首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
Interactions of charatoxin (4-methylthio-1,2-dithiolane; ChTX) and four openchain analogs as well as nereistoxin (NTX) with acetylcholine (ACh) receptors were studied using biochemical assays on the Torpedo electric organ and honey bee brain receptors and using electrophysiological assays on the response of the cell body of the fast coxal depressor motoneuron (Df) of the cockroach Periplaneta americana to ACh. The actions of ChTXs were complex. Except for ChTX Xl, they all potentiated the ACh-induced current in Periplaneta neurons, but at higher concentrations all ChTXs, except for ChTX XII, caused voltage-dependent block of this current. All CHTXs inhibited binding of [3H]perhydrohistrionicotoxin in the presence of ACh to the highaffinity noncompetitive blocker site on the Torpedo receptor, but all, except for ChTX XI, potentiated its binding in absence of ACh. The actions of ChTXs on the honey bee brain receptor were quite different from those on the Torpedo receptor. They inhibited, or had no effect on, [125I]α-bungarotoxin (α-BGT) binding to the Torpedo receptor, but all ChTXs, except for ChTX I, potentiated its binding to the honey bee receptor. It is suggested that the action of ChTXs on nicotinic ACh-receptors resulted from binding to lowaffinity noncompetitive blocker site. On the other hand, NTX was more potent than ChTXs on nicotinic ACh-receptors, and some similarities were noted between the actions of NTX on Torpedo and honey bee receptors NTX had a weak agonistlike effect in both cases and possibly bound to the ACh binding sites as well as the high-affinity noncompetitive blocker site. Thus the mechanisms of action of ChTXs and NTX on nicotinic ACh-receptors are different, and there are also differences in the responses to these toxins between receptors of insect central nervous system and Torpedo electric organ.  相似文献   

3.
Abstract: The existence in the mammalian CNS of release-inhibiting muscarinic autoreceptors is well established. In contrast, few reports have focused on nicotinic autoreceptors mediating enhancement of acetylcholine (ACh) release. Moreover, it is unclear under what conditions the function of one type of autoreceptor prevails over that of the other. Rat cerebrocortex slices, prelabeled with [3H]choline, were stimulated electrically at 3 or 0.1 Hz. The release of [3H]ACh evoked at both frequencies was inhibited by oxotremorine, a muscarinic receptor agonist, and stimulated by atropine, a muscarinic antagonist. Nicotine, ineffective at 3 Hz, enhanced [3H]ACh release at 0.1 Hz; mecamylamine, a nicotinic antagonist, had no effect at 3 Hz but inhibited [3H]ACh release at 0.1 Hz. The cholinesterase inhibitor neostigmine decreased [3H]ACh release at 3 Hz but not at 0.1 Hz; in the presence of atropine, neostigmine potentiated [3H]ACh release, an effect blocked by mecamylamine. In synaptosomes depolarized with 15 mM KCI, ACh inhibited [3H]ACh release; this inhibition was reversed to an enhancement when the external [Ca2+] was lowered. The same occurred when, at 1.2 mM Ca2+, external [K+] was decreased. Oxotremorine still inhibited [3H]ACh release at 0.1 mM Ca2+. When muscarinic receptors were inactivated with atropine, the K+ (15 mM)-evoked release of [3H]ACh (at 0.1 mM Ca2+) was potently enhanced by ACh acting at nicotinic receptors (EC50? 0.6 µM). In conclusion, synaptic ACh concentration does not seem to determine whether muscarinic or nicotinic autoreceptors are activated. Although muscarinic autoreceptors prevail under normal conditions, nicotinic autoreceptors appear to become responsive to endogenous ACh and to exogenous nicotinic agents under conditions mimicking impairment of ACh release. Our data may explain in part the reported efficacy of cholinesterase inhibitors (and nicotinic agonists) in Alzheimer's disease.  相似文献   

4.
Guinea pig vas deferens responds to externally applied acetylcholine (ACh) or noradrenaline (NA) by a small rapid contraction (phasi phase) and then a large contraction (tonic phase). The phasic phase was not affected by removal of external Ca2+, but tonic phase depended on external Ca2+. At lower temperatures the two components became larger and detectable separately. The tonic phase induced by ACh at low temperature (at 20°C) was greatly depressed by brief treatment with colchicine (0.5 μM – 5 μM), although the tonic phase at high temperature (at 37°C) was not affected. Na-induced contraction (phasic or tonic phase) was not changed by the colchicine-treatment. High K+ (40 mM)-contracture, which in many cases consisted of a single phase and depended on external Ca2+, was also not affected by brief treatment with colchicine. Culture of vas deferens for 3 days in the presence of colchicine, increased the phasic phase of ACh- and NA-induced contractions significantly, but reduced the tonic phase of contractions induced by ACh and NA. Colchicine also reduced high K+-contracture, the decrease depending on the period of culture with colchicine. Organ culture with colchicine did not affect the amounts of m-ACh and α-Ad receptors or the IC50 value of ACh and NA on 3H-ligand binding. These results suggest that colchicine specifically interacts with some steps in m-ACh and α-Ad receptor-responsor (e.g. ionophore) coupling without affecting the receptor number or affinity of the receptors for agonists. The mechanisms of action of colchicine are discussed in relation to m-ACh and α-Ad receptor functions.  相似文献   

5.
Solubilization and Characterization of Striatal Dopamine Receptors   总被引:5,自引:5,他引:0  
Abstract: Dopamine receptor binding proteins were sol-ubilized with the detergent 3–(3–cholamidopropyl) dimethylammonio - 2 - hydroxy - 1– propanesulfonate (CHAPSO) from bovine and rat striatal membranes. The binding of the dopamine antagonist [3H]spiroperidol ([3H]Spi) to the solubilized dopamine receptors was determined by the polyethyleneglycol method. The CHAPSO-solubilized dopamine receptor binding proteins remain in the supernatant fraction following centrifuga-tion at 100,000 ×g for 2 h. The CHAPSO-solubilized dopamine receptor proteins, as well as the prelabeled [3H]Spi-receptor protein complex, bind specifically to wheat germ agglutinin (WGA)-agarose columns, which is consistent with an identification as glycoproteins. HPLC analysis of the CHAPSO-solubilized, prelabeled [3H]Spi-receptor protein complex (CHAPSO preparation) reveals association with a high molecular weight form, indicating the formation of aggregates and/or micelles. Treatment of the WGA-agarose-bound [3H]Spi-receptor protein complex with digitonin (CHAPSO-digitonin preparation) results in dissociation of the high molecular weight form into lower molecular weight forms. The HPLC profile of the prelabeled [3H]Spi-receptor complex in the CHAPSO-digitonin preparation reveals two radioactive peaks. The major peak had a retention time of 16 min, corresponding to an apparent MW of 175,000, whereas the minor peak had a retention time of 21 min, corresponding to an apparent MW of 49,000. The CHAPSO-solubilized dopamine receptor binding proteins are sensitive to modulation by GTP, indicating that the association with the GTP binding component is preserved in the “soluble” state. The potencies of dopamine antagonists and agonists for inhibiting the binding of [3H]Spi to CHAPSO-solubilized dopamine receptor proteins are similar to those for membrane-bound proteins. Chronic treatment with haloperidol increases the Bmax, and does not change the KD for [3H]Spi in the CHAPSO-solubilized and in the membrane-bound preparations. Thus, the CHAPSO-solubilized dopamine receptor proteins retain the binding characteristics of the supersensitive membrane-bound dopamine receptors.  相似文献   

6.
Postmortem cerebral neocortical and hippocampal samples were taken from patients who died with dementia of the Alzheimer type (DAT) and individuals without diagnoses of neurological or psychiatric disease (control). Nicotinic binding was assayed with 20 nM [3H]acetylcholine ([3H]ACh) in the presence of atropine, or with 4 nM (-)-[3H]Nic). Binding of both ligands was lower in the following regions from DAT vs. control brains (P0.05): superior, middle and inferior temproal gyri, orbital frontal gyrus, middle frontal gyrus, pre- and postcentral gyri, inferior parietal lobule, and hippocampal endplate. Values of the correlation coefficient (r's) for binding of the nicotinic cholinergic ligands in these regions ranged from 0.70 to 0.93 (P's<0.05), suggesting that [3H]ACh and (-)-[3H]Nic labeled the same sites in human brain. There was no difference in nicotinic binding in the presubiculum, comparing DAT and control samples (P>0.05). Here too, correlations between binding of the two ligands were statistically significant in control and DAT groups (r's=0.92,P's<0.05). Nicotinic binding measured with [3H]ACh, but not (-)-[3H]Nic, was significantly lower in the H2 (field of Rose) and H1-subiculum areas of DAT samples compared to control. Correlations between binding of the two ligands in these regions ranged from 0.21 to 0.34 for the two groups (P's>0.05). The findings support a loss of neocortical and hippocampal nicotininc cholinergic binding sites in DAT. Further study is necessary to better characterize the regional losses of nicotinic binding in DAT and to resolve the differences in binding measured by [3H]ACh and (-)-[3H]Nic in the H1-subiculum and H2 (field of Rose) regions.  相似文献   

7.
Abstract: The release of [3H]dopamine (DA) and [14C]acetylcholine (ACh) was monitored from single slices of the rabbit striatum. In all cases, the evoked overflow of ACh showed a higher peak and was of shorter duration than that of 3H products. For ACh, the release per pulse showed a marked decline with increasing frequency of stimulation, whereas flat frequency-release curves were obtained for DA. At 0.1 and 1 Hz the evoked overflows of ACh were 15 and 7 times greater, respectively, than those of DA. Haloperidol (0.03 μM) and sulpiride (1 μM) produced large increases in the evoked overflow of DA and ACh at 3 and 10 Hz; little effect was observed at lower frequencies. These results indicate that the frequency-release curves for DA and ACh are different and that at high frequencies the slope of the curves is modified by activation of pre- and postsynaptic DA receptors. Apomorphine inhibited in a concentration-dependent fashion the evoked overflow of DA and ACh; greater inhibition was obtained at lower frequencies of stimulation. At 0.3 Hz the- DA agonist was two times more potent in inhibiting DA than ACh overflow (IC50: 12.0 ± 2.2 versus 22.0 ± 2.8 nM; p < 0.01). The greater sensitivity of pre-than postsynaptic sites to apomorphine was also seen at higher frequencies (3 Hz). Benztropine (1/μ) reduced the evoked overflow of ACh at 10 Hz, and enhanced that of 3H products at all rates of stimulation (0.3–10 Hz). These results suggest that the release of DA and ACh is regulated by dopaminergic receptors. They also indicate that the effects of DA agonists and antagonists and of uptake inhibitors on DA and ACh release are highly dependent on the frequency of stimulation used.  相似文献   

8.
In an attempt to examine some functional characteristics of the N-methyl-D-aspartate (NMDA) receptor complex, the NMDA-evoked effluxes of endogenous dopamine (DA) and [3H]acetylcholine ([3H]ACh) were simultaneously examined in a rat Striatal slice preparation. NMDA induced release of both DA and ACh in a concentration-dependent, Ca2+-, Mg2+-, and tetrodotoxin-sensitive manner. These release responses were remarkably reduced by long-term pre-treatment with a low concentration of NMDA. an indication of the desensitization of the NMDA receptor. Glycine was potent in reversing the desensitization-related reduction of DA release but failed to reverse the diminution of ACh release in the same slices. Our results indicate that the NMDA receptors regulating the release of DA and ACh are different with respect to their glycine modulatory site. This finding is consistent with a functional heterogeneity of the NMDA receptor complex in the rat striatum.  相似文献   

9.
LS‐3‐134 is a substituted N‐phenylpiperazine derivative that has been reported to exhibit: (i) high‐affinity binding (Ki value 0.2 nM) at human D3 dopamine receptors, (ii) > 100‐fold D3 versus D2 dopamine receptor subtype binding selectivity, and (iii) low‐affinity binding (Ki > 5000 nM) at sigma 1 and sigma 2 receptors. Based upon a forskolin‐dependent activation of the adenylyl cyclase inhibition assay, LS‐3‐134 is a weak partial agonist at both D2 and D3 dopamine receptor subtypes (29% and 35% of full agonist activity, respectively). In this study, [3H]‐labeled LS‐3‐134 was prepared and evaluated to further characterize its use as a D3 dopamine receptor selective radioligand. Kinetic and equilibrium radioligand binding studies were performed. This radioligand rapidly reaches equilibrium (10–15 min at 37°C) and binds with high affinity to both human (Kd = 0.06 ± 0.01 nM) and rat (Kd = 0.2 ± 0.02 nM) D3 receptors expressed in HEK293 cells. Direct and competitive radioligand binding studies using rat caudate and nucleus accumbens tissue indicate that [3H]LS‐3‐134 selectively binds a homogeneous population of binding sites with a dopamine D3 receptor pharmacological profile. Based upon these studies, we propose that [3H]LS‐3‐134 represents a novel D3 dopamine receptor selective radioligand that can be used for studying the expression and regulation of the D3 dopamine receptor subtype.  相似文献   

10.
Spermine and spermidine enhance the binding of [3H](+)-5-methyl-10,11-dihydro-5H-dibenzo[a, d]cyclohepten-5,10-imine ([3H]MK-801) to N-methyl-D-aspartate (NMDA) receptors in membranes prepared from rat brain. These polyamines also enhance binding of [3H]MK-801 to NMDA receptors that have been solubilized with deoxycholate. Other polyamines selectively antagonize this effect, a finding indicating that the polyamine recognition site retains pharmacological and structural specificity after solubilization. In the presence of spermidine, an increase in the affinity of the solubilized NMDA receptor for [3H]MK-801 is observed. However, the rates of both association and dissociation of [3H]MK-801 binding to solubilized NMDA receptors are accelerated when assays are carried out in the presence of spermidine. When kinetic data are transformed, pseudo-first-order association and first-order dissociation plots are nonlinear in the presence of spermidine, an observation indicating a complex binding mechanism. Effects of spermidine on solubilized NMDA receptors are similar to effects previously described in studies of membrane-bound receptors. The data indicate that polyamines interact with a specific recognition site that remains associated with other components of the NMDA receptor complex after detergent solubilization.  相似文献   

11.
The interaction of diisopropylfluorophosphate (DFP) with the nicotinic acetylcholine (ACh) receptor of Torpedo electric organ was studied, using [3H]-phencyclidine ([3H]-PCP) as a reporter probe. Phencyclidine binds with different kinetics to resting, activated, and desensitized receptor conformations. Although DFP did not inhibit binding of [3H]-ACh or 125I-α-bungarotoxin (BGT) to the receptor recognition sites and potentiated in a time-dependent manner [3H]-PCP binding to the receptor's high-affinity allosteric site, it inhibited the ACh or carbamylcholine-stimulated [3H]-PCP binding. This suggested that DFP bound to a third kind of site on the receptor and affected receptor conformation. Preincubation of the membranes with DFP increased the receptor's affinity for carbamylcholine by eightfold and raised the pseudo-first-order rate of [3H]-PCP binding to that of an agonist-desensitized receptor. Accordingly, it is suggested that DFP induces receptor desensitization by binding to a site that is distinct from the recognition or high-affinity noncompetitive sites.  相似文献   

12.
Abstract: Previous work from this laboratory has shown that retinal adenosine A2 binding sites are localized over outer and inner segments of photoreceptors in rabbit and mouse retinal sections. In the present study, adenosine receptor binding has been characterized and localized in membranes from bovine rod outer segments (ROS). Saturation studies with varying concentrations (10–150 nM) of 5′-(N-[2,8-3H]ethylcarboxamido)adenosine ([3H]NECA) and 100 μg of ROS membrane protein show a single site with a KD of 103 nM and a Bmax of 1.3 pM/mg of protein. Cold Scatchards, which used nonradiolabeled NECA (concentrations ranging from 10 nM to 250 nM) in competition with a fixed amount of [3H]NECA (30 nM), demonstrated the presence of a low-affinity site (KD, 50 μM) in addition to the high-affinity site. To confirm the presence of A2abinding sites, saturation analyses with 2-p-(2-[3H]-carboxyethyl)phenylamino-5′-N-ethylcarboxamido adenosine (0–80 nM) also revealed a single population of high-affinity A2a receptors (KD, 9.4 nM). The binding sites labeled by [3H]NECA appear to be A2 receptor sites because binding was displaced by increasing concentrations of 5′-(N-methylcarboxamido)adenosine and 2-chloroadenosine. ROS were fractionated into plasma and disk membranes for localization studies. Receptor binding assays, used to determine specific binding, showed that the greatest concentration of A2 receptors was on the plasma membranes. Therefore, adenosine A2 receptors are in a position to respond to changes in the concentration of extracellular adenosine, which may exhibit a circadian rhythm.  相似文献   

13.
Abstract: Muscarinic and nicotinic cholinergic receptors and choline acetyltransferase activity were studied in postmortem brain tissue from patients with histopathologically confirmed Parkinson's disease and matched control subjects. Using washed membrane homogenates from the frontal cortex, hippocampus, caudate nucleus, and putamen, saturation analysis of specific receptor binding was performed for the total number of muscarinic receptors with [3H]quinuclidinyl benzilate, for muscarinic M1 receptors with [3H]pirenzepine, for muscarinic M2 receptors with [3H]oxotremorine-M, and for nicotinic receptors with (–)-[3H]nicotine. In comparison with control tissues, choline acetyltransferase activity was reduced in the frontal cortex and hippocampus and unchanged in the caudate nucleus and putamen of parkinsonian patients. In Parkinson's disease the maximal binding site density for [3H]quinuclidinyl benzilate was increased in the frontal cortex and unaltered in the hippocampus, caudate nucleus, and putamen. Specific [3H]pirenzepine binding was increased in the frontal cortex, unaltered in the hippocampus, and decreased in the caudate nucleus and putamen. In parkinsonian patients Bmax values for specific [3H]oxotremorine-M binding were reduced in the cortex and unchanged in the hippocampus and striatum compared with controls. Maximal (–)-[3H]nicotine binding was reduced in both the cortex and hippocampus and unaltered in both the caudate nucleus and putamen. Alterations of the equilibrium dissociation constant were not observed for any ligand in any of the brain areas examined. The present results suggest that both the innominatocortical and the septohippocampal cholinergic systems degenerate in Parkinson's disease. The reduction of cortical [3H]oxotremorine-M and (–)-[3H]nicotine binding is compatible with the concept that significant numbers of the binding sites labelled by these ligands are located on presynaptic cholinergic nerve terminals, whereas the increased [3H]pirenzepine binding in the cortex may reflect postsynaptic denervation supersensitivity.  相似文献   

14.
Recently we reported that adding molybdate to crude steroid-free cytosol at 0°C results in a dose-dependent reduction in the binding of [3H]aldosterone ([3H]ALDO), to Type I adrenocorticosteroid receptors. In the experiments outlined here, we found that addition of molybdate to steroid-free brain cytosol produces a 30–50% increase in the subsequently measured maximal specific binding capacity (B MAX) of [3H]ALDO-Type I receptors if the cytosol is subjected to Sephadex G-25 gel filtration prior to steroid addition. These manipulations were found to have no effect on the equilibrium dissociation constant (K d) of the receptors. In contrast, when gel filtration of steroid-free cytosol was performed in the absence of molybdate, there was a 2-fold increase in the Kd and over a 50% reduction in the subsequently measuredB MAX of [3H]ALDO-Type I receptors. When molybdate was added to this steroid-free cytosol immediately following gel filtration, there was no reduction (or increase) in Type I receptor [3H]ALDO binding capacity compared with nongel-filtered controls. The addition of as little as 2 mM molybdate to crude steroid-free cytosol was found to stabilize the binding capacity of Type I receptors during exposure to 22°C incubations; however, when gel-filtered steroid-free cytosol was exposed to these conditions at least 10 mM molybdate was required to stabilize Type I receptor binding capacity. Adding the sulfhydryl reducing reagent, dithiothreitol, to the various steroid-free cytosols had little effect on [3H]ALDO-Type I receptor binding. The effects of molybdate, revealed in this study, on Type I receptors in brain cytosol subjected to gel filtration are clearly different from those seen with receptors in crude cytosol preparations, as well as from those reported in the literature for other steroid receptors. Possible mechanisms of action of molybdate on unoccupied Type I receptors in crude and gel-filtered cytosol are discussed.  相似文献   

15.
Abstract: A pharmacological study was made of the effects of various anticholinesterases (anti-ChEs) on the release of [3H]noradrenaline ([3H]NA) evoked by acetylcholine (ACh), nicotine, 56 mM K+, and veratridine from bovine adrenal chromaffin cells in culture. The anti-ChEs chosen were eserine (an inhibitor of both acetylcholinesterase and pseudocholinesterase), 1,5-bis-(4-allyldimethylammoniumphenyl)pentan-3-one dibromide (BW284C51) (a specific acetylcholinesterase (AChE) inhibitor), and tetraisopropylprophos-phoramide (iso-OMPA) (a specific pseudocholinesterase inhibitor). Acetylcholinesterase (AChE) activity increased in the cells with time in culture beginning at day 4 and reaching a plateau at day 10. In 9–11-day cultures, both eserine and BW284C51 acted biphasically to increase ACh-induced [3H]NA release from the cells at concentrations of 10?6M or less whereas higher concentrations reduced or abolished the ACh-induced release. However, in earlier cultures (days 3–5), when AChE activity of the cells was low, both eserine and BW284C51 produced only a monophasic dose-dependent inhibition of ACh-evoked [3H]NA release at high concentrations. When the cells were stimulated with nicotine, an agonist not metabolized by cholinesterase a similar monophasic inhibitory response on the [3H]NA release was elicited by eserine and BW284C51, regardless of the age of the cultured cells. When 56 mM K+ or veratridine was used to depolarize the cells, neither eserine nor BW284C51 affected the [3H]NA release from the cells. Unlike eserine and BW284C51, iso-OMPA did not enhance ACh-evoked release in older cultures and at high concentrations (> 10 4M) it produced an inhibition of the [3H]NA release evoked by ACh, nicotine, 56 mM K+, and veratridine. The present results suggest that the stimulatory effect on ACh response by low concentrations of eserine and BW284C51 can be attributed to the protection of ACh against enzymatic hydrolysis, whereas the inhibitory effects produced by higher concentrations of eserine and BW284C51 are thought to be due to an interaction with the nicotinic acetylcholine receptor-ionophore complex.  相似文献   

16.
Summary 1. Adenoregulin is an amphilic peptide isolated from skin mucus of the tree frog,Phyllomedusa bicolor. Synthetic adenoregulin enhanced the binding of agonists to several G-protein-coupled receptors in rat brain membranes.2. The maximal enhancement of agonist binding, and in parentheses, the concentration of adenoregulin affording maximal enhancement were as follows: 60% (20 µM) for A1-adenosine receptors, 30% (100 µM) for A2a-adenosine receptors, 20% (2 µM) for 2-adrenergic receptors, and 30% (100 µM) for 5HT1A receptors. High affinity agonist binding for A1-, 2-, and 5HT1A-receptors was virtually abolished by GTPS in the presence of adenoregulin, but was only partially abolished in its absence. Magnesium ions increased the binding of agonists to receptors and reduced the enhancement elicited by adenoregulin.3. The effect of adenoregulin on binding of N6-cyclohexyladenosine ([3H]CHA) to A1-receptors was relatively slow and was irreversible. Adenoregulin increased the Bmax value for [3H]CHA binding sites, and the proportion of high affinity states, and slowed the rate of [3H]CHA dissociation. Binding of the A1-selective antagonist, [3H]DPCPX, was maximally enhanced by only 13% at 2 µM adenoregulin. Basal and A1-adenosine receptor-stimulated binding of [35S]GTPS were maximally enhanced 45% and 23%, respectively, by 50 µM adenoregulin. In CHAPS-solubilized membranes from rat cortex, the binding of both [3H]CHA and [3H]DPCPX were enhanced by adenoregulin. Binding of [3H]CHA to membranes from DDT1 MF-2 cells was maximally enhanced 17% at 20 µM adenoregulin. In intact DDT1 MF-2 cells, 20 µM adenoregulin did not potentiate the inhibition of cyclic AMP accumulation mediatedvia the adenosine A1 receptor.4. It is proposed that adenoregulin enhances agonist binding through a mechanism involving enhancement of guanyl nucleotide exchange at G-proteins, resulting in a conversion of receptors into a high affinity state complexed with guanyl nucleotide-free G-protein.  相似文献   

17.
Abstract: Recently, it was proposed that β-carbolines interact with a subset of benzodiazepine (BZD) binding sites in mouse brain. This postulate was based upon evidence showing changes in binding properties of the BZD receptor following photoaffinity labeling of membranes with flunitrazepam (FLU). Under conditions in which 80% of specific [3H]diazepam binding was lost in photolabeled membranes, specific [3H]propyl β-carboline-3-carboxylate ([3H]PCC) binding was spared. In this study, the binding of the BZD antagonists [3H]PCC, [3H]Ro15 1788 and [3H]CGS 8216 was examined in rat brain membranes following photoaffinity labeling with FLU. No significant changes in the apparent KD and small reductions in the Bmax of 3H antagonist binding were observed. However, in the same membranes, up to 89% of specific [3H]FLU binding was lost. When [3H]PCC (0.05 nM) was used to label the receptors in control and photolabeled membranes, the ability of BZD receptor agonists to inhibit [3H]PCC binding was greatly diminished in the photolabeled membranes. In contrast, the potency of BZD antagonists remained the same in both control and treated membranes. Based upon PCC/[3H]Ro15 1788 competition experiments, the ability of PCC to discriminate between BZD receptor subtypes was unaffected by photoaffinity labeling of cortical membranes. Overall, these findings suggest that β-carbolines do not interact with a subset of BZD binding sites per se, but may be a consequence of the differential interaction of BZD agonists and antagonists with BZD binding sites that have been photoaffinity labeled with FLU. A possible mechanism underlying this phenomenon is discussed. The ability of photolabeled membranes to differentiate between BZD agonists and antagonists provides a potential screen for agonist and antagonist activity in compounds that interact with the BZD receptor.  相似文献   

18.
Abstract: Specific binding of tritiated dopamine, spiperone, and N-propylnorapomorphine was examined in subcellular fractions from bovine caudate nucleus. All fractions contained at least two sets of specific binding sites for [3H]spiperone (KD 1aPP= 0.2 nM, KD 2aPP= 2.2 nM), the higher affinity sites accounting for one-third to one-eighth of the total. [3H]Spiperone binding was slightly enriched over the total particulate fraction in P2, P3, SPM, and a crude fraction of synaptic mitochondria. A microsomal subfraction (P3B2) exhibited the highest specific binding capacity obtained, representing a fourfold enrichment over the total particulate fraction. [3H]Dopamine exhibited apparent binding to a single class of high-affinity sites in all fractions examined (KDaPP= 4.0 nM). A greater than twofold enrichment was observed in all fractions except myelin and P3, with a fivefold enrichment in SPM and P3B2. At least two classes of receptors were labeled by [3H]-N-propylnorapomorphine (KD 1aPP= 0.55 nM, KD 2aPP= 20 nM), using 50 nM-spiperone together with 100 nM-dopamine to define nonspecific binding. Although binding to the higher affinity site was displaced by spiperone, and lower affinity binding by dopamine, comparison of receptor densities with values obtained by using [3H]spiperone and [3H]dopamine directly suggested that [3H]-N-propylnorapomorphine labeled additional sites. We have also examined a postsynaptic membrane (PSM) fraction obtained from SPM by successive extraction with salt and EGTA followed by sonication and separation on a density gradient. [3H]Spiperone binding in PSM was enriched two- to threefold over unfractionated SPM with a concomitant decrease in [3H]dopamine binding. The enrichment in spiperone receptors was almost entirely due to an increase in the number of lower affinity binding sites, suggesting that these sites may be associated with the postsynaptic membrane.  相似文献   

19.
Abstract: Rat medullary brain segments containing primarily nucleus tractus solitarius (NTS) were used for superfusion studies of evoked transmitter release and for isotherm receptor binding assays. Isotherm binding assays with [3H]CGS-21680 on membranes prepared from NTS tissue blocks indicated a single high-affinity binding site with a KD of 5.1 ± 1.4 nM and a Bmax of 20.6 ± 2.4 fmol/mg of protein. The binding density for [3H]CGS-21680 on NTS membranes was 23 times less than comparable binding on membranes from striatal tissue. Electrically stimulated (1 min at 25 mA, 2 ms, 3 Hz) release of [3H]norepinephrine ([3H]NE) from 400-µm-thick NTS tissue slices resulted in an S2/S1 ratio of 0.96 ± 0.02. Superfusion of single tissue slices with 0.1–100 nM CGS-21680, a selective adenosine A2a receptor agonist, for 5 min before the S2 stimulus produced a significant concentration-dependent increase in the S2/S1 fractional release ratio that was maximal (31.3% increase) at 1.0 nM. However, superfusion of tissue slices with CGS-21680 over the same concentration range for 20 min before the S2 stimulus did not alter the S2/S1 ratio significantly from control release ratios. The augmented release of [3H]NE mediated by 1.0 nM CGS-21680 with a 5-min tissue exposure was abolished by 1.0 and 10 nM CGS-15943 as well as by 100 nM 8-(3-chlorostyryl)caffeine, both A2a receptor antagonists, but not by 1.0 nM 8-cyclopentyl-1,3-dipropylxanthine, the A1 receptor antagonist. Taken together, these results suggest that CGS-21680 augmented the evoked release of [3H]NE in the NTS via activation of presynaptic A2a receptors within the same concentration range as the binding affinity observed for [3H]CGS-21680. It was also apparent that this population of presynaptic adenosine A2a receptors in the NTS desensitized within 20 min because the augmenting action of CGS-21680 on evoked transmitter release was not evident at the longer interval.  相似文献   

20.
The binding sites of 8-[3H]hydroxy-2-(di-n-propylamino)tetralin ([3H]DPAT) were characterized in the retina of goldfish in order to evaluate the selectivity of the ligand for serotonin1A (5HT1A) receptors. Specificity of the binding was performed in the presence of serotonergic and dopaminergic agonists and antagonists. Buspirone, spriroxatrine and 5-methoxy-N,N-dimethyltryptamine were potent inhibitors, followed by propranolol, citalopram, imipramine and desipramine. Serotonin was not a potent inhibitor, and its interaction with the binding sites of [3H]DPAT was complex. Nomifensine displayed an important inhibition, however, other dopamine uptake blockers, such as bupropion and GBR-12909, were less potent. Haloperidol was also a good inhibitor, but the D1 receptor agonist, SKF-38393, the D2 receptor antagonist, sulpiride, and dopamine did not inhibit the binding. GppNHp inhibited the binding in the micromolar range. The analysis of saturation experiments by isotopic dilution, using buspirone to determine nonspecific binding, revealed two sites. The number of binding sites defined by buspirone were higher than the ones defined by nomifesine. The specific binding, using buspirone for definition, was reduced by the intraocular injection of 6-hydroxydopamine. This investigation demonstrates that [3H]DPAT labels 5HT1A receptors in goldfish retina, but also interacts with a non-5HT receptor site. These receptors seem to be localized in dopaminergic neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号