首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
All 36 possible crosses among 6 homozygous lines of Drosophila melanogaster were tested for their phenotypic response in developmental time and dry weight at eclosion to variation in temperature and yeast concentration. This method was chosen because it allows one to produce the same heterozygous offspring repeatedly for testing under more conditions than could be handled at once. We estimated the effects of yeast concentration and temperature and their interaction on both the phenotypic and the environmental components of variation and covariation of the two traits. Development was slower at low temperatures and yeast concentrations, and dry weight and viability were lower at higher temperatures and lower yeast levels. Interactions of the two factors with the crosses and with each other indicated that there were genetic differences in plasticity and that the sensitivity of a trait to one factor depended on the level of the other. The covariation of the two traits was generally weak within an environment. Across environments, its sign depended on the factor that changed between the environments: positive for temperature, negative for yeast concentration. These findings can be explained in terms of an established growth model for Drosophila larvae. We conclude that for plastic traits with moderate or low heritability, the relationship between the phenotypic and genetic covariance matrices may be a complex function of the environmental factors that affect the traits. Some implications for the prediction of the evolution in fluctuating environments are outlined.  相似文献   

2.
Bubliy OA  Loeschcke V 《Genetica》2000,110(1):79-85
Variation of five quantitative traits (thorax length, wing length, sternopleural bristle number, developmental time and larva-to-adult viability) was studied in Drosophila melanogaster reared at standard (25°C) and high stressful (32°C) temperatures using half-sib analysis. In all traits, both phenotypic and environmental variances increased at 32°C. For genetic variances, only two statistically significant differences between temperature treatments were found: the among-sire variance of viability and the among-dam variance of developmental time were higher under stress. Among-sire genetic variances and evolvabilities were generally higher at 32°C but narrow sense heritabilities were not. The results of the present work considered in the context of other studies in D. melanogaster indicate different patterns of genetic variation between stressful and nonstressful environments for the traits examined. Data on thorax length and viability agree with the hypothesis that genetic variance can be increased under extreme environmental conditions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Abstract We manipulated developmental time and dry weight at eclosion in 15 genotypes of Drosophila melanogaster by growing the larvae in 9 environments defined by 3 yeast concentrations at 3 temperatures. We observed how the genetic and various environmental components of phenotypic variation scaled with the mean values of the traits. Temperature, yeast, within-environmental factors and genotype influenced the genotypic and environmental standard deviations of the two traits in patterns that point to very different modes of physiological and developmental action of these factors. Since different factors affected the environmental and genetic components of the phenotypic variation either in parallel or inversely, we conclude that environmental heterogeneity may have small or large effects on evolutionary rates depending on which factors cause the heterogeneity. The analysis also suggests that the scaling of variances with the mean is not as trivial as is often assumed when coefficients of variation are computed to “standardize” variation.  相似文献   

4.
Components of genetic variation for postweaning growth traits were estimated for both control and growth stocks of mice. The effect of phenotypic selection for gain, which genetically combines selection for additive direct and maternal effects, on additive genetic variance components, heritability, and additive genetic correlationsis discussed. Quantitative genetic theory predicts that simultaneous selection for two metric traits in the same direction will cause the genetic correlation between the two traits to become more negative. The results presented in this paper conflict with this theory. The direct-maternal additive genetic correlation was more negative in the control line (with 356 mice) than in the growth-selected line (with 320 mice) for the three traits analyzed (0.310 vs 0.999 for 21-day weight, 0.316 vs 1.000 for 42-day weight, and 0.506 vs 1.000 for gain from 21–42 days). Estimates were obtained by restricted maximum likelihood (REML) computed under a derivative free algorithm (DFREML).  相似文献   

5.
The genetic covariance structure for life-history characters in two populations of cyclically parthenogenetic Daphnia pulex indicates considerable positive correlation among important fitness components, apparently at odds with the expectation if antagonistic pleiotropy is the dominant cause of the maintanence of genetic variation. Although there is no genetic correlation between offspring size and offspring number, present growth and present reproduction are both strongly positively correlated genetically with future reproduction, and early maturity is genetically correlated with larger clutch size. Although the ubiquity of antagonistic pleiotropy has been recently questioned, there are peculiarities of cyclical parthenogenesis that could lead to positive life-history covariance even when negative covariance would be expected in a similar sexual species. These include the influence of nonadditive gene action on evolution in clonally reproducing organisms, and the periodic release of hidden genetic variance within populations of cyclical parthenogens. Examination of matrix similarity, using the bootstrap for distribution-free hypothesis testing, reveals no evidence to suggest that the genetic covariance matrices differ between the populations. However, there is considerable evidence that the phenotypic and environmental covariance matrices differ between populations. These results indicate approximate stability of the genetic covariance matrix within species, an important assumption of many phenotypic evolution models, but should caution against the use of phenotypic in place of genetic covariance matrices.  相似文献   

6.
If gene regulatory processes form the basis of phenotypic plasticity that evidences itself as discrete adaptive norms (sensu developmental conversion), it seems evident that the forms capable of such adaptations would possess a correspondingly richer genome than those lacking such adaptations. We examine evidence for the existence of genetic triads which are comprised of one form with wide niches due to phenotypic plasticity and two forms, each which is genetically fixed and exhibits a phenotype at one of the extremes of the plastic form. The invasion of organisms into new environments may occur by acquisition of discrete adaptive norms (DAN), which enable a transition between the old and new environments. The horohalinicum (=critical salinity) is defined as a salinity zone which always corresponds to 5–8 ppm and divides freshwater and marine faunas and floras, as well as many other physico-chemical characteristics. The current paper explores the existence of discrete adaptive norms and genetic triads with respect to salinity in some euryhaline crustaceans, particularly the arctic copepods, and discusses how such adaptations might inform us about species boundaries that affect the taxonomic status of these forms.  相似文献   

7.
We describe temporal changes in the genetic structure of populations of the dinoflagellate Prorocentrum micans Ehrenberg over a period of 2 years at Scripps Pier (La Jolla, CA, USA). We collected 12 water samples over the course of two blooms and analyzed 166 single‐cell isolates using randomly amplified polymorphic DNA analysis. Six PCR primers uncovered 27 polymorphic markers, allowing the identification of 40 unique haplotypes. Analysis of molecular variance demonstrated that >92% of the genetic variance was partitioned within water samples, providing evidence of high levels of genetic diversity and possibly sexual reproduction. Although the level of genetic diversity remained fairly stable over the sampled time interval, several populations (sampled in June 1998 and March 1999) exhibited significantly different genetic composition, demonstrating differences among bloom and nonbloom periods. About 40% of the isolates in each sample were identified as one haplotype, suggesting that a genetically distinct subgroup was a common member of the populations during the sampled periods. The composition of the remaining isolates was genetically diverse and changed over time, indicating rapid responses (days) to changing environmental conditions or extensive genetic spatial patchiness (kilometers). Within the limitations of our sampling, these two genetically distinct groups appear to exhibit different population dynamics (one stable and the other variable), suggesting that genetic diversity may be closely linked to the change in abundance of phytoplankton on ecological time scales.  相似文献   

8.
The evolutionary trajectory of a trait depends not only on the presence of genetic variation, but also on the pattern of genetic correlations (rg) among traits. Genetic correlations are most easily measured under homogeneous, controlled laboratory conditions, whereas natural populations typically experience a higher degree of environmental variability. The effect of environmental variability on genetic correlations in the cricket, Gryllus pennsylvanicus, was studied by measuring genetic correlations within and between two environments differing in levels of environmental heterogeneity. Within-environment rg among morphological traits measured in the homogeneous laboratory environment were found to be reliable predictors of rg measured in the experimental field environment. Laboratory measures of rg involving life-history traits, though, were not found to reflect the same correlations measured in the heterogeneous environment. A significant negative genetic correlation between fecundity and developmental time was found in the field environment, yet was not detectable when measured in the laboratory. Phenotypic correlations may be obtained much more easily than genetic correlations, but their usefulness in evolutionary inference depends on the pattern of similarity between the two correlations. A comparison of genetic and phenotypic correlations revealed a close match between the two measures for morphological traits, but revealed only broad similarities when considering life-history traits. Male-female genetic correlations between morphological traits were high (all rg > 0.73) and were consistently higher in the field environment than in the laboratory. The genetic correlations between the sexes in developmental time followed the same trend, but the male-female genetic correlation of gonad weights was low in both environments. Across-environment correlations were found to be strong for morphological traits and for gonad weight, whereas the genetic expression of developmental time was found to be dependent on the environment in which the crickets were raised.  相似文献   

9.
Reaction norms of fourteen life history and morphological traits were investigated in four tetra- and two hexaploid genotypes of the annual weed species complex, Polygonum aviculare. The plants were cultivated in six treatments consisting of factorial combinations of three pot sizes and two fertility levels. All characters, except life span, were plastic but the relative importance of genotype (G), treatment (T) and interaction (G × T) to total variance was strongly trait-specific. Consistent genetic differentiation, not correlated with ploidy level, was found in metamer size and life history: genotypes originating from trampled sites had smaller metamers and shorter shoots while those originating from sites with a short growing season, due to weeding activities, had a shorter life span, an earlier flowering date and a higher biomass allocation to reproduction compared to genotypes from less disturbed sites. Significant variation was found in reaction norms for all characters, including a lower amount of plasticity in metamer size in genotypes with numerous metamers and a lower amount of plasticity in total weight in shortlived genotypes. This suggested that variation in phenotypic plasticity reflected developmental constraints imposed by contrasting life span and metamer size in different genotypes. There was no evidence for niche differentiation along the soil resource gradient, suggesting that the species is comprised of “general purpose” genotypes with respect to soil fertility. It is concluded that the Polygonum aviculare complex has evolved a “dual” adaptive strategy i.e. a combination of genetic polymorphism and high phenotypic plasticity.  相似文献   

10.
11.
Congruence between changes in phenotypic variance and developmental noise in inter-population hybrids was analysed to test whether environmental canalization and developmental stability were controlled by common genetic mechanisms. Developmental stability assessed by the level of fluctuating asymmetry (FA), and canalization by the within- and among-individual variance, were measured on several floral traits of Dalechampia scandens (Euphorbiaceae). Hybridization affected canalization. Both within- and among-individual phenotypic variance decreased in hybrids from populations of intermediate genetic distance, and strongly increased in hybrids from genetically distant populations. Mean-trait FA differed among cross-types, but hybrids were not consistently more or less asymmetric than parental lines across traits. We found no congruence between changes in FA and changes in phenotypic variance. These results suggest that developmental stability (measured by FA) and canalization are independently controlled. This study also confirms the weak relationship between FA and the breakdown of coadapted gene complexes following inter-population hybridization.  相似文献   

12.
Phenotypic plasticity in thermally-regulated traits enables close tracking of changing environmental conditions, and can thereby enhance the potential for rapid population increase, a hallmark of outbreak insect species. In a changing climate, exposure to conditions that exceed the capacity of existing phenotypic plasticity may occur. Combining information on genetic architecture and trait plasticity among populations that are distributed along a latitudinal cline can provide insight into how thermally-regulated traits evolve in divergent environments and the potential for adaptation. Dendroctonus ponderosae feed on Pinus species in diverse climatic regimes throughout western North America, and show eruptive population dynamics. We describe geographical patterns of plasticity in D. ponderosae development time and adult size by examining reaction norms of populations from multiple latitudes. The relative influence of additive and non-additive genetic effects on population differences in the two phenotypic traits at a single temperature is quantified using line-cross experiments and joint-scaling tests. We found significant genetic and phenotypic variation among D. ponderosae populations. Simple additive genetic variance was not the primary source of the observed variation, and dominance and epistasis contributed greatly to the genetic divergence of the two thermally-regulated traits. Hybrid breakdown was also observed in F2 hybrid crosses between northern and southern populations, further indication of substantial genetic differences among clinal populations and potential reproductive isolation within D. ponderosae. Although it is unclear what maintains variation in the life-history traits, observed plasticity in thermally-regulated traits that are directly linked to rapid numerical change may contribute to the outbreak nature of D. ponderosae, particularly in a changing climate.  相似文献   

13.
Phenotypic plasticity has been hypothesized to play a central role in the evolution of phenotypic diversity across species (West‐Eberhard 2003 ). Through ‘genetic assimilation’, phenotypes that are initially environmentally induced within species become genetically fixed over evolutionary time. While genetic assimilation has been shown to occur in both the laboratory and the field (Waddington 1953 ; Aubret & Shine 2009 ), it remains to be shown whether it can account for broad patterns of phenotypic diversity across entire adaptive radiations. Furthermore, our ignorance of the underlying molecular mechanisms has hampered our ability to incorporate phenotypic plasticity into models of evolutionary processes. In this issue of Molecular Ecology, Parsons et al. ( 2016 ) take a significant step in filling these conceptual gaps making use of cichlid fishes as a powerful study system. Cichlid jaw and skull morphology show adaptive, plastic changes in response to early dietary experiences (Fig. 1). In this research, Parsons et al. ( 2016 ) first show that the direction of phenotypic plasticity aligns with the major axis of phenotypic divergence across species. They then dissect the underlying genetic architecture of this plasticity, showing that it is specific to the developmental environment and implicating the patched locus in genetic assimilation (i.e. a reduction in the environmental sensitivity of that locus in the derived species).  相似文献   

14.
A simple way to think of evolutionary trade-offs is to suppose genetic effects of opposed direction that give rise to antagonistic pleiotropy. Maintenance of additive genetic variability for fitness related characters, in association with negative correlations between these characters, may result. In the cactophilic species Drosophila buzzatii, there is evidence that second-chromosome polymorphic inversions affect size-related traits. Because a trade-off between body size and larval developmental time has been reported in Drosophila, we study here whether or not these inversions also affect larva-adult viability and developmental time. In particular, we expect that polymorphic inversions make a statistically significant contribution to the genetic correlation between body size (as measured by thorax length) and larval developmental time. This contribution is expected to be in the direction predicted by the trade-off, namely, those flies whose karyotypes cause them to be genetically larger should also have a longer developmental time than flies with other karyotypes. Using two different experimental approaches, a statistically significant contribution of the second-chromosome inversions to the phenotypic variances of body size and developmental time in D. buzzatii was found. Further, these inversions make a positive contribution to the total genetic correlation between the traits, as expected by the suggested trade-off. The data do not provide evidence as to whether the genetic correlation is due to antagonistic pleiotropic gene action or to gametic disequilibrium of linked genes that affect one or both traits. The results do suggest, however, a possible explanation for the maintenance of inversion polymorphism in this species.  相似文献   

15.
Rapid larval growth in insects may be selected for by rapid ephemeral phenological changes in food resources modifying the structure of phenotypic and genetic (co)variation in and among individual traits. We studied the relative effects of three processes which can modify expression of additive genetic and nongenetic variation in traits. First, natural selection tends to erode genetic variation in fitness-related traits. Second, there may be high variance even in traits closely coupled with fitness, if these traits are themselves products of variable lower level traits. Third, traits may be canalized by developmental processes which reduce phenotypic variation. Moreover, we investigated the phenotypic and genetic role played by the underlying traits in attaining simultaneously both large size and short development time. We measured phenotypic and genetic (co)variation in several pre- and post-ingestive foraging traits, growth, development rate, development time and size, together forming a hierarchical network of traits, in the larvae of a flush feeding geometrid, Epirrita autumnata. Rapid larval growth rate and high pupal mass are closely related to fitness in E. autumnata. Traits closely associated with larval growth displayed low levels of additive genetic variation, indicating that genetic variability may have been exhausted by selection for rapid growth. The body size of E. autumnata, in spite of its close correlation with fitness, exhibited a significant additive genetic variation, possiblye because caterpillar size is the outcome of many underlying heritable traits. The low level traits in the hierarchical net, number (indicating larval movements) and size of feeding bouts in leaves, relative consumption rate and efficiency of conversion of ingested food, displayed high levels of residual variation. High residual variation in consumption and physiological ability to handle leaf material resulted from their flexibility which reduced variation in growth rate, i.e. growth rate was canalized. We did not detect a trade-off between development time and final size. On the contrary, large pupal masses were attained by short larval periods, and this relationship was strongly genetically determined, suggesting that both developmental time and final size are expressions of the same developmental process (vigorous growth) and the same genes (or linkage disequilibrium).  相似文献   

16.
Having argued that phenotypic variation with respect to the component of fitness involved in withstanding density stress is useful for the persistence of populations through time, the sources of such variation are described. Age differences and differences caused by the accidental encounters of dissimilar microenvironments are non-genetic in origin. Genetic bases for phenotypic variation can either be proximate (each individual having a unique genotype) or ultimate. The latter case is one in which the genotypes of individuals are such that the progeny they produce are phenotypically variable. Selection favouring such genotypes can be shown to be Darwinian; group selection is not required. A means for revealing instances of the ultimate genetic control of phenotypic variation is suggested: measures of what should be error variance prove to be larger than those which should, under normal circumstances, include error variance. The last increment of variation that causes what might otherwise be repetitive structures to differ can be ascribed to decisions that are genetically pre-set within developmental programmes.  相似文献   

17.
We estimated genetic and environmental variance components for developmental time and dry weight at eclosion in Drosophila melanogaster raised in ten different environments (all combinations of 22, 25 and 28 degrees C and 0.5, 1 and 4% yeast concentration, and 0.25% yeast at 25 degrees C). We used six homozygous lines derived from a natural population for complete diallel crosses in each environment. Additive genetic variances were consistently low for both traits (h2 around 10%). The additive genetic variance of developmental time was larger at lower yeast concentrations, but the heritability did not increase because other components were also larger. The additive genetic effects of the six parental lines changed ranks across environments, suggesting a mechanism for the maintenance of genetic variation in heterogenous environments. The variance due to non-directional dominance was small in most environments. However, there was directional dominance in the form of inbreeding depression for both traits. It was pronounced at high yeast levels and temperatures but disappeared when yeast or temperature were decreased. This meant that the heterozygous flies were more sensitive to environmental differences than homozygous flies. Because dominance effects are not heritable, this suggests that the evolution of plasticity can be constrained when dominance effects are important as a mechanism for plasticity.  相似文献   

18.
For an accurate assessment of the anthropogenic impacts on evolutionary change in natural populations, we need long‐term environmental, genetic and phenotypic data that predate human disturbances. Analysis of c. 1600 years of history chronicled in the sediments of South Center Lake, Minnesota, USA, revealed major environmental changes beginning c. 120 years ago coinciding with the initiation of industrialised agriculture in the catchment area. Population genetic structure, analysed using DNA from dormant eggs of the keystone aquatic herbivore, Daphnia pulicaria, suggested no change for c. 1500 years prior to striking shifts associated with anthropogenic environmental alterations. Furthermore, phenotypic assays on the oldest resurrected metazoan genotypes (potentially as old as c. 700 years) indicate significant shifts in phosphorus utilisation rates compared to younger genotypes. Younger genotypes show steeper reaction norms with high growth under high phosphorus (P), and low growth under low P, while ‘ancient’ genotypes show flat reaction norms, yet higher growth efficiency under low P. Using this resurrection ecology approach, environmental, genetic and phenotypic data spanning pre‐ and post‐industrialised agricultural eras clearly reveal the evolutionary consequences of anthropogenic environmental change.  相似文献   

19.
Cheilostome bryozoan species show long-term morphologic stasis, implying stabilizing selection sustained for millions of years, but nevertheless retain significant heritable variation in traits of skeletal morphology. The possible role of within-genotype (within-colony) phenotypic variability in preserving genetic diversity was analyzed using breeding data for two species of Stylopoma from sites along 110 km of the Caribbean coast of Panama. Variation among zooids within colonies accounts for nearly two-thirds of the phenotypic variance on average, increases with environmental heterogeneity, and includes significant genotype-environment interaction. Thus, within-colony variability apparently represents phenotypic plasticity, at least some of which is heritable, rather than random “developmental noise.” Almost all of the among-colonies component of phenotypic variance is accounted for by additive genetic differences in trait means, suggesting that within-colony plasticity includes virtually all of the environmental component of phenotypic variance in these populations of Stylopoma. Thus, heritable within-colony plasticity could play a significant part in maintaining genetic diversity in cheilostomes, but it is also possible that rates of polygenic mutation alone are sufficient to balance the effects of selection.  相似文献   

20.
Dispersal is a key process for understanding the persistence of populations as well as the capacity of organisms to respond to environmental change. Therefore, understanding factors that may facilitate or constrain the evolution of dispersal is of crucial interest. Assessments of phenotypic variation in various behavioural, physiological and morphological traits related to insect dispersal and flight performance are common, yet very little is known about the genetic associations among these traits. We have used experiments on the butterfly Bicyclus anynana to estimate genetic variation and covariation in seven behavioural, physiological and morphological traits related to flight potential and hence dispersal. Our goal was to characterize the heritabilities and genetic correlations among these traits and thus to understand more about the evolution of dispersal‐related life‐history syndromes in butterflies. Using a version of the animal model, we showed that all of the traits varied between the sexes, and most were either positively or negatively (phenotypically and/or genetically) correlated with body size. Heritable variation was present in most traits, with the highest heritabilities estimated for body mass and thorax ratio. The variance in flight activity among multiple measurements for the same individual was high even after controlling for the prevailing environmental conditions, indicating the importance of behavioural switching and/or inherent randomness associated with this type of movement. A number of dispersal‐related traits showed phenotypic correlations among one another, but only a few of these were associated with significant genetic correlations indicating that covariances between these traits in Bicyclus anynana are mainly environmentally induced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号