首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A number of studies have indicated that increased production of steroids can be obtained with doses of tropic hormone which do not result in detectable increases in intracellular cAMP. It has been suggested that this may be a result of compartmentalization or functional coupling of cAMP generated by hormone-receptor interactions to specific steroid producing pathways in the cell. In the present study we have stimulated the MA-10 mouse Leydig tumour cell with hCG, dibutyryl cAMP (dbcAMP) and forskolin to determine if functional coupling of cAMP occurs. Treatment with hCG, dbcAMP and forskolin all resulted in significant increases in the production of progesterone, the major steroid produced in these cells. Stimulation with hCG followed by 2D-PAGE analysis of the proteins resulted in the appearance of two proteins in the 30,000 molecular weight range (pI 6.8 and 6.6) and two in the 25,000-27,000 region (pI 5.9-6.0). Stimulation with dbcAMP or forskolin resulted in the appearance of the same proteins seen with hCG, but also in the appearance of two additional proteins, also having molecular weights of approximately 30,000 (pI 6.3 and 6.1). These data indicate that cAMP generated via hCG stimulation, whilst able to generate similar amounts of progesterone, does not stimulate the synthesis of the same proteins as does cAMP added exogenously or generated through indiscriminate activation of adenylate cyclase activity. Thus, it would appear that the gonadotropin activated pathway generates cAMP which remains functionally compartmentalized within the cell.  相似文献   

2.
The mouse Y1 adrenal cell line was fused with mouse Leydig cells in primary culture. The selected hybrids were examined for their response to gonadotropin (hCG) and ACTH. None of them bound specifically [125I]hCG, nor did they augment their cAMP production in response to gonadotropin or ACTH stimulation, whereas their adenylate cyclase remained responsive to forskolin and cholera toxin, thus indicating a repression of hCG receptor synthesis and probably a loss of ACTH receptors, rather than a lesion of the coupling between the hormone receptor complex and the adenylate cyclase. Basal pregnenolone production in 17 hybrids was close to that of Leydig and Y1 cells and was enhanced after 8-bromo adenosine 3',5'-monophosphate (8-Br-cAMP) stimulation in 11 of them. Therefore, the negative control leading to the extinction of both parental functions acts preferentially at the first step of steroidogenesis, i.e., the gene(s) coding for the hormone receptors.  相似文献   

3.
In order to investigate the expression and the regulation of steroidogenesis, human Leydig cells were fused with a functional mouse adrenal cell line (Y1). Six independent hybrid clones were analysed for hormone receptors and for cAMP and steroid response to ACTH, hCG, 8Br-cAMP or forskolin. All hybrids had lost hCG receptors and their ability to produce testosterone. With respect to the response of adenylate cyclase to ACTH and/or forskolin, hybrids could be classed into two groups. In the first group, the pattern of response was qualitatively similar to Y1 parental cells; The second group was far less responsive to ACTH than are Y1 cells, and when added together, forskolin and ACTH only had an additive effect. All hybrids responded to ACTH and 8Br-cAMP with an increased production of pregnenolone (P5). The amounts of P5 produced both under basal conditions and following 8Br-cAMP stimulation were significantly higher in three hybrids when compared to Y1 cells. However, the ability of two of these three hybrids to produce 20 alpha-dihydroprogesterone (20 alpha OHP4) was very low. The metabolism of [14C]P5 revealed that in one of these hybrids, there was a loss of 3 beta-hydroxysteroid dehydrogenase/isomerase whereas in the other case, there was a low 20 alpha-hydroxylase activity. The inhibition of cell growth by ACTH was related to the ability of the hormone to stimulate cAMP. Conversely, the inhibitory growth effects of 8Br-cAMP were not always inversely correlated with the ability of this nucleotide to stimulate P5 production. Since hybrids contained two mouse genomes and retained variable human chromosomes, these results suggest that extinction or enhancement of murine genes coding for some of the enzymes involved in steroidogenic response to ACTH was due to the regulation by human genes.  相似文献   

4.
Forskolin, an activator of adenylate cyclase, stimulates adrenocorticotropin (ACTH) release and increases proopiomelanocortin mRNA levels in anterior pituitary cells by enhancing cyclic AMP (cAMP)-dependent protein kinase activity. The phorbol ester phorbol 12-myristate 13-acetate (PMA) evokes these same responses from anterior pituitary cells by activating protein kinase C. Both protein kinases most likely induce their cellular effects by catalyzing the phosphorylation of specific proteins. To elucidate the mechanisms by which cAMP-dependent protein kinase and protein kinase C promote ACTH secretion and synthesis, the phosphoproteins regulated by forskolin and PMA were identified in the cell line AtT-20, which consists of a homogeneous population of corticotrophs. Phosphoproteins were analyzed in different subcellular fractions by two-dimensional polyacrylamide gel electrophoresis and autoradiography. Forskolin increased phosphate incorporation into two proteins in the cytoplasmic fraction of 24 kilodaltons (kd) (pI 6.8) and 40 kd (pI 5.8), two proteins in the plasma membrane fraction of 32 kd (pI 8.3) and 60 kd (pI 8), and one protein in the nuclear fraction of 20 kd (pI 8.7). Insertion of the inhibitor of cAMP-dependent protein kinase into the AtT-20 cells, using a liposome technique, blocked the rise in phosphate incorporation induced by forskolin. PMA also stimulated phosphate incorporation into proteins in AtT-20 cells. PMA increased the phosphorylation of three cytoplasmic proteins of 25 kd (pI 7.6), 40 kd (pI 5.8), and 40 kd (pI 8.1) as well as two membrane proteins of 32 kd (pI 8.3) and 60 kd (pI 8) and one nuclear protein of 20 kd (pI 6.3).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Both the cell and the species specificities of the steroidogenic potentiating activity (SPA) of Sertoli cells on Leydig cells were studied using a coculture system. Coculture of purified pig Leydig cells with rat or pig Sertoli cells in the presence of FSH led in both cases, to a significant increase in hCG receptor number and in hCG-stimulated testosterone production. Similarly, coculture of bovine adrenal cells with rat or pig Sertoli cells enhanced the steroidogenic response of adrenal cells to ACTH and angiotensin II. Such effects were not observed when pig Leydig cells or bovine adrenal cells were cocultured with bovine aortic endothelial cells. Coculture of Sertoli and Leydig cells in the presence of hCG, resulted in a significant increase in FSH receptor number and in FSH-induced plasminogen activator activity. Such effects did not occur when Sertoli cells were cocultured with either adrenal or aortic endothelial cells.  相似文献   

6.
The tumour-promoting phorbol ester, PMA (phorbol 12-myristate 13-acetate), markedly reduced the steroidogenic response of mouse Leydig cells to stimulation by hCG and cholera toxin. However, 8Br-cAMP-and forskolin-stimulated steroidogenesis was not inhibited by PMA. PMA did not inhibit hCG-induced steroidogenesis in the simultaneous presence of 1 microM forskolin. The analysis of intracellular cAM P indicated that the PMA-induced inhibition of steroidogenesis was the result of an impaired cAMP accumulation. Adenylate cyclase in membranes prepared from PMA-treated cells showed a diminished response to hCG, GTP, guanosine 5'-[beta, gamma-imido]triphosphate [Gpp(NH)p] or to a combination of the stimulants. PMA, however, was unable to inhibit adenylate cyclase when added directly to the membrane preparation from untreated cells. As previous observations have indicated that 125I-hCG binding and phosphodiesterase activity in mouse Leydig cells are not influenced by PMA, it is concluded from the present study that the site of inhibition has to be localised to the regulatory guanine nucleotide binding protein of the adenylate cyclase system.  相似文献   

7.
The protein kinase C activator, phorbol 12-myristate 13-acetate (PMA), has been found recently to transform cultured astrocytes from flat, polygonal cells into stellate-shaped, process-bearing cells. Studies were conducted to determine the effect of PMA on protein phosphorylation in astrocytes and to compare this pattern of phosphorylation with that elicited by dibutyryl cyclic AMP (dbcAMP), an activator of the cyclic AMP-dependent protein kinase which also affects astrocyte morphology. Exposure to PMA increased the amount of 32P incorporation into several phosphoproteins, including two cytosolic proteins with molecular weights of 30,000 (pI 5.5 and 5.7), an acidic 80,000 molecular weight protein (pI 4.5) present in both the cytosolic and membrane fractions, and two cytoskeletal proteins with molecular weights of 60,000 (pI 5.3) and 55,000 (pI 5.6), identified as vimentin and glial fibrillary acidic protein, respectively. Effects of PMA on protein phosphorylation were not observed in cells depleted of protein kinase C. In contrast to the effect observed with PMA, treatment with dbcAMP decreased the amount of 32P incorporation into the 80,000 protein. Like PMA, treatment with dbcAMP increased the 32P incorporation into the proteins with molecular weights of 60,000, 55,000 and 30,000, although the magnitude of this effect was different. The effect of dbcAMP on protein phosphorylation was still observed in cells depleted of protein kinase C. The results suggest that PMA, via the activation of protein kinase C, can alter the phosphorylation of a number of proteins in astrocytes, and some of these same phosphoproteins are also phosphorylated by the cyclic AMP-dependent mechanisms.  相似文献   

8.
Bovine adrenal fasciculata cells, exposed to either ACTH or AII, synthesize glucocorticoids at an enhanced rate. It is generally accepted that the signaling pathways triggered by these two peptides are not identical. ACTH presumably acts via a cAMP-dependent protein kinase (PKA) and AII, via a calcium-dependent protein kinase. We have found that either peptide hormone stimulates synthesis of a mitochondrial phosphoprotein pp37, leading to accumulation of its proteolytically processed products pp30 and pp29. On the basis of a number of criteria, this 37 kDa protein is the bovine homolog of the 37 kDa protein that we have characterized in rodent steroidogenic tissue (Epstein L. F. and Orme-Johnson N. R.: J. Biol. Chem 266 (1991) 19,739–19,745). Further, bovine pp37 is phosphorylated when PKA or protein kinase C (PKC) is activated directly by (Bu)2cAMP or PMA, respectively. These studies indicate that either pp37 is a common substrate for PKA and PKC in these cells or there is a common downstream kinase, which is activated by exposure to either ACTH or AII. Rat adrenal glomerulosa cells, exposed to either ACTH or AII, show an enhanced rate of mineralocorticoid synthesis. As for bovine fasciculata cells, it is thought that the signaling pathway triggered by ACTH differs from that triggered by AII. As we found for bovine fasciculata, pp37 is phosphorylated when the rat cells are exposed to either peptide hormone. However, in contrast to the finding for bovine fasciculata, while exposure of the rat glomerulosa cells to (Bu)2cAMP does cause the synthesis of pp37, exposure of the cells to PMA does not. Taken together, these findings provide further evidence that the subcellular signaling events, triggered by the action of AII on bovine adrenal fasciculata and rat adrenal glomerulosa cells, differ. Further, the fact, that pp37 is phosphorylated only when the rate of steroidogenesis is enhanced, reaffirms its potential involvement in the signaling pathway that causes stimulation of steroid hormone biosynthesis.  相似文献   

9.
New data are provided to show that (i) rat Sertoli cells produce two types of plasminogen activators, tissue type (tPA) and urokinase type (uPA), and a plasminogen activator inhibitor type-1 (PAI-1); (ii) both tPA (but not uPA) and PAI-1 secretion in the culture are modified by FSH, forskolin, dbcAMP, GnRH, PMA and growth factors (EGF and FGF), but not by hCG and androstenedione (△4); (iii) in vitro secretion of tPA and PA-PAI-1 complexes of Sertoli cells are greatly enhanced by presence of Leydig cells which produce negligible tPA but measurable PAI-1 activity;(iv) combination culture of Sertoli and Leydig cells remarkably increases FSH-induced PAI-1 activity and decreases hCG- and forskolin-induced inhibitor activity as compared with that of two cell types cultured alone. These data suggest that rat Sertoli cells, similar to ovarian granulosa cells, are capable of secreting both tPA and uPA, as well as PAI-1. The interaction of Sertoli cells and Leydig cells is essential for the cells to response to  相似文献   

10.
In previous studies we and others have described several mitochondrial proteins which are synthesized in response to acute hormone stimulation in several steroidogenic tissues. In both MA-10 mouse Leydig tumor cells and primary cultures of rat adrenal cortex cells, these proteins consist of a family of 37 kilodalton (kDa) and 32 kDa precursor forms and fully processed forms which are 30 kDa in molecular weight. The nature of the appearance of these proteins and their subcellular localization to the mitochondria, the site of the rate limiting step in steroidogenesis, has led to the speculation that they may be involved in the acute regulation of steroidogenesis. In the present study we have taken advantage of another steroidogenic cell, the R2C rat Leydig tumor cell, to perform studies which further indicate that these mitochondrial proteins are involved in the regulation of steroidogenesis. Unlike the MA-10 cell which requires hormone stimulation for steroid production, the R2C cell is a constitutive progesterone producer whose steroid production cannot be further increased with hormone stimulation. We have shown that the R2C cell line is less sensitive to the inhibition of steroid production by the metal chelator orthophenanthroline (OP) than is the MA-10 cell. We have demonstrated that progesterone production and the 30 kDa mitochondrial proteins remain present in the R2C cells at a concentration of OP which completely inhibits progesterone production and totally eliminates the 30 kDa proteins in MA-10 cells. As further evidence for the role of these proteins in steroidogenic regulation, we have isolated several revertants of the R2C parent (P) cell line which have lost the ability to synthesize progesterone constitutively, but which can be stimulated to synthesize this steroid by trophic hormone and cAMP analog. In these revertants, designated (R), the normally constitutively present 30 kDa proteins are greatly decreased compared to controls, but reappear in large amounts following hormone stimulation. Taken together, these data provide further evidence that the 30 kDa mitochondrial proteins are involved in the acute regulation of steroidogenesis in Leydig cells.  相似文献   

11.
L R Chaudhary  D M Stocco 《Biochimie》1988,70(12):1799-1806
Using a cloned Leydig tumor cell line (designated MA-10), we have studied the activity of cholesterol side-chain (CSCC) enzyme, the rate-determining step in steroidogenesis, in mitochondria isolated from cells pretreated either with human chorionic gonadotropin (hCG) or dibutyryl cyclic adenosine monophosphate (dbcAMP). Results showed a slight but significant increase in CSCC activity with treatment by cAMP (25% increase) and hCG (60% increase), as compared to mitochondria isolated from nontreated control cells. However, this stimulation of CSCC activity appears to be of limited significance when compared to the approximately 1000-fold or greater increase observed in progesterone production in the presence of hCG or dbcAMP. On the other hand, unstimulated MA-10 cells or isolated mitochondria efficiently converted 25-hydroxycholesterol and 22R-hydroxycholesterol into progesterone, and this conversion was not affected by cycloheximide. The addition of cholesterol to intact cells or to isolated mitochondria did not affect progesterone production. Our observations clearly indicate that given the proper hydroxy substrates (22R-hydroxycholesterol or 25-hydroxycholesterol), MA-10 Leydig cells are able to convert them into progesterone without any stimulation by steroidogenic stimuli, i.e. cAMP or hCG. Since MA-10 Leydig cells can efficiently convert 22R-hydroxycholesterol--an intermediate in CSCC reaction--into progesterone, these results suggest that the key regulatory step in the mechanism of trophic hormone-stimulated steroid production is the first hydroxylation step of the 3 sequential monooxygenation reactions involved in the conversion of cholesterol to pregnenolone.  相似文献   

12.
J P Mather  J M Saez  F Haour 《Steroids》1981,38(1):35-44
Primary cultures of interstitial cells were prepared from the testis of mice, rats, and pigs. The cells were grown in a defined medium supplemented with low (0.1%) serum and insulin, transferrin and epidermal growth factor. Comparisons of the interstitial cell cultures from the three species were made for plating efficiency, cell survival, maintenance of hCG receptors and maintenance of steroidogenic responsiveness to hCG. The porcine cultures had a higher plating efficiency and higher hCG receptor levels per cell than Leydig cells from either rodent. Additionally, the porcine cells showed an increase in testosterone (T) production with hCG stimulation throughout their lifespan in culture while the rodent cultures showed a decrease in T stimulation with time with no stimulation by day 6 in culture. These data indicate that species differences exist in hCG receptor concentrations per cell, the maintenance of hCG receptors and steroidogenic response in culture. The initial high survival, purity and continued functional response of porcine interstitial cell cultures make them a superior system for the study of gonadotropin regulation of Leydig cell function.  相似文献   

13.
The pathogenesis of hyperprolactinemia (hyperPRL) induced hypogonadism has been suggested to be related with a dysfunction of hypothalamus-pituitary-testis axis. While the direct inhibitory effects of prolactin (PRL) on testosterone (T) release have been demonstrated, the mechanism is still unclear. Our previous study demonstrated a diminished T release in the testicular interstitial cells (TICs) from the anterior pituitary (AP)-grafted rats as compared with the control, and the pattern was in agreement with the in vivo model. However, TICs incubation cannot totally represent the response of the Leydig cells. Therefore, a Percoll gradient purified Leydig cell model was adopted to explore the response of T release under similar challenges in this study to investigate the effects of hyperPRL on the Leydig cells per se. HyperPRL in male rats was induced by grafting rat AP under the renal capsule. The control animals were grafted with rat brain cortex tissue (CX). Six weeks after grafting, the rats were sacrificed. Either TICs or Leydig cells were isolated, respectively, for in vitro incubation and challenge. Challenge drugs included human chorionic gonadotropin (hCG, 0.05 IU/ml), steroidogenic precursors (25-OH-cholesterol, 10(-6) M; pregnenolone, 10(-6) M), forskolin (an anenylyl cyclase activator, 10(-4) M) and 8-bromo-3':5' cyclic adenosine monophosphate (cAMP) (8-Br-cAMP 10(-4) M). T released by TICs or Leydig cells was determined by radioimmunoassay. The TICs from the AP-grafted rats showed lower levels of T release than the control group while the purified Leydig cells demonstrated a reverse pattern in response to challenges of hCG, steroidogenic precursors, forskolin and 8-Br-cAMP. In hyperPRL rats, a paradoxical pattern of T release between TICs and purified Leydig cells is observed. The purified Leydig cells from AP-grafted rats demonstrated a higher level amount of T release than the control after stimulation. The phenomenon can be attributed to the change of Leydig cell sensitivity to the stimulation after the effects of chronic hyperPRL. Moreover, another possibility is the role played by other interstitial cells to modulate steroidogenesis in Leydig cells.  相似文献   

14.
The acute and the long-term (24 h) effects of protein kinase C activators, phorbol 12 myristate 13-acetate (PMA) and 1-oleoyl-2-acetyl-sn-glycerol, and the calcium ionophore A23187 on cultured pig Leydig cell functions were investigated. None of these drugs modified basal cAMP production, but they induced a small (3-4-fold) increase in testosterone secretion. The stimulatory effects of human choriogonadotropin (hCG; 1 nM) on both cAMP and testosterone productions were inhibited by short-term incubation with these drugs. In addition, they suppressed the stimulation of testosterone output by forskolin and 8-bromo-adenosine 3',5'-monophosphate, whereas the forskolin-dependent cAMP production was unaffected. The inhibitory effects of PMA on hCG stimulation of both cAMP and testosterone were due mainly to a decrease of the Vmax without modification of the ED50. Moreover, PMA did not modify the binding of 125I-hCG. Pretreatment of Leydig cells with the three drugs for 24 h induced more pronounced modifications, such as a reduction in the number of hCG binding sites and a decreased responsiveness to hCG and forskolin, the testosterone production being drastically reduced. The effects of PMA were dose- and time-dependent; however, the concentration of PMA required to induce half-maximal effects on hCG receptors (10 nM) was about one order of magnitude higher than those required to reduce cAMP and testosterone productions. Further, the inhibitory effects on cAMP and testosterone secretions appeared within the first 3 h, whereas the hCG receptor number remained constant for at least 8 h. It appears therefore, that the main alteration responsible for the steroidogenic refractoriness of PMA-treated Leydig cells is located beyond cAMP formation. Moreover, since conversion of exogenous pregnenolone to testosterone by control and PMA-treated cells was similar, the alteration was probably located before pregnenolone formation. Kinetic studies with 125I-hCG showed that the rate of internalization of the hormone-receptor complexes was similar in control cells and in PMA-treated cells, suggesting that the decline in receptor number observed in the latter group after an 8-h delay is not due to an increased rate of internalization nor to sequestration of the internalized receptors inside the cells. Since cycloheximide blocked the effects of PMA on hCG down-regulation, it is likely that the phorbol esters and 1-oleoyl-2-acetyl-sn-glycerol induce the synthesis of some proteins which blocked the recycling of internalized receptors. A similar hypothesis has been put forward recently to explain the hCG-induced down regulation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The phosphorylation of rat adrenal protein components in response to adrenocorticotropin has been studied in adrenal quarters, isolated cells, and in vivo. In adrenal quarters, adrenocorticotropic hormone (ACTH)-stimulated phosphorylation or dephosphorylation of proteins was not affected by the presence of protein synthesis inhibitors despite a total inhibition of steroidogenesis. (The term dephosphorylation refers to an apparent decrease in the labeling of a particular protein with 32P at various times after the addition of ACTH. This may be due to enzymatic removal of phosphate or protein degradation or complexation of this protein with another cellular component.) Studies with isolated cell preparations identified several proteins that are phosphorylated or dephosphorylated in response to hormone. These changes in phosphorylation were also observed in adrenal quarters and correlated well with ACTH-stimulated steroidogenesis as determined by temporal analysis and dose-response studies of corticosterone production. In vivo injection of male hypophysectomized rats with [32P]phosphate and ACTH demonstrated changes in the labeling of six adrenal proteins. Many of the proteins phosphorylated in vivo were also demonstrated to be phosphorylated in both in vitro systems. Finally, the injection of a physiological dose of ACTH appeared to selectively activate the type I cAMP-dependent protein kinase within the microsomal fraction as determined by the binding of a photoaffinity-labeled reagent. These results suggest that alterations in phosphorylation of adrenal proteins in response to ACTH is proximal to or independent of the obligatory role of protein synthesis in acute steroidogenesis.  相似文献   

16.
17.
Human CG contains an alpha-subunit, common to the pituitary glycoprotein hormones, and a hormone-specific beta-subunit, but unlike the pituitary beta-subunits, hCG beta is characterized by an O-glycosylated carboxy-terminal extension. A mutant beta-subunit, des-(122-145)hCG beta, was prepared using site-directed mutagenesis, and the pRSV expression plasmids were transfected into Chinese hamster ovary cells that produce the bovine alpha-subunit (b alpha). The mutant beta-subunit binds to b alpha, and the heterologous gonadotropin, b alpha-des-(122-145)hCG beta, was capable of stimulating steroidogenesis in cultured Leydig tumor cells (MA-10) to the same extent as standard hCG. When compared with the heterologous gonadotropin, b alpha-hCG beta wild type, the hybrid hormone with the truncated hCG beta exhibited equal potency, within the accuracy of the RIAs used to determine hormone concentrations, and gave a similar time course of steroidogenesis. Interestingly, these transformed Leydig cells do not distinguish between the steroidogenic potencies (as measured by progesterone production) of hCG and human LH (hLH) as do some preparations of normal rodent Leydig cells (as measured by testosterone production). However, the MA-10 cells were able to distinguish hCG from hLH based on their cAMP response; the latter produced a greater response at both maximal and submaximal gonadotropin concentrations. The two expressed heterologous gonadotropins were equipotent in their abilities to stimulate cAMP and gave similar time courses of cAMP accumulation in MA-10 cells. Thus, the carboxy-terminal extension of hCG beta is not required for association with the alpha-subunit nor for functional receptor binding, as judged by cAMP accumulation and progesterone production in MA-10 cells.  相似文献   

18.
By using a model of immature porcine Leydig and Sertoli cells cultured in serum free defined medium, we evidenced a paracrine control of Leydig cell steroidogenic activity by Sertoli cells via a secreted inhibiting protein(s). This protein(s), partially purified using gel filtration (M.W. 20,000-30,000) suppresses the steroidogenic responsiveness to LH/hCG by decreasing the specific LH/hCG binding (52% decrease) and hormone steroid biosynthesis (73% decrease) at a level(s) located between cAMP production and pregnenolone formation. The suppression of this inhibitor(s) by FSH, in a dose dependent manner, is one mechanism by which FSH "sensitizes" Leydig cell response to LH/hCG stimulation.  相似文献   

19.
Steroidogenic cells of the adrenal and gonad are thought to be derived from a common primordium that divides into separate tissues during embryogenesis. In this paper, we show that cells with mixed adrenal and Leydig cell properties are found dispersed in the insterstitium of the embryonic and adult mouse testis. They express the adrenal markers Cyp11b1 and Cyp21 and respond to ACTH. Consistent with these properties, we show that the embryonic testis produces the adrenal steroid corticosterone. These cells also express Cyp17 and respond to hCG stimulation but do not express the Leydig specific marker Insl3 showing that they are a population of steroidogenic cells distinct from Leydig cells. Based on their properties, we refer to these cells as adrenal-like cells of the testis and propose that they are the mouse equivalent of the precursors of human adrenal rests, tumors found primarily in male patients with congenital adrenal hyperplasia. Organ culture studies show that ACTH-responsive cells are present at the gonad/mesonephros border and seem to migrate into the XY but not the XX gonad during development. Consistent with this, using transgenic Cyp11a1 reporter mice, we definitively show that steroidogenic cells can migrate from the mesonephros into the XY gonad. We also show that the region between the mesonephros and the gonad harbors steroidogenic cell precursors that are repressed by the presence of the mesonephros. We propose that this region is the source of the adrenal-like cells that migrate into the testis as it develops and are activated when Leydig cells differentiate. These studies reveal the complex nature of steroidogenic cell differentiation during urogenital development.  相似文献   

20.
Tremella mesenterica (TM), a yellow jelly mushroom, has been traditionally used as tonic food to improve body condition in Chinese society for a long time. We have previously demonstrated that TM reduced in vitro hCG-treated steroidogenesis in MA-10 mouse Leydig tumor cells without any toxicity effect. In the present study, the mechanism how TM suppressed hCG-treated steroidogenesis in MA-10 cells was investigated. MA-10 cells were treated with vehicle, human chorionic gonadotropin (hCG, 50 ng/ml), or different reagents with or without TM to clarify the effects. TM significantly suppressed progesterone production with the presences of forskolin (10 and 100 microM) or dbcAMP (0.5 and 1mM), respectively, in MA-10 cells (p<0.05), which indicated that TM suppressed steroidogenesis after PKA activation along the signal pathway. Beyond our expectation, TM induced the expression of steroidogenic acute regulatory (StAR) protein with or without hCG treatments. However, TM profoundly decreased P450 side chain cleavage (P450scc) and 3beta-hydroxysteroid dehydrogenase (3beta-HSD) enzyme activities without any influences on the expression of both enzymes. These inhibitions on steroidogenic enzyme activities might counteract the stimulation of StAR protein expression. In conclusion, results suggest that TM suppressed hCG-treated steroidogenesis in MA-10 cells by inhibiting PKA signal pathway and steroidogenic enzyme activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号