首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Light-directed synthesis of high-density microarrays is currently performed in the 3′→5′ direction due to constraints in existing synthesis chemistry. This results in the probes being unavailable for many common types of enzymatic modification. Arrays that are synthesized in the 5′→3′ direction could be utilized to perform parallel genotyping and resequencing directly on the array surface, dramatically increasing the throughput and reducing the cost relative to existing techniques. In this report we demonstrate the use of photoprotected phosphoramidite monomers for light-directed array synthesis in the 5′→3′ direction, using maskless array synthesis technology. These arrays have a dynamic range of >2.5 orders of magnitude, sensitivity below 1 pM and a coefficient of variance of <10% across the array surface. Arrays containing >150 000 probe sequences were hybridized to labeled mouse cRNA producing highly concordant data (average R2 = 0.998). We have also shown that the 3′ ends of array probes are available for sequence-specific primer extension and ligation reactions.  相似文献   

2.
Arrays of oligonucleotides synthesized in the 5'-->3' direction have potential benefit in several areas of life sciences research because the free 3'-end can be modified by enzymatic reactions. A Geniom One instrument (febit biomed GmbH, Germany), with integrated chip fabrication, multiplex primer extension, fluorescence imaging, and data analysis, was evaluated for studies of genomic variations. Microchannels used for the array synthesis in Geniom One were not optimized before for the APEX method and, as preliminary experiments demonstrated in this study, the signals were strongly affected by the speed of the process inside reaction channels. Using the two-compartment model (TCM), target binding to feature were quantitatively analyzed, revealing profound mass-transport limitations in the observed kinetics and enabling us to draw a series of physicochemical conclusions of the optimal set-up for the APEX reaction. Some kinetically relevant parameters such as target concentration, reaction time, and temperature were comprehensively analyzed. Finally, we applied the arrays and methods in a proof-of-principle experiment where 36 individuals were typed with 900 oligonucleotide probes (sense and antisense primers for 450 markers), using the ABCR gene as a test system. A new DNA analysis method for studies of genomic variation was developed using this all-in-one platform.  相似文献   

3.
The ability to prepare single-stranded chromosomal target DNA allows innovative uses of FISH technology for studies of chromosome organization. Standard FISH methodologies require functionally single-stranded DNAs in order to facilitate hybridization between the probe and the complementary chromosomal target sequence. This usually involves denaturation of double-stranded probes to induce temporary separation of the DNA strands. Strand-specific FISH (CO-FISH; Chromosome Orientation-FISH) involves selective removal of newly replicated strands from DNA of metaphase chromosomes which results in single-stranded target DNA. When single-stranded probes are then hybridized to such targets, the resulting strand-specific hybridization is capable of revealing a level of information previously unattainable at the cytogenetic level. Mammalian telomeric DNA consists of tandem repeats of the (TTAGGG) sequence, oriented 5'-->3' towards the termini of all vertebrate chromosomes. Based on this conserved structural organization, CO-FISH with a telomere probe reveals the absolute 5'-->3' orientation of DNA sequences with respect to the pter-->qter direction of chromosomes. Development and various applications of CO-FISH will be discussed: detection of cryptic inversions, discrimination between telomeres produced by leading- versus lagging-strand synthesis, and replication timing of mammalian telomeres.  相似文献   

4.
Until recently, the only biological function attributed to the 3'-->5' exonuclease activity of DNA polymerases was proofreading of replication errors. Based on genetic and biochemical analysis of the 3'-->5' exonuclease of yeast DNA polymerase delta (Pol delta) we have discerned additional biological roles for this exonuclease in Okazaki fragment maturation and mismatch repair. We asked whether Pol delta exonuclease performs all these biological functions in association with the replicative complex or as an exonuclease separate from the replicating holoenzyme. We have identified yeast Pol delta mutants at Leu523 that are defective in processive DNA synthesis when the rate of misincorporation is high because of a deoxynucleoside triphosphate (dNTP) imbalance. Yet the mutants retain robust 3'-->5' exonuclease activity. Based on biochemical studies, the mutant enzymes appear to be impaired in switching of the nascent 3' end between the polymerase and the exonuclease sites, resulting in severely impaired biological functions. Mutation rates and spectra and synergistic interactions of the pol3-L523X mutations with msh2, exo1, and rad27/fen1 defects were indistinguishable from those observed with previously studied exonuclease-defective mutants of the Pol delta. We conclude that the three biological functions of the 3'-->5' exonuclease addressed in this study are performed intramolecularly within the replicating holoenzyme.  相似文献   

5.
Positively charged DNG oligonucleotide mixed sequences containing A/T bases were prepared by solid-phase synthesis. Synthesis proceeds in 3'-->5' direction and involves coupling of 3'-Fmoc protected thiourea in the presence of HgCl(2)/TEA with the corresponding 5'-amine of the growing oligo chain. DNG binding characteristics with complementary DNA and with itself have been evaluated.  相似文献   

6.
Structure-specific DNA binding and bipolar helicase activities of PcrA   总被引:3,自引:0,他引:3  
  相似文献   

7.
The synthesis and properties of oligonucleotides (ONs) containing 9-(2,3,4-trihydroxybutyl)adenine, A(C2) and A(C3), are described. The ON containing A(C2) involves the 3'-->4' and 3-->5' phosphodiester linkages in the strand, whereas that containing A(C3) possesses the 3'-->4' and 2'-->5' phosphodiester linkages. It was found that incorporation of the analogs, A(C2) or A(C3), into ONs significantly reduces the thermal and thermodynamic stabilities of the ON/DNA duplexes, but does not largely decrease the thermal and thermodynamic stabilities of the ON/RNA duplexes as compared with the case of the ON/DNA duplexes. It was revealed that the base recognition ability of A(C2) is greater than that of A(C3) in the ON/RNA duplexes.  相似文献   

8.
9.
The synthesis and properties of a bridged nucleic acid analogue containing a N3'-->P5' phosphoramidate linkage, 3'-amino-2',4'-BNA, is described. A heterodimer containing a 3'-amino-2',4'-BNA thymine monomer, and thymine and methylcytosine monomers of 3'-amino-2',4'-BNA and their 5'-phosphoramidites, were synthesized efficiently. The dimer and monomers were incorporated into oligonucleotides by conventional 3'-->5' assembly, and 5'-->3' reverse assembly phosphoramidite protocols, respectively. Compared to a natural DNA oligonucleotide, modified oligonucleotides containing the 3'-amino-2',4'-BNA residue formed highly stable duplexes and triplexes with single-stranded DNA (ssDNA), single-stranded RNA (ssRNA), and double-stranded DNA (dsDNA) targets, with the average increase in melting temperature (T(m)) against ssDNA, ssRNA and dsDNA being +2.7 to +4.0 degrees C, +5.0 to +7.0 degrees C, and +5.0 to +11.0 degrees C, respectively. These increases are comparable to those observed for 2',4'-BNA-modified oligonucleotides. In addition, an oligonucleotide modified with a single 3'-amino-2',4'-BNA thymine residue showed extraordinarily high resistance to nuclease degradation, much higher than that of 2',4'-BNA and substantially higher even than that of 3'-amino-DNA and phosphorothioate oligonucleotides. The above properties indicate that 3'-amino-2',4'-BNA has significant potential for antisense and antigene applications.  相似文献   

10.
Six flavonol glycosides characterised as myricetin 3-O-alpha-rhamnosyl-(1'-->2')-alpha-rhamnoside-3'-O-alpha-rhamnoside, 5'-O-methylmyricetin 3-O-[alpha-rhamnosyl (1'-->2')][alpha-rhamnosyl (1'-->4')]-beta -glucoside-3'-O-beta-glucoside, 5'-O-methylmyricetin 3-O-alpha-rhamnosyl (1'-->2')-alpha-rhamnoside 3'-O-beta-galactoside, kaemferol 3-O-rutinoside-7-O-rutinoside, myricetin 3-O-rutinoside-3'-O-alpha-rhamnoside, myricetin 3-O-beta-glucosyl (1'-->2')-beta-glucoside-4'-O-beta-glucoside together with two iridoid glycosides identified as 6,8-diacetylharpagide and 6,8-diacetylharpagide-1-O-beta-(3',4'-di-O-acetylglucoside) have been isolated from extract of Ajuga remota aerial parts. Also isolated from the same extract were known compounds; kaempferol 3-O-alpha-rhamnoside, quercetin 3-O-beta-glucoside, quercetin 3-O-rutinoside, 8-acetylharpagide, ajugarin I and ajugarin II.  相似文献   

11.
Replication fidelity is controlled by DNA polymerase proofreading and postreplication mismatch repair. We have genetically characterized the roles of the 5'-->3' Exo1 and the 3'-->5' DNA polymerase exonucleases in mismatch repair in the yeast Saccharomyces cerevisiae by using various genetic backgrounds and highly sensitive mutation detection systems that are based on long and short homonucleotide runs. Genetic interactions were examined among DNA polymerase epsilon (pol2-4) and delta (pol3-01) mutants defective in 3'-->5' proofreading exonuclease, mutants defective in the 5'-->3' exonuclease Exo1, and mismatch repair mutants (msh2, msh3, or msh6). These three exonucleases play an important role in mutation avoidance. Surprisingly, the mutation rate in an exo1 pol3-01 mutant was comparable to that in an msh2 pol3-01 mutant, suggesting that they participate directly in postreplication mismatch repair as well as in other DNA metabolic processes.  相似文献   

12.
A mispair-specific 3'-->5' exonuclease copurifies quantitatively with the near-homogeneous Drosophila gamma polymerase (Kaguni, L.S., and Olson, M.W. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 6469-6473). The exonuclease and polymerase exhibit similar reaction requirements and optima, suggesting functional coordination of their activities. Under nonpolymerization conditions, the 3'-->5' exonuclease hydrolyzes 3'-terminal mispairs approximately 15-fold more efficiently than 3'-terminal base pairs on primed single-stranded DNA substrates, whereas it does not discriminate between any of three specific mispairs (dAMP:dAMP;dGMP:dGMP; dGMP:dAMP). Under polymerization conditions, gamma polymerase does not extend a 3'-terminal mispair from the "stationary" state, even in the presence of a large excess of the next correct nucleotide. Instead, 3'-terminal mispairs are hydrolyzed quantitatively by the 3'-->5' exonuclease over the reaction time course. During DNA synthesis by gamma polymerase in the "polymerization" mode, limited misincorporation and subsequent mispair extension do occur. Here, it appears that misincorporation and not mispair extension is rate-limiting. Template-primer challenge experiments suggest that the mechanism of template-primer transfer from the 3'-->5' exonuclease active site to the DNA polymerase active site is intermolecular; transfer from the exonuclease to polymerase mode appears to require dissociation and reassociation of mitochondrial DNA polymerase.  相似文献   

13.
The preparation of a covalent DNA conjugate of vitamin B12 by means of heterogeneous solid-phase synthesis is reported. The cyano-corrinoid made available, dipotassium Co(beta)-cyanocobalamin-(3'-->2'),(3'-->5')-bis-2'-deoxythymidyl-3'-ate (K(2)-4), was cleanly methylated at the Co center by electrosynthetic means. Aqueous solutions of the resulting organometallic DNA-B12 conjugate K(2)-5 exhibited spectroscopic properties indicative of significant weakening of the axial (Co-N) bond, together with a 25-times higher basicity relative to Co(beta)-methylcobalamin (2). Methyl-transfer equilibria of pH-neutral aqueous solutions of K(2)-5 and cob(I)alamin (K-7) on one side, and of cob(I)alamin-(3'-->2'),(3'-->5')-bis-2'-deoxythymidyl-3'-ate (K(3)-8) and methylcobalamin (2) on the other, were studied at room temperature (Scheme 3). The NMR-derived data provided an equilibrium constant of ca. 0.3. Activation of K(2)-5 for abstraction of its Co-bound Me group by a nucleophile (such as cob(I)alamin) was, thus, indicated.  相似文献   

14.
Short DNA duplexes that contain a N4C-ethyl-N4C interstrand cross-link were prepared on controlled pore glass supports using a DNA synthesizer. The C-C cross-link was introduced via a convertible nucleoside on the support or by using a protected C-C cross-link phosphoramidite. An orthogonal protection scheme allowed selective chain growth in either a 3'-->5' or 5'-->3' direction. The cross-linked duplexes were purified by HPLC and characterized by MALDI-TOF mass spectrometry and/or by enzymatic digestion.  相似文献   

15.
Autonomous 3'-->5'exonucleases are not bound covalently to DNA polymerases but are often involved in replicative complexes. Such exonucleases from rat liver, calf thymus and Escherichia coli (molecular masses of 28+/-2 kDa) are shown to increase more than 10-fold the accuracy of DNA polymerase beta (the most inaccurate mammalian polymerase) from rat liver in the course of reduplication of the primed DNA of bacteriophage phiX174 amber 3 in vitro. The extent of correction increases together with the rise in 3'-->5' exonuclease concentration. Extrapolation of the in vitro DNA replication fidelity to the cellular levels of rat exonuclease and beta-polymerase suggests that exonucleolytic proofreading could augment the accuracy of DNA synthesis by two orders of magnitude. These results are not explained by exonucleolytic degradation of the primers ("no synthesis-no errors"), since similar data are obtained with the use of the primers 15 or 150 nucleotides long in the course of a fidelity assay of DNA polymerases, both alpha and beta, in the presence of various concentrations of 3'-->5' exonuclease.  相似文献   

16.
Kinetic constants for the hydrolytic susceptibility of the internucleotide phosphate bond in normal dinucleotides [e.g., 2'-deoxycytidylyl-(3'>5')-2'-deoxyuridine (dCpdU) and 2'-deoxyadenylyl-(3'-->5')-2'-deoxycytidine (dApdC)] and isomeric dinucleotides [e.g., 2'-deoxycytidylyl-(3'-->5')-1'-deoxy-2'-isouridine (dCpisodU) and 1'-deoxy-2'-isoadenylyl-(3'-->5')-2'-deoxycytidine (isodApdC)], toward 5'- and 3'-exonucleases, phosphodiesterase I (PDE I) and phosphodiesterase II (PDE II) were experimentally determined and remarkable differences emerged. The study is of importance in the discovery of nuclease-stable inhibitors of HIV integrase, but may also have ramifications in the area of anti-sense oligonucleotides of therapeutic interest.  相似文献   

17.
18.
mRNA degradation predominantly proceeds through two alternative routes: the 5'-->3' pathway, which requires deadenylation followed by decapping and 5'-->3' hydrolysis; and the 3'-->5' pathway, which involves deadenylation followed by 3'-->5' hydrolysis and finally decapping. The mechanisms and relative contributions of each pathway are not fully understood. We investigated the effects of different cap structure (Gp(3)G, m(7)Gp(3)G, or m(2)(7,3'-O) Gp(3)G) and 3' termini (A(31),A(60), or G(16)) on both translation and mRNA degradation in mammalian cells. The results indicated that cap structures that bind eIF4E with higher affinity stabilize mRNA to degradation in vivo. mRNA stability depends on the ability of the 5' terminus to bind eIF4E, not merely the presence of a blocking group at the 5'-end. Introducing a stem-loop in the 5'-UTR that dramatically reduces translation, but keeping the cap structure the same, does not alter the rate of mRNA degradation. To test the relative contributions of the 5'-->3' versus 3'-->5' pathways, we designed and synthesized two new cap analogs, in which a methylene group was substituted between the alpha- and beta-phosphate moieties, m(2)(7,3'-O)Gpp(CH2)pG and m(2)(7,3'-O)Gp(CH2)ppG, that are predicted to be resistant to cleavage by Dcp1/Dcp2 and DcpS, respectively. These cap analogs were recognized by eIF4E and conferred cap-dependent translation to mRNA both in vitro and in vivo. Oligonucleotides capped with m(2)(7,3'-O)Gpp(CH2)pG were resistant to hydrolysis by recombinant human Dcp2 in vitro. mRNAs capped with m(2)(7,3'-O)Gpp(CH2)pG, but not m(2)(7,3'-O)Gp(CH2)ppG, were more stable in vivo, indicating that the 5'-->3' pathway makes a major contribution to overall degradation. Luciferase mRNA containing a 5'-terminal m(2)(7,3'-O)Gpp(CH2)pG and 3'-terminal poly(G) had the greatest stability of all mRNAs tested.  相似文献   

19.
Bacillus subtilis bacteriophage SPP1 G40P hexameric replicative DNA helicase unidirectionally translocates with a 5'-->3' polarity while separating the DNA strands. A G40P mutant derivative lacking the N-terminal domain (containing amino acid residues 110-442 from G40P, G40PDeltaN109) was purified and characterized. G40PDeltaN109 showed an ATPase activity that was dependent on the presence of single-stranded (ss) DNA. Unlike G40P, G40PDeltaN109 was shown to bind with similar affinity both ssDNA arms of forked structures by nuclease protection assays. In a pH-dependent manner, G40PDeltaN109 unwound a branched double-arm substrate preferentially with a 3'-->5' polarity. Our results show that the linker region and the C-terminal domain of G40P are sufficient to render an enzyme capable of encircling the ssDNA tails of the forked DNA and to unwind DNA with both 5'-->3' and 3'-->5' polarity. The presence of the N-terminal domain, which does not play an essential role in helicase action, might be required indirectly for strand discrimination and polarity of translocation.  相似文献   

20.
The Rhesus (Rh) blood group system in humans is encoded by two genes with high sequence homology. These two genes, namely, RHCE and RHD, have been implied to be duplicated during evolution. However, the genomic organization of Rh genes in chimpanzees and other nonhuman primates has not been precisely studied. We analyzed the arrangement of the Rh genes of chimpanzees (Pan troglodytes) by two-color fluorescence in situ hybridization on chromatin DNA fibers (fiber-FISH) using two genomic DNA probes that respectively contain introns 3 and 7 of human RH genes. Among the five chimpanzees studied, three were found to be homozygous for the two-Rh-gene type, in an arrangement of Rh (5'-->3') - Rh (3'<--5'). Although a similar gene arrangement can be detected in the RH gene locus of typical Rh-positive humans, the distance between the two genes in chimpanzees was about 50 kb longer than that in humans. The remaining two chimpanzees were homozygous for a four-Rh-gene type, in an arrangement of Rh (5'-->3') - Rh (3'<--5') - Rh (3'<--5') - Rh (3'<--5') within a region spanning about 300 kb. This four-Rh-gene type has not been detected in humans. Further analysis of other great apes showed different gene arrangements: a bonobo was homozygous for the three-Rh-gene type; a gorilla was heterozygous for the one-Rh- and two-Rh-gene types; an orangutan was homozygous for the one-Rh-gene type. Our findings on the intra- and interspecific genomic variations in the Rh gene locus in Hominoids would shed further light on reconstructing the genomic pathways of Rh gene duplication during evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号