h after the onset of mating, spermatozoa were seen free in the lumen, attached to the mucosal surface of the wall, and in crypts. The vast majority of spermatozoa in the lumen were immotile, whereas most of those attached to the mucosal surface of the wall and almost all of the those in the crypts exhibited flagellar movement. This suggested that attachment to the mucosa and/or storage in the crypts is beneficial to the survival of spermatozoa. Sequential flushing of an oviduct at various times (2-8 h) after mating was used to remove spermatozoa from the lumen (first flush), from the mucosal surface (second flush), and from the crypts (third flush). The highest number of spermatozoa was always contained in the first flush, the next highest in the second flush, and the smallest in the third flush. When Trypan blue was included in the flushing medium to differentiate live and dead spermatozoa, the first flush recovered the smallest percentage of liver spermatozoa (2-22%), the second flush slightly more (16-37%), and the third flush the highest (51-69%), regardless of the time after mating. These data indicate that the majority of spermatozoa stored in the hamster isthmus die before ovulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Eight heifers were artificially inseminated with frozen-thawed semen during heat. Semen was deposited in one of the uterine horns. The animals were slaughtered 2 h after insemination and the genital tract was flushed. Sperm concentration in the flushing fluid was estimated by haemocytometric counting.There was a considerable transport of spermatozoa from the site of semen deposition to the uterine horn and oviduct on the opposite side. Spermatozoa were recovered from all parts of the oviduct (infundibulum, ampulla and isthmus) and distal and proximal parts of the horn on the non-inseminated side. In 7 out of 8 heifers more spermatozoa were recovered from the side of the tract opposite to insemination than from the inseminated side, although the differences were small in 2 animals. No clear relationship could be seen between ovarian activity and distribution of spermatozoa.  相似文献   

10.
Sperm migration in estrous cervical mucus can be used to measure the ability of spermatozoa to migrate through the genital tract. The relationship of this test with the sperm colonization of the isthmus, and its impact on fertility has not been evaluated in goats. Our objectives were to determine the differences among spermatozoa of different bucks in their ability to penetrate homologous cervical mucus in vitro and to determine the relationship between sperm displacement through cervical mucus and the ability of spermatozoa to colonize the oviduct and penetrate IVM oocytes, in vivo. Sperm migration in cervical mucus was assessed in flat capillary tubes with a phase contrast microscope. In the first experiment, fresh semen was used to establish differences between males in the ability of their spermatozoa to migrate in cervical mucus. In the second experiment, goats in estrus were inseminated with fresh spermatozoa from males with significant differences in mucus migration ability, and sperm numbers were evaluated at the UTJ. In the third experiment, the fertilization efficiency of IVM oocytes transferred to the oviduct of estrous females inseminated with semen from the same males as earlier, was used to assess the relationship between the mucus migration test and the in vivo fertilization performance of their spermatozoa. Spermatozoa from different males varies significantly in sperm migration efficiency in cervical mucus (15.5a +/- 1.2; 14.9a +/- 1.4; 17.5ab +/- 1.2; 17.0ab +/- 1.5; 19.7b +/- 1.2; 20.1b +/- 1.4 mm; media +/- S.E.M. for males A-F, respectively, P < 0.05). Spermatozoa from males with different mucus migration efficiency values produced different sperm populations at the oviduct reservoir of inseminated females (1,233 +/- 92.3 versus 28.8 +/- 17.0 spermatozoa of males with high and low relative migration efficiency, respectively, P < 0.02). Spermatozoa from males with different mucus migration efficiency values have different fertilization rates of IVM oocytes transferred to oviduct (47/96 (49.0%) versus 25/91 (27.5%) for males with high and low relative migration efficiency, respectively, P < 0.05). Cumulative results suggest that sperm migration in cervical mucus is related to the ability of spermatozoa to colonize the oviduct and to fertilize matured oocytes in vivo.  相似文献   

11.
Sperm transport and motility in the mouse oviduct: observations in situ   总被引:2,自引:0,他引:2  
Sperm transport and motility were studied through the transparent walls of the mouse oviduct by direct microscopic observation and videomicrography. Observations were made on excised female tracts 1-2 h post-coitus (pc) and 1-2 h before and after the approximate time of ovulation. Motile sperm were seen at the uterine entrance to the uterotubal junction (UTJ) in all females at 1-2 h pc, but in fewer females at later times. The intramural UTJ was usually constricted and held few sperm. The extramural UTJ and adjacent lower isthmus contained many motile sperm at 1-2 h pc. Apparently, the column of sperm moved upwards because in some females, sperm were found in the upper isthmus and not in the UTJ at the later time points. Few sperm were seen in the ampulla in the periovulatory period, and none at 1-2 h pc. There appeared to be two mechanisms retaining sperm in the lower oviduct: immobilization and adherence to the epithelium. Columns of immotile sperm were seen in the lower isthmus of some females. Motile sperm usually appeared to adhere by their heads to the oviductal epithelium, only occasionally breaking free to move vigorously about the lumen.  相似文献   

12.
Boar spermatozoa were preincubated for various times in the isolated uterus and oviduct from a maturing gilt and used to inseminate zona-free hamster eggs. The proportions of eggs penetrated and activated were increased, and the interval between insemination and sperm penetration was shortened when the spermatozoa were preincubated for 4--5.5 h instead of 2--.5 h. Overall penetration rates were higher and sperm penetration occurred about 1 h earlier when the eggs were inseminated with spermatozoa preincubated in the uterus than in the oviduct. It is concluded that the change in ability of boar spermatozoa to penetrate zona-free hamster eggs is due to capcitation which requires 4--4.5 h and 5--5.5 h of preincubation in the isolated uterus and oviduct, respectively.  相似文献   

13.
《Theriogenology》2015,84(9):1502-1513
The sperm reservoir is formed when spermatozoa bind to the epithelium of the uterotubal junction and caudal isthmus of the oviduct. It is an important mechanism that helps synchronize the meeting of gametes by regulating untimely capacitation and polyspermic fertilization. This study investigated the influence of epididymal maturation and caudal fluid on the ability of spermatozoa to bind to oviduct epithelium using a model porcine oviduct explant assay. Spermatozoa from the rete testis, middle caput (E2-E3), middle corpus (E6), and cauda (E8) of Large White or Large White × Landrace boars aged 10 to 14 months were diluted in modified Androhep solution and incubated with porcine oviduct explants. Results reported in this study support our hypothesis that testicular spermatozoa need to pass through the regions of the epididymis to acquire the ability to bind to the oviduct. There was a sequential increase in the number of spermatozoa that bound to oviduct explants from the rete testis to caudal epididymis. Binding of caudal spermatozoa to isthmic explants was the highest (15.0 ± 1.2 spermatozoa per 1.25 mm2, mean ± standard error of the mean; P ≤ 0.05) and lowest by spermatozoa from the rete testis (2.0 ± 0.3 per 1.25 mm2), and higher to isthmus from sows compared to gilts (35.8 ± 6.7 per 1.25 mm2 vs. 14.8 ± 3.0 per 1.25 mm2; P ≤ 0.05). Binding of ejaculated spermatozoa to porcine isthmus was higher than that for caudal spermatozoa (26.3 ± 1.4 per 1.25 mm2 vs. 15.0 ± 0.8 per 1.25 mm2; P ≤ 0.05) and higher to porcine than to bovine isthmus (26.3 ± 2.3 per 1.25 mm2 vs. 18.8 ± 1.9 per 1.25 mm2; P ≤ 0.05). Incubation of spermatozoa from the caput and corpus in caudal fluid increased the ability of spermatozoa to bind to the oviduct epithelium (P ≤ 0.05). In conclusion, the capacity of testicular spermatozoa to bind to the oviduct epithelium increases during their maturation in the epididymis and can be advanced by components of the caudal fluid.  相似文献   

14.
Twenty-six female brown marsupial mice in a laboratory colony were mated at intervals ranging from 1 to 20 days between coitus and ovulation. The numbers of corpora lutea and normal embryos were counted. A multiple regression model examined the parabolic relationship between the proportion of normal embryos and the time from coitus to ovulation. The proportion of normal embryos increased until a mean of 9.5 days and decreased thereafter. This relationship was independent of the year of breeding and the number of corpora lutea. After survival of spermatozoa for up to 13 days in the female reproductive tract, the fertility levels of females was 88-92%. Low fertility levels after 13 days appeared to be due to a decrease in the number of spermatozoa. Reproductive tracts from 7 females killed after insemination and examined histologically showed many spermatozoa in the isthmus of the oviduct and the uterus at 5 days post coitum; spermatozoa confined to the isthmus between 6 and 13 days; and few spermatozoa in the isthmus at 14 days after copulation. A comparison between the fertility levels in the females which had been inseminated once and a further 17 females which had been inseminated 2 or 3 times suggested that spermatozoa from 2nd and 3rd inseminations can contribute spermatozoa for fertilization. In these females fertility levels did not decline with time after the first mating.  相似文献   

15.
Timing of artificial insemination (AI) in marsupials is critical because fertilization must occur before mucin coats the oocyte during passage through the oviduct. In this study, timing and the site of insemination were examined to develop AI in the tammar wallaby (Macropus eugenii). Birth and postpartum (p.p.) estrus was synchronized in 46 females. Epididymal spermatozoa (n=4) or semen collected by electroejaculation (n=42) were inseminated early (4-21 h p.p.) into the urogenital sinus (n=7), the anterior vaginal culs de sac (n=7), the uterus by transcervical catheter (n=5), or the uterus by injection (intrauterine artificial insemination, IUAI) (n=5). A further 16 females were inseminated late (19-48 h p.p.) by IUAI. All females were monitored for birth. A third group of six females was inseminated late (21-54 h p.p.) by IUAI and 0.4-6.6 h later, sperm had reached the oviduct in all animals. In total, an oocyte to which spermatozoa were attached was recovered and two young were born after IUAI using epididymal (n=1) or electroejaculated (n=2) spermatozoa, but no young resulted from insemination at other sites. Two females were successfully inseminated at 43 and 47 h p.p., later than most other animals, and the third was inseminated much earlier (18 h p.p.) but with highly motile spermatozoa. These young represent the first macropodids born by AI and the first marsupials conceived using epididymal spermatozoa.  相似文献   

16.
This study was conducted to determine the number of spermatozoa residing in the oviduct sperm-storage tubules (SST) and the relationship between these numbers and the number of spermatozoa embedded in the perivitelline layer of oviductal eggs after a single insemination of 200 x 10(6) spermatozoa. The SST of hens inseminated within one week before the expected onset of egg production were filled faster (4 h vs. 2 days) and possessed more spermatozoa (4.1 vs. 2.0 x 10(6)) than the SST of hens inseminated after the onset of egg production. Furthermore, for hens in egg production, significantly fewer spermatozoa were recovered from the SST if the hen was inseminated within 2 h before or after oviposition than if inseminated more than 2 h before or after the oviposition. There was a strong positive correlation between the number of spermatozoa in the SST and the number of spermatozoa embedded in the perivitelline layer of the oviductal eggs (r = 0.85, p less than 0.01). These data show that the population of spermatozoa actually accepted by the SST is quite small relative to the number of spermatozoa inseminated and that maximum sperm-storage is achieved when the hen is inseminated just prior to the onset of egg production. It is suggested that the sperm-storage capacity of the oviduct and the quality of the semen sample can be estimated on the basis of numbers of spermatozoa embedded in the egg perivitelline layer.  相似文献   

17.
An alternative to conventional in vivo validation of sperm assays might be to assess the fertilization rate of multiple oocytes transferred to the oviducts of inseminated females. Increasing the number of oocytes increases the egg-sperm ratio in the oviduct under an unaltered endocrine milieu, setting the basis for picking up statistical differences between treatments in small populations. The study evaluated the model by transferring oocytes to females inseminated under conditions that are known to modify the fertilization rate in the field. The study then evaluated the use of cattle oocytes to replace goat oocytes for assessing sperm function under this model. In Experiment 1, 12 females were inseminated at estrus with either 100 or 300 million spermatozoa 20 h before transferring homologous oocytes into the oviduct ipsilateral to the ovulation point. In Experiment 2, 10 females were inseminated either once or twice; 10-20 h later, homologous oocytes were transferred into the oviduct ipsilateral to the ovulation point. In Experiment 3, 13 bilateral-ovulated females were inseminated and 20 h later goat and cattle oocytes were transferred to contralateral oviducts. Then, 16-20 h later, oocytes were flushed from the oviduct, cleaned of spermatozoa and stained to assess the fertilization rate. The fertilization rate was improved by increasing sperm numbers at insemination (P < 0.04) and by increasing the number of inseminations (P < 0.02). The results in Experiment 3 showed that fertilization rates were similar for goat and cattle oocyte (P > 0.05) and that fertilization values were highly correlated (r = 0.811, P < 0.001). Results suggest that the model can be used for in vivo validation of in vitro sperm assays by facilitating the expression of statistical differences in small number of animals. In addition, cattle oocytes can be used to replace goat oocytes to study in vivo sperm function in goats.  相似文献   

18.
The objective of the study was to investigate if short-term stress in sows (simulated by injections of synthetic adrenocorticotrophic hormone (ACTH)) during standing oestrus had a negative effect on the local environment in the utero-tubal junction (UTJ) and isthmus and the distribution of spermatozoa in these segments. Fourteen sows were monitored for ovulation using ultrasonography in two consecutive oestruses. The sows were fitted with jugular catheters and, from onset of the second oestrus, blood samples were collected every second hour. In the 2nd oestrus, seven sows were given ACTH every second hour, from the onset of standing oestrus until the sow ovulated (ACTH-group), whereas the other seven sows remained as controls (C-group) and were given NaCl solution. The sows were artificially inseminated 16-18 h before expected ovulation. Six hours after ovulation the sows were anaesthetised, and blood samples were repeatedly taken from veins draining the uterus and the UTJ-isthmus, respectively. This oviduct was thereafter removed and divided in four adjacent sections consisting of: (i) the UTJ, (ii) the first, and (iii) the second isthmus segment prior to (iv), the ampullary-isthmic junction (AIJ) and the ampulla. The three first-mentioned segments were flushed to retrieve spermatozoa, whereas the last one was flushed to collect oocytes/ova. The number of spermatozoa attached to the zona pellucida was counted. The concentrations of cortisol in jugular blood of the ACTH-group sows during the time of ACTH-injections were significantly higher than of the C-group sows (p<0.05), as were the levels of progesterone (p<0.001). Progesterone and cortisol concentrations measured in the blood samples draining the UTJ-isthmic region 6 h after ovulation did not significantly differ between the groups, but the C-group displayed significantly higher concentrations of progesterone in the UTJ-isthmic region compared with the levels measured in parallel samples taken of jugular blood (p<0.01). The C-group, but not the ACTH-group, also displayed a significant elevation in progesterone concentration 6h after ovulation compared with the basal levels before ovulation (p<0.01). Numbers of retrieved spermatozoa were not significantly different between the C-group and the ACTH-group. However, there was a tendency for a larger number of spermatozoa among sows in the ACTH-group, especially in the isthmic segment adjacent to the AIJ. In conclusion, simulated stress induced by injections of ACTH during standing oestrus results in elevated concentrations of progesterone before ovulation and may interfere with the rise of progesterone after ovulation. However, ACTH-injections appeared to augment transport of spermatozoa through the female genital tract of pigs.  相似文献   

19.
In order to examine whether sperm migration into and through the oviduct follows an invariable pattern or is subject to regulation, rats in proestrus, estrus, metestrus, or diestrus were inseminated in the upper third of each uterine horn with 10-20 million epididymal spermatozoa. Three or eight hours later, the numbers of spermatozoa free and adhering to the epithelium in the ampullary and isthmic segments were determined. A significantly higher number of spermatozoa were recovered in estrus than in other stages, at 3 h than at 8 h, and at all stages from the isthmus than from the ampulla. Spermatozoa adhering to the epithelium were observed only in proestrus and estrus and in the isthmus. The effect of exogenous estradiol-17beta (E2) and progesterone (P4) on sperm migration was investigated in rats in which the estrous cycle was inhibited pharmacologically. E2 facilitated sperm migration into the oviduct and P4 antagonized this effect, whereas P4 alone had no effect. Concomitant treatment with E2+P4 induced adhesion of spermatozoa to the oviductal epithelium. In conclusion, the pattern of sperm migration into and through the rat oviduct varies with the stage of the cycle, being dependent on E2 and P4. The adhesion of spermatozoa to the rat oviductal epithelium is stage- and segment-specific and requires the combined action of both hormones.  相似文献   

20.
Hamster and mouse capacitated spermatozoa were interacted in vitro with hamster and mouse eggs in homologous and heterologous combinations. Also, fertilized and trypsin treated unfertilized hamster eggs, and unfertilized rat eggs were made to interact with capacitated hamster spermatozoa. The surface of the zona pellucida was then examined with the scanning electron microscope. It was found that sperm attachment, followed by sperm binding and penetration through the zona pellucida, was observed only when homologous gamete combinations were used. Binding of the spermatozoa to the zona was evidenced by the lytic effect of the acrosomal enzymes on the zona substance. When fertilized eggs and trypsin-treated unfertilized hamster eggs were mixed with capacitated hamster spermatozoa as well as in the heterologous gamete combinations, we found that the spermatozoa were able to establish attachment but not binding. Under these conditions the outer surface of the zona pellucida was never found to have penetration tracks made by the spermatozoa. Failure of heterologous spermatozoa to cross the foreign zona pellucida is believed to be associated with the inability of the foreign spermatozoa to establish binding and to the inability of their acrosomal enzymes to digest the zona. A similar mechanism is believed to work in zona-reacted and in trypsin-treated hamster eggs inseminated in vitro with homologous spermatozoa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号