首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An approach frequently used to demonstrate a genetic basis for population-level phenotypic differences is to employ common garden rearing designs, where observed differences are assumed to be attributable to primarily additive genetic effects. Here, in two common garden experiments, we employed factorial breeding designs between wild and domestic, and among wild populations of Chinook salmon (Oncorhynchus tshawytscha). We measured the contribution of additive (V(A)) and maternal (V(M)) effects to the observed population differences for 17 life history and fitness-related traits. Our results show that, in general, maternal effects contribute more to phenotypic differences among populations than additive genetic effects. These results suggest that maternal effects are important in population phenotypic differentiation and also signify that the inclusion of the maternal source of variation is critical when employing models to test population differences in salmon, such as in local adaptation studies.  相似文献   

2.
Sommer S  Pearman PB 《Genetica》2003,119(1):1-10
We estimated genetic and maternal variance components of larval life history characters in alpine populations of Rana temporaria (the common frog) using a full-sib/half-sib breeding design. We studied trait plasticity by raising tadpoles at 14 or 20°C in the laboratory. Larval period and metamorphic mass were greater at 14°C. Larval period did not differ between populations, but high elevation metamorphs were larger than low elevation metamorphs. Significant additive variation for larval period was detected in the low altitude population. No significant additive variation was detected for mass at metamorphosis (MM), which instead displayed significant maternal effects. Plasticity in metamorphic mass of froglets was greater in the high altitude population. The plastic response of larval period to temperature did not differ between the populations. Evolution of metamorphic mass is likely constrained by lack of additive genetic variation. In contrast, significant heritability for larval period suggests this trait may evolve in response to environmental change. These results differ from other studies on R. temporaria, suggesting that populations of this broadly distributed species present substantial geographic variation in the genetic architecture and plasticity of tadpole life history traits.  相似文献   

3.
Transgenerational effects are broader than only parental relationships. Despite mounting evidence that multigenerational effects alter phenotypic and life‐history traits, our understanding of how they combine to determine fitness is not well developed because of the added complexity necessary to study them. Here, we derive a quantitative genetic model of adaptation to an extraordinary new environment by an additive genetic component, phenotypic plasticity, maternal and grandmaternal effects. We show how, at equilibrium, negative maternal and negative grandmaternal effects maximize expected population mean fitness. We define negative transgenerational effects as those that have a negative effect on trait expression in the subsequent generation, that is, they slow, or potentially reverse, the expected evolutionary dynamic. When maternal effects are positive, negative grandmaternal effects are preferred. As expected under Mendelian inheritance, the grandmaternal effects have a lower impact on fitness than the maternal effects, but this dual inheritance model predicts a more complex relationship between maternal and grandmaternal effects to constrain phenotypic variance and so maximize expected population mean fitness in the offspring.  相似文献   

4.
Temperature is considered one of the most important mediators of phenotypic plasticity in ectotherms. However, the costs and benefits shaping the evolution of different thermal responses are poorly elucidated. One of the possible constraints to phenotypic plasticity is its intrinsic genetic cost, such as genetic linkage or pleiotropy. Genetic coupling of the thermal response curves for different life history traits may significantly affect the evolution of thermal sensitivity in thermally fluctuating environments. We used the collembolan Orchesella cincta to study if there is genetic variation in temperature-induced phenotypic plasticity in life history traits, and if the degree of temperature-induced plasticity is correlated across traits. Egg development rate, juvenile growth rate and egg size of 19 inbred isofemale lines were measured at two temperatures. Our results show that temperature was a highly significant factor for all three traits. Egg development rate and juvenile growth rate increased with increasing temperature, while egg size decreased. Line by temperature interaction was significant for all traits tested; indicating that genetic variation for temperature-induced plasticity existed. The degree of plasticity was significantly positively correlated between egg development rate and growth rate, but plasticity in egg size was not correlated to the other two plasticity traits. The findings suggest that the thermal plasticities of egg development rate and growth rate are partly under the control of the same genes or genetic regions. Hence, evolution of the thermal plasticity of traits cannot be understood in isolation of the response of other traits. If traits have similar and additive effects on fitness, genetic coupling between these traits may well facilitate the evolution of optimal phenotypes. However, for this we need to know the selective forces under field conditions.  相似文献   

5.
Maternal effects, either environmental or genetic in origin, are an underappreciated source of phenotypic variance in natural populations. Maternal genetic effects have the potential to constrain or enhance the evolution of offspring traits depending on their magnitude and their genetic correlation with direct genetic effects. We estimated the maternal effect variance and its genetic component for 12 traits expressed over the life history in a pedigreed population of wild red deer (morphology, survival/longevity, breeding success). We only found support for maternal genetic effect variance in the two neonatal morphological traits: birth weight ( = 0.31) and birth leg length ( = 0.17). For these two traits, the genetic correlation between maternal and direct additive effects was not significantly different from zero, indicating no constraint to evolution from genetic architecture. In contrast, variance in maternal genetic effects enhanced the additive genetic variance available to respond to natural selection. Maternal effect variance was negligible for late-life traits. We found no evidence for sex differences in either the direct or maternal genetic architecture of offspring traits. Our results suggest that maternal genetic effect variance declines over the lifetime, but also that this additional heritable genetic variation may facilitate evolutionary responses of early-life traits.  相似文献   

6.
We examined the relationship of three aspects of development, phenotypic plasticity, genetic correlations among traits, and developmental noise, for thorax length, wing length, and number of sternopleural bristles in Drosophila melanogaster. We used 14 lines which had previously been selected on either thorax length or plasticity of thorax length in response to temperature. A half-sib mating design was used and offspring were raised at 19° C or 25° C. We found that genetic correlations were stable across temperatures despite the large levels of plasticity of these traits. Plasticities were correlated among developmentally related traits, thorax and wing length, but not among unrelated traits, lengths and bristle counts. Amount of developmental noise, measured as fluctuating asymmetry and within-environmental variation, was positively correlated with amount of plasticity only for some traits, thorax length and bristle number, and only at one temperature, 25° C.  相似文献   

7.
Individuals of all vertebrate species differ consistently in their reactions to mildly stressful challenges. These typical reactions, described as personalities or coping strategies, have a clear genetic basis, but the structure of their inheritance in natural populations is almost unknown. We carried out a quantitative genetic analysis of two personality traits (exploration and boldness) and the combination of these two traits (early exploratory behaviour). This study was carried out on the lines resulting from a two-directional artificial selection experiment on early exploratory behaviour (EEB) of great tits (Parus major) originating from a wild population. In analyses using the original lines, reciprocal F(1) and reciprocal first backcross generations, additive, dominance, maternal effects ands sex-dependent expression of exploration, boldness and EEB were estimated. Both additive and dominant genetic effects were important determinants of phenotypic variation in exploratory behaviour and boldness. However, no sex-dependent expression was observed in either of these personality traits. These results are discussed with respect to the maintenance of genetic variation in personality traits, and the expected genetic structure of other behavioural and life history traits in general.  相似文献   

8.
The ability of individual organisms to alter morphological and life-history traits in response to the conditions they experience is an example of phenotypic plasticity which is fundamental to any population's ability to deal with short-term environmental change. We currently know little about the prevalence, and evolutionary and ecological causes and consequences of variation in life history plasticity in the wild. Here we outline an analytical framework, utilizing the reaction norm concept and random regression statistical models, to assess the between-individual variation in life history plasticity that may underlie population level responses to the environment at both phenotypic and genetic levels. We discuss applications of this framework to date in wild vertebrate populations, and illustrate how natural selection and ecological constraint may alter a population's response to the environment through their effects at the individual level. Finally, we present future directions and challenges for research into individual plasticity.  相似文献   

9.
The relative roles of genetic differentiation and developmental plasticity in generating latitudinal gradients in life histories remain insufficiently understood. In particular, this applies to determination of voltinism (annual number of generations) in short‐lived ectotherms, and the associated trait values. We studied different components of variation in development of Chiasmia clathrata (Lepidoptera: Geometridae) larvae that originated from populations expressing univoltine, partially bivoltine or bivoltine phenology along a latitudinal gradient of season length. Indicative of population‐level genetic differentiation, larval period became longer while growth rate decreased with increasing season length within a particular phenology, but saw‐tooth clines emerged across the phenologies. Indicative of phenotypic plasticity, individuals that developed directly into reproductive adults had shorter development times and higher growth rates than those entering diapause. The most marked differences between the alternative developmental pathways were found in the bivoltine region suggesting that the adaptive correlates of the direct development evolve if exposed to selection. Pupal mass followed a complex cline without clear reference to the shift in voltinism or developmental pathway probably due to varying interplay between the responses in development time and growth rate. The results highlight the multidimensionality of evolutionary trajectories of life‐history traits, which either facilitate or constrain the evolution of integrated traits in alternative phenotypes.  相似文献   

10.
Phenotypic plasticity in thermally-regulated traits enables close tracking of changing environmental conditions, and can thereby enhance the potential for rapid population increase, a hallmark of outbreak insect species. In a changing climate, exposure to conditions that exceed the capacity of existing phenotypic plasticity may occur. Combining information on genetic architecture and trait plasticity among populations that are distributed along a latitudinal cline can provide insight into how thermally-regulated traits evolve in divergent environments and the potential for adaptation. Dendroctonus ponderosae feed on Pinus species in diverse climatic regimes throughout western North America, and show eruptive population dynamics. We describe geographical patterns of plasticity in D. ponderosae development time and adult size by examining reaction norms of populations from multiple latitudes. The relative influence of additive and non-additive genetic effects on population differences in the two phenotypic traits at a single temperature is quantified using line-cross experiments and joint-scaling tests. We found significant genetic and phenotypic variation among D. ponderosae populations. Simple additive genetic variance was not the primary source of the observed variation, and dominance and epistasis contributed greatly to the genetic divergence of the two thermally-regulated traits. Hybrid breakdown was also observed in F2 hybrid crosses between northern and southern populations, further indication of substantial genetic differences among clinal populations and potential reproductive isolation within D. ponderosae. Although it is unclear what maintains variation in the life-history traits, observed plasticity in thermally-regulated traits that are directly linked to rapid numerical change may contribute to the outbreak nature of D. ponderosae, particularly in a changing climate.  相似文献   

11.
Although mothers influence the traits of their offspring in many ways beyond the transmission of genes, it remains unclear how important such ‘maternal effects’ are to phenotypic differences among individuals. Synthesizing estimates derived from detailed pedigrees, we evaluated the amount of phenotypic variation determined by maternal effects in animal populations. Maternal effects account for half as much phenotypic variation within populations as do additive genetic effects. Maternal effects most greatly affect morphology and phenology but, surprisingly, are not stronger in species with prolonged maternal care than in species without. While maternal effects influence juvenile traits more than adult traits on average, they do not decline across ontogeny for behaviour or physiology, and they do not weaken across the life cycle in species without maternal care. These findings underscore maternal effects as an important source of phenotypic variation and emphasise their potential to affect many ecological and evolutionary processes.  相似文献   

12.
Understanding the genetic architecture of phenotypic plasticity is required to assess how populations might respond to heterogeneous or changing environments. Although several studies have examined population‐level patterns in environmental heterogeneity and plasticity, few studies have examined individual‐level variation in plasticity. Here, we use the North Carolina II breeding design and translocation experiments between two populations of Chinook salmon to detail the genetic architecture and plasticity of offspring survival and growth. We followed the survival of 50 800 offspring through the larval stage and used parentage analysis to examine survival and growth through freshwater rearing. In one population, we found that additive genetic, nonadditive genetic and maternal effects explained 25%, 34% and 55% of the variance in larvae survival, respectively. In the second population, these effects explained 0%, 24% and 61% of the variance in larvae survival. In contrast, fry survival was regulated primarily by additive genetic effects, which indicates a shift from maternal to genetic effects as development proceeds. Fry growth also showed strong additive genetic effects. Translocations between populations revealed that offspring survival and growth varied between environments, the degree of which differed among families. These results indicate genetic differences among individuals in their degree of plasticity and consequently their ability to respond to environmental variation.  相似文献   

13.
The expression of phenotypic plasticity may differ among life stages of the same organism. Age-dependent plasticity can be important for adaptation to heterogeneous environments, but this has only recently been recognized. Whether age-dependent plasticity is a common outcome of local adaptation and whether populations harbor genetic variation in this respect remains largely unknown. To answer these questions, we estimated levels of additive genetic variation in age-dependent plasticity in six species of damselflies sampled from 18 populations along a latitudinal gradient spanning 3600 km. We reared full sib larvae at three temperatures and estimated genetic variances in the height and slope of thermal reaction norms of body size at three points in time during ontogeny using random regression. Our data show that most populations harbor genetic variation in growth rate (reaction norm height) in all ontogenetic stages, but only some populations and ontogenetic stages were found to harbor genetic variation in thermal plasticity (reaction norm slope). Genetic variances in reaction norm height differed among species, while genetic variances in reaction norm slope differed among populations. The slope of the ontogenetic trend in genetic variances of both reaction norm height and slope increased with latitude. We propose that differences in genetic variances reflect temporal and spatial variation in the strength and direction of natural selection on growth trajectories and age-dependent plasticity. Selection on age-dependent plasticity may depend on the interaction between temperature seasonality and time constraints associated with variation in life history traits such as generation length.  相似文献   

14.
In colonizing species, high phenotypic plasticity can contribute to survival and propagation in heterogenous adventive environments, and it has been suggested as a predictor of invasiveness. Observation of natural populations of an invasive species, Lythrum salicaria salicaria, indicated extensive variation in its growth and reproductive traits. Phenotypic plasticity of different life history traits of L. salicaria was investigated using vegetative clones of each of 12 genotypes from one population in Ontario, Canada. We chose soil moisture as the treatment factor because of its importance in wetland species and raised all 12 genotypes in each of four soil moisture treatments. We examined an array of vegetative and reproductive traits, including root and shoot mass, shoot and inflorescence length, total seed set, floral mass, and morphometric variables. All observed vegetative as well as reproductive traits demonstrated significant phenotypic plasticity in response to soil moisture treatment. Even the stigma-anther separation involved significant genotype by environment interactions, suggesting that soil moisture may modify the relative positions of anthers and stigma. Compared to vegetative traits, most reproductive traits demonstrated crossing reaction norms, implying that the average differences in those traits among genotypes vary with the environment maintaining the genetic variation in a population.  相似文献   

15.
Within a population, only phenotypic variation that is influenced by genes will respond to selection. Genes with pleiotropic effects are known to influence numerous traits, complicating our understanding of their evolution through time. Here we use quantitative genetic analyses to identify and estimate the shared genetic effects between molar size and trunk length in a pedigreed, breeding population of baboons housed at the Southwest National Primate Research Center. While crown area has a genetic correlation with trunk length, specific linear measurements yield different results. We find that variation in molar buccolingual width and trunk length is influenced by overlapping additive genetic effects. In contrast, mesiodistal molar length appears to be genetically independent of body size. This is the first study to demonstrate a significant genetic correlation between tooth size and body size in primates. The evolutionary implications are discussed.  相似文献   

16.
The underlying basis of genetic variation in quantitative traits, in terms of the number of causal variants and the size of their effects, is largely unknown in natural populations. The expectation is that complex quantitative trait variation is attributable to many, possibly interacting, causal variants, whose effects may depend upon the sex, age and the environment in which they are expressed. A recently developed methodology in animal breeding derives a value of relatedness among individuals from high‐density genomic marker data, to estimate additive genetic variance within livestock populations. Here, we adapt and test the effectiveness of these methods to partition genetic variation for complex traits across genomic regions within ecological study populations where individuals have varying degrees of relatedness. We then apply this approach for the first time to a natural population and demonstrate that genetic variation in wing length in the great tit (Parus major) reflects contributions from multiple genomic regions. We show that a polygenic additive mode of gene action best describes the patterns observed, and we find no evidence of dosage compensation for the sex chromosome. Our results suggest that most of the genomic regions that influence wing length have the same effects in both sexes. We found a limited amount of genetic variance in males that is attributed to regions that have no effects in females, which could facilitate the sexual dimorphism observed for this trait. Although this exploratory work focuses on one complex trait, the methodology is generally applicable to any trait for any laboratory or wild population, paving the way for investigating sex‐, age‐ and environment‐specific genetic effects and thus the underlying genetic architecture of phenotype in biological study systems.  相似文献   

17.
Dispersal capacity is a key life‐history trait especially in species inhabiting fragmented landscapes. Evolutionary models predict that, given sufficient heritable variation, dispersal rate responds to natural selection imposed by habitat loss and fragmentation. Here, we estimate phenotypic variance components and heritability of flight and resting metabolic rates (RMRs) in an ecological model species, the Glanville fritillary butterfly, in which flight metabolic rate (FMR) is known to correlate strongly with dispersal rate. We modelled a two‐generation pedigree with the animal model to distinguish additive genetic variance from maternal and common environmental effects. The results show that FMR is significantly heritable, with additive genetic variance accounting for about 40% of total phenotypic variance; thus, FMR has the potential to respond to selection on dispersal capacity. Maternal influences on flight metabolism were negligible. Heritability of flight metabolism was context dependent, as in stressful thermal conditions, environmentally induced variation dominated over additive genetic effects. There was no heritability in RMR, which was instead strongly influenced by maternal effects. This study contributes to a mechanistic understanding of the evolution of dispersal‐related traits, a pressing question in view of the challenges posed to many species by changing climate and fragmentation of natural habitats.  相似文献   

18.
Local genetic adaptation and phenotypic plasticity are two mechanisms that can have marked effects on the morphology, performance, and behaviour of animals, producing geographic variation among populations. However, few studies have examined how these mechanisms interact during ontogeny to shape organismal phenotypes. We incubated eggs of the western fence lizard, Sceloporus occidentalis, from four populations (representing two latitudes and altitudes) in either a warm or cool environment in the laboratory. We then raised the hatchlings under common laboratory conditions, measured morphological and performance traits until 5 weeks of age, and compared juvenile morphology with that of field‐caught adults from each population. The results obtained indicate that some phenotypic traits that contribute to performance (body size, hindlimb length, head shape) were relatively canalized in juveniles and differed among populations in a way that was consistent with adults from their population of origin. However, other traits (forelimb length, inter‐limb length, mass, tail length), showed significant effects of incubation temperature, and this environmentally induced variation persisted throughout the experiment. Although selection pressure may be stronger for traits that are integral to survival, developmental effects might still have a lasting impact on traits less important to organismal fitness. We discuss the results obtained in the present study the context of the life history of these animals. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 84–98.  相似文献   

19.
Aims Foliar herbivory and water stress may affect floral traits attractive to pollinators. Plant genotypes may differ in their responses to the interplay between these factors, and evolution of phenotypic plasticity could be expected, particularly in heterogeneous environments. We aimed at evaluating the effects of simulated herbivory and experimental drought on floral traits attractive to pollinators in genetic families of the annual tarweed Madia sativa, which inhabits heterogeneous environments in terms of water availability, herbivore abundance and pollinator abundance.Methods In a greenhouse experiment with 15 inbred lines from a M. sativa population located in central Chile (Mediterranean-type climate), we measured the effects of apical bud damage and reduced water availability on: number of ray florets per flower head, length of ray florets, flower head diameter, number of open flower heads per plant, flowering plant height and flowering time.Important findings Apical damage and water shortage reduced phenotypic expression of floral traits attractive to pollinators via additive and non-additive effects. Plants in low water showed decreased height and had fewer and shorter ray florets, and fewer and smaller flower heads. Damaged plants showed delayed flowering, were less tall, and showed shorter ray florets and smaller flower heads. The number of ray florets was reduced by damage only in the low water treatment. Plant height, flowering time and number of flower heads showed among-family variation. These traits also showed genetic variation for plasticity to water availability. Ray floret length, flower head size and time to flowering showed genetic variation for plastic responses to apical damage. Plasticity in flowering time may allow M. sativa to adjust to the increased aridity foreseen for its habitat. Because genetic variation for plastic responses was detected, conditions are given for evolutionary responses to selective forces acting on plastic traits. We suggest that the evolution of adaptive floral plasticity in M. sativa in this ecological scenario (heterogeneous environments) would result from selective forces that include not only pollinators but also resource availability and herbivore damage.  相似文献   

20.
Understanding why organisms vary in developmental plasticity has implications for predicting population responses to changing environments and the maintenance of intraspecific variation. The epiphenotype hypothesis posits that the timing of development can constrain plasticity—the earlier alternate phenotypes begin to develop, the greater the difference that can result amongst the final traits. This research extends this idea by considering how life history timing shapes the opportunity for the environment to influence trait development. We test the prediction that the earlier an individual begins to actively interact with and explore their environment, the greater the opportunity for plasticity and thus variation in foraging traits. This research focuses on life history variation across four groups of birds using museum specimens and measurements from the literature. We reasoned that greater phenotypic plasticity, through either environmental effects or genotype-by-environment interactions in development, would be manifest in larger trait ranges (bills and tarsi) within species. Among shorebirds and ducks, we found that species with relatively shorter incubation times tended to show greater phenotypic variation. Across warblers and sparrows, we found little support linking timing of flight and trait variation. Overall, our results also suggest a pattern between body size and trait variation, consistent with constraints on egg size that might result in larger species having more environmental influences on development. Taken together, our results provide some support for the hypothesis that variation in life histories affects how the environment shapes development, through either the expression of plasticity or the release of cryptic genetic variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号