首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vascular endothelial growth factor (VEGF) plays a significant role in blood-brain barrier breakdown and angiogenesis after brain injury. VEGF-induced endothelial cell migration is a key step in the angiogenic response and is mediated by an accelerated rate of focal adhesion complex assembly and disassembly. In this study, we identified the signaling mechanisms by which VEGF regulates human brain microvascular endothelial cell (HBMEC) integrity and assembly of focal adhesions, complexes comprised of scaffolding and signaling proteins organized by adhesion to the extracellular matrix. We found that VEGF treatment of HBMECs plated on laminin or fibronectin stimulated cytoskeletal organization and increased focal adhesion sites. Pretreating cells with VEGF antibodies or with the specific inhibitor SU-1498, which inhibits Flk-1/KDR receptor phosphorylation, blocked the ability of VEGF to stimulate focal adhesion assembly. VEGF induced the coupling of focal adhesion kinase (FAK) to integrin alphavbeta5 and tyrosine phosphorylation of the cytoskeletal components paxillin and p130cas. Additionally, FAK and related adhesion focal tyrosine kinase (RAFTK)/Pyk2 kinases were tyrosine-phosphorylated by VEGF and found to be important for focal adhesion sites. Overexpression of wild type RAFTK/Pyk2 increased cell spreading and the migration of HBMECs, whereas overexpression of catalytically inactive mutant RAFTK/Pyk2 markedly suppressed HBMEC spreading ( approximately 70%), adhesion ( approximately 82%), and migration ( approximately 65%). Furthermore, blocking of FAK by the dominant-interfering mutant FRNK (FAK-related non-kinase) significantly inhibited HBMEC spreading and migration and also disrupted focal adhesions. Thus, these studies define a mechanism for the regulatory role of VEGF in focal adhesion complex assembly in HBMECs via activation of FAK and RAFTK/Pyk2.  相似文献   

2.
Focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (Pyk2) are non-receptor protein tyrosine kinases that are involved in cell proliferation, migration and survival. Current research of FAK and Pyk2 is greatly focused in cancer biology and several small molecule inhibitors are being tested under clinical development. Like cancer, certain chronic diseases such as cardiovascular disease, bone disease, fibrosis, rheumatoid arthritis, and neurological disorders, share malignant characteristics of cancer. Accumulating evidence has demonstrated that FAK and Pyk2 contribute to other proliferative and degenerative diseases. Thus, the goal of this review is to briefly highlight studies that have implicated FAK and Pyk2 as players in disease progression.  相似文献   

3.
In the gastrointestinal mucosa, cell migration plays a crucial role in the organization and maintenance of tissue integrity but the mechanisms involved remain incompletely understood. Here, we used small-interfering RNA (siRNA)-mediated depletion of focal adhesion kinase (FAK) protein to determine the role of FAK in wound-induced migration and cytoskeletal organization in the non-transformed intestinal epithelial cells IEC-6 and IEC-18 stimulated with the G protein-coupled receptors (GPCR) agonist lysophosphatidic acid (LPA). Treatment of these cells with FAK siRNA substantially reduced FAK expression, but did not affect the expression of proline-rich tyrosine kinase 2 (Pyk2). Knockdown of FAK protein significantly inhibited LPA-induced migration of both IEC-18 and IEC-6 cells. LPA induced reorganization of actin and microtubule cytoskeleton in the leading edge was largely inhibited in FAK siRNA-transfected IEC-18 cells. Interestingly, in contrast to the FAK-/- cells, which exhibit an increased number of prominent focal adhesions when plated on fibronectin, FAK knockdown IEC-18 cells exhibited dramatically decreased number of focal adhesions in response to both LPA and fibronectin as compared with the control cells. We also used siRNAs to knockdown Pyk2 expression without reducing FAK expression. Depletion of Pyk2 did not prevent LPA-induced migration or cytoskeletal reorganization in IEC-18 cells. In conclusion, our study shows that FAK plays a critical role in LPA-induced migration, cytoskeletal reorganization, and assembly of focal adhesions in intestinal epithelial cells whereas depletion of Pyk2 did not interfere with any of these responses elicited by LPA.  相似文献   

4.
Pyk2 is a member of the focal adhesion kinase (FAK) family, highly expressed in the central nervous system and haemopoietic cells. Although Pyk2 is homologous to FAK, its role in signaling pathways was shown to be distinct from that of FAK. We show here that Pyk2 is highly expressed in peritoneal IC-21 macrophage and is tyrosine phosphorylated in response to cell attachment to fibronectin and fibrinogen. Upon IC-21 cell adhesion, Pyk2 tyrosine phosphorylation is inhibited by blocking antibodies to the integrin subunits alpha(M) and beta(2). Furthermore, Pyk2 is rapidly tyrosine phosphorylated in response to ligation of beta(2) integrins by antibodies. In migrating macrophages, Pyk2 localizes to perinuclear regions and to podosomes, where it is clustered with tyrosine phosphorylated proteins. Furthermore, in the podosomal ring structure, which surrounds the central actin core, Pyk2 co-localizes with vinculin, talin, and paxillin. In the podosomes, Pyk2 also co-localizes with the integrin alpha(M)beta(2). Lastly, reduction of Pyk2 expression in macrophages leads to inhibition of cell migration. We propose that Pyk2 is functionally linked to the formation of podosomes where it mediates the integrin-cytoskeleton interface and regulates cell spreading and migration.  相似文献   

5.
Proline-rich tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase (FAK) family of non-receptor tyrosine kinases and plays an important role in diverse cellular events downstream of the integrin-family of receptors, including cell migration, proliferation and survival. Here, we have identified a novel role for Src kinase in priming Pyk2 phosphorylation and subsequent activation upon cell attachment on the integrin-ligand fibronectin. By using complementary methods, we show that Src activity is indispensable for the initial Pyk2 phosphorylation on the Y402 site observed in response to cell attachment. In contrast, the initial fibronectin-induced autophosphorylation of FAK in the homologous Y397 site occurs in a Src-independent manner. We demonstrate that the SH2-domain of Src is required for Src binding to Pyk2 and for Pyk2 phosphorylation at sites Y402 and Y579. Moreover, Y402 phosphorylation is a prerequisite for the subsequent Y579 phosphorylation. While this initial phosphorylation of Pyk2 by Src is independent of Pyk2 kinase activity, subsequent autophosphorylation of Pyk2 in trans is required for full Pyk2 phosphorylation and activation. Collectively, our studies reveal a novel function of Src in priming Pyk2 (but not FAK) phosphorylation and subsequent activation downstream of integrins, and shed light on the signaling events that regulate the function of Pyk2.  相似文献   

6.
The focal adhesion kinase (FAK) protein-tyrosine kinase (PTK) links transmembrane integrin receptors to intracellular signaling pathways. We show that expression of the FAK-related PTK, Pyk2, is elevated in fibroblasts isolated from murine fak-/- embryos (FAK-) compared with cells from fak+/+ embryos (FAK+). Pyk2 was localized to perinuclear regions in both FAK+ and FAK- cells. Pyk2 tyrosine phosphorylation was enhanced by fibronectin (FN) stimulation of FAK- but not FAK+ cells. Increased Pyk2 tyrosine phosphorylation paralleled the time-course of Grb2 binding to Shc and activation of ERK2 in FAK- cells. Pyk2 in vitro autophosphorylation activity was not enhanced by FN plating of FAK- cells. However, Pyk2 associated with active Src-family PTKs after FN but not poly-L-lysine replating of the FAK- cells. Overexpression of both wild-type (WT) and kinase-inactive (Ala457), but not the autophosphorylation site mutant (Phe402) Pyk2, enhanced endogenous FN-stimulated c-Src in vitro kinase activity in FAK- cells, but only WT Pyk2 overexpression enhanced FN-stimulated activation of co-transfected ERK2. Interestingly, Pyk2 overexpression only weakly augmented FAK- cell migration to FN whereas transient FAK expression promoted FAK- cell migration to FN efficiently compared with FAK+ cells. Significantly, repression of endogenous Src-family PTK activity by p50(csk) overexpression inhibited FN-stimulated cell spreading, Pyk2 tyrosine phosphorylation, Grb2 binding to Shc, and ERK2 activation in the FAK- but not in FAK+ cells. These studies show that Pyk2 and Src-family PTKs combine to promote FN-stimulated signaling events to ERK2 in the absence of FAK, but that these signaling events are not sufficient to overcome the FAK- cell migration defects.  相似文献   

7.
We previously observed that collagen IV regulates Caco-2 intestinal epithelial cell spreading and migration via Src-dependent p130(Cas) phosphorylation and stimulates focal adhesion kinase (FAK). However, the role of FAK and the related kinase, Pyk2, in Caco-2 spreading and migration is unclear. FAK- or Pyk2-specific siRNAs reduced protein levels by 90%. However, when detached cells were replated on collagen IV neither individual nor combined FAK and Pyk2 siRNAs affected the cell spreading rate. As combined FAK and Pyk2 siRNAs increased p130(Cas) protein levels, we cotransfected cells with 1 nm p130(Cas) siRNA to partially reduce p130(Cas) protein to control levels. Although p130(Cas) Tyr(P)(249) phosphorylation was reduced by 60%, cell spreading was unaffected. Combined siRNA reduction of FAK, Pyk2 and p130(Cas) increased cell spreading by 20% compared to p130(Cas) siRNA alone, suggesting that FAK and Pyk2 negatively regulate spreading in addition to stimulating spreading via p130(Cas). FAK-binding mutant SH3 domain-deleted rat p130(Cas) was not phosphorylated after adhesion and, unlike full-length p130(Cas), did not restore spreading after human-specific p130(Cas) siRNA knockdown of endogenous p130(Cas). Together, these data suggest that FAK positively regulates Caco-2 spreading on collagen IV via p130(Cas) phosphorylation, but also suggests that FAK may negatively regulate spreading through other mechanisms and the presence of additional FAK-independent pathways regulating p130(Cas).  相似文献   

8.
Pyk2 is a cytoplasmic tyrosine kinase related to focal adhesion kinase (FAK). Compensatory Pyk2 expression occurs upon FAK loss in mice. However, the impact of Pyk2 up-regulation remains unclear. Previous studies showed that nuclear-localized FAK promotes cell proliferation and survival through FAK FERM domain-enhanced p53 tumor suppressor degradation (Lim, S. T., Chen, X. L., Lim, Y., Hanson, D. A., Vo, T. T., Howerton, K., Larocque, N., Fisher, S. J., Schlaepfer, D. D., and Ilic, D. (2008) Mol. Cell 29, 9–22). Here, we show that FAK knockdown triggered p53 activation and G1 cell cycle arrest in human umbilical vein endothelial cells after 4 days. However, by 7 days elevated Pyk2 expression occurred with a reduction in p53 levels and the release of the G1 block under conditions of continued FAK knockdown. To determine whether Pyk2 regulates p53, experiments were performed in FAK−/−p21−/− mouse embryo fibroblasts expressing endogenous Pyk2 and in ID8 ovarian carcinoma cells expressing both Pyk2 and FAK. In both cell lines, Pyk2 knockdown increased p53 levels and inhibited cell proliferation associated with G1 cell cycle arrest. Pyk2 FERM domain re-expression was sufficient to reduce p53 levels and promote increased BrdUrd incorporation. Pyk2 FERM promoted Mdm2-dependent p53 ubiquitination. Pyk2 FERM effects on p53 were blocked by proteasomal inhibition or mutational-inactivation of Pyk2 FERM nuclear localization. Staurosporine stress of ID8 cells promoted endogenous Pyk2 nuclear accumulation and enhanced Pyk2 binding to p53. Pyk2 knockdown potentiated ID8 cell death upon staurosporine addition. Moreover, Pyk2 FERM expression in human fibroblasts upon FAK knockdown prevented cisplatin-mediated apoptosis. Our studies demonstrate that nuclear Pyk2 functions to limit p53 levels, thus facilitating cell growth and survival in a kinase-independent manner.  相似文献   

9.
IGF-I stimulates cell growth through interaction of the IGF receptor with multiprotein signaling complexes. However, the mechanisms of IGF-I receptor-mediated signaling are not completely understood. We have previously shown that IGF-I-stimulated 3T3-L1 cell proliferation is dependent on Src activation of the ERK-1/2 MAPK pathway. We hypothesized that IGF-I activation of the MAPK pathway is mediated through integrin activation of Src-containing signaling complexes. The disintegrin echistatin decreased IGF-I phosphorylation of Src and MAPK, and blocking antibodies to (alpha)v and beta3 integrin subunits inhibited IGF-I activation of MAPK, suggesting that (alpha)v(beta)3 integrins mediate IGF-I mitogenic signaling. IGF-I increased ligand binding to (alpha)v(beta)3 as detected by immunofluorescent staining of ligand-induced binding site antibody and stimulated phosphorylation of the beta3 subunit, consistent with inside-out activation of (alpha)v(beta)3 integrins. IGF-I increased tyrosine phosphorylation of the focal adhesion kinase (FAK) Pyk2 (calcium-dependent proline-rich tyrosine kinase-2) to a much greater extent than FAK, and increased association of Src with Pyk2 but not FAK. The intracellular calcium chelator BAPTA prevented IGF-I phosphorylation of Pyk2, Src, and MAPK, suggesting that IGF-I activation of Pyk2 is calcium dependent. Transient transfection with a dominant-negative Pyk2, which lacks the autophosphorylation and Src binding site, decreased IGF-I activation of MAPK, but no inhibition was seen with transfected wild-type Pyk2. These results indicate that IGF-I signaling to MAPK is dependent on inside-out activation of (alpha)v(beta)3 integrins and integrin-facilitated multiprotein complex formation involving Pyk2 activation and association with Src.  相似文献   

10.
Focal adhesion kinase (FAK) is phosphorylated on tyrosine and serine residues after cell activation. In the present work, we investigated the relationship between tyrosine and serine phosphorylation of FAK in promoting endothelial cell migration in response to vascular endothelial growth factor (VEGF). We found that VEGF induces the activation of the Rho-dependent kinase (ROCK) downstream from vascular endothelial growth factor receptor (VEGFR) 2. In turn, activated ROCK directly phosphorylates FAK on Ser732. Proline-rich tyrosine kinase-2 (Pyk2) is also activated in response to VEGF. Its activation requires the clustering of integrin alphavbeta3 and triggers directly the phosphorylation of Tyr407 within FAK, an event necessary for cell migration. Interestingly, ROCK-mediated phosphorylation of Ser732 is essential for Pyk2-dependent phosphorylation of Tyr407, because the latter is abrogated in cells expressing a FAK mutant that is nonphosphorylatable on Ser732. We suggest that VEGF elicits the activation of the VEGFR2-ROCK pathway, leading to phosphorylation of Ser732 within FAK. In turn, phosphorylation of Ser732 would change the conformation of FAK, making it accessible to Pyk2 activated in response to its association with integrin beta3. Then, activated Pyk2 triggers the phosphorylation of FAK on Tyr407, promoting cell migration.  相似文献   

11.
Etk/BMX, a member of the Btk family of tyrosine kinases, is highly expressed in cells with great migratory potential, including endothelial cells and metastatic carcinoma cell lines. Here, we present evidence that Etk is involved in integrin signalling and promotes cell migration. The activation of Etk by extracellular matrix proteins is regulated by FAK through an interaction between the PH domain of Etk and the FERM domain of FAK. The lack of Etk activation by extracellular matrix in FAK-null cells could be restored by co-transfection with wild-type FAK. Disrupting the interaction between Etk and FAK diminished the cell migration promoted by either kinase. Furthermore, inhibiting Etk expression in metastatic carcinoma cell lines with an antisense oligonucleotide blocks integrin-mediated migration of these cells. Taken together, our data indicate the essential role of the interaction of the PH domain of Etk and the FERM domain of FAK in integrin signalling.  相似文献   

12.
《Cellular signalling》2014,26(12):3036-3045
Perivascular adipocyte (PVAC) biofunctions were closely related to cardiovascular diseases; its specific biological mechanisms remained unclear. How to adjust PVAC functions of vascular cells is an important topic. The present study was designed to investigate whether FAK/Pyk2 and ERK1/2 MAPK signaling pathways participate in PVAC functions, which is activated by insulin-like growth factor 1(IGF-1) and inhibited by Gax. PVACs isolated from perivascular adipocyte were cultured, dedifferentiated, and stimulated with 10 nM IGF-I. Cellular function experiments showed that IGF-1 promoted PVAC proliferation, adhesion, and migration. However Gax weakened IGF-1-mediated these function. Flow cytometry demonstrated that IGF-1 increased PVACs percent of S phase and decreased the percent of G0/G1 phase and apoptotic cells. While, Gax decreased the percent of S phase cells and increased those of G0–G1 phase and apoptotic cells. Western blotting and RT-PCR revealed that IGF-1 activated FAK/Pyk2 and ERK1/2 signaling pathways, upregulated the mRNA and protein expression of FAK, Pyk2, and ERK1/2, and suppressed p53 expression. Reversely, Gax lowered the expression of these signaling proteins and increased p53 expression. Therefore, IGF-1 mediated FAK/Pyk2 and ERK1/2 pathways to augment PVAC functions; Gax effectively counteracted these effects of IGF-1, repressed PVAC activities, and increased the cell apoptosis. Our findings suggested that FAK/Pyk2 and ERK1/2 cooperative activation mediated by IGF-1 is essential for PVAC functions, and Gax is a promising candidate gene to interfere with these signaling pathways and inhibit PVAC functions.  相似文献   

13.
The calcium-dependent proline-rich tyrosine kinase Pyk2 is activated by tyrosine phosphorylation, associates with focal adhesion proteins, and has been linked to proliferative and migratory responses in a variety of mesenchymal and epithelial cell types. Full Pyk2 activation requires phosphorylation at functionally distinct sites, including autophosphorylation site Tyr-402 and catalytic domain site Tyr-580, though the mechanisms involved are unclear. The pathways mediating Pyk2 phosphorylation at Tyr-402 and Tyr-580 were therefore investigated. Both sites were rapidly and transiently phosphorylated following cell stimulation by Ang II or LPA. However, only Tyr-580 phosphorylation was rapidly enhanced by intracellular Ca(2+) release, or inhibited by Ca(2+) depletion. Conversely, Tyr-402 phosphorylation was highly sensitive to inhibition of actin stress fibers, or of Rho kinase (ROK), an upstream regulator of stress fiber assembly. Ang II also induced a delayed (30-60 min) secondary phosphorylation peak occurring at Tyr-402 alone. Unlike the homologous focal adhesion kinase (FAK), Pyk2 phosphorylation was sensitive neither to the Src inhibitor PP2, nor to truncation of its N-terminal region, which contains a putative autoinhibitory FERM domain. These results better define the mechanisms involved in Pyk2 activation, demonstrating that autophosphorylation is ROK- and stress fiber-dependent, while transphosphorylation within the kinase domain is Ca(2+)-dependent and Src-independent in intestinal epithelial cells. This contrasts with the tight sequential coupling of phosphorylation seen in FAK activation, and further underlines the differences between these closely related kinases.  相似文献   

14.
Signaling through focal adhesion kinase   总被引:48,自引:0,他引:48  
Integrin receptor binding to extracellular matrix proteins generates intracellular signals via enhanced tyrosine phosphorylation events that are important for cell growth, survival, and migration. This review will focus on the functions of the focal adhesion kinase (FAK) protein-tyrosine kinase (PTK) and its role in linking integrin receptors to intracellular signaling pathways. FAK associates with several different signaling proteins such as Src-family PTKs, p130Cas, Shc, Grb2, PI 3-kinase, and paxillin. This enables FAK to function within a network of integrin-stimulated signaling pathways leading to the activation of targets such as the ERK and JNK/mitogen-activated protein kinase pathways. Focus will be placed on the structural domains and sites of FAK tyrosine phosphorylation important for FAK-mediated signaling events and how these sites are conserved in the FAK-related PTK, Pyk2. We will review what is known about FAK activation by integrin receptor-mediated events and also non-integrin stimuli. In addition, we discuss the emergence of a consensus FAK substrate phosphorylation sequence. Emphasis will also be placed on the role of FAK in generating cell survival signals and the cleavage of FAK during caspase-mediated apoptosis. An in-depth discussion will be presented of integrin-stimulated signaling events occurring in the FAK knockout fibroblasts (FAK) and how these cells exhibit deficits in cell migration. FAK re-expression in the FAK cells confirms the role of this PTK in the regulation of cell morphology and in promoting cell migration events. In addition, these results reinforce the potential role for FAK in promoting an invasive phenotype in human tumors.  相似文献   

15.
Expression of galectin-3 is associated with sarcoma progression, invasion and metastasis. Here we determined the role of extracellular galectin-3 on migration of sarcoma cells on laminin-111. Cell lines from methylcholanthrene-induced sarcomas from both wild type and galectin-3(-/-) mice were established. Despite the presence of similar levels of laminin-binding integrins on the cell surface, galectin-3(-/-) sarcoma cells were more adherent and less migratory than galectin-3(+/+) sarcoma cells on laminin-111. When galectin-3 was transiently expressed in galectin-3(-/-) sarcoma cells, it inhibited cell adhesion and stimulated the migratory response to laminin in a carbohydrate-dependent manner. Extracellular galectin-3 led to the recruitment of SHP-2 phosphatase to focal adhesion plaques, followed by a decrease in the amount of phosphorylated FAK and phospho-paxillin in the lamellipodia of migrating cells. The promigratory activity of extracellular galectin-3 was inhibitable by wortmannin, implicating the activation of a PI-3 kinase dependent pathway in the galectin-3 triggered disruption of adhesion plaques, leading to sarcoma cell migration on laminin-111.  相似文献   

16.
Focal adhesion kinase-null (FAK(-/-) fibroblasts exhibit morphological and motility defects that are reversed by focal adhesion kinase (FAK) reexpression. The FAK-related kinase, proline-rich tyrosine kinase 2 (Pyk2), is expressed in FAK(-/-) cells, yet it exhibits a perinuclear distribution and does not functionally substitute for FAK. Chimeric Pyk2/FAK proteins were created and expressed in FAK(-/-) cells to determine the impact of Pyk2 localization to focal contacts. Whereas an FAK/Pyk2 COOH-terminal (CT) domain chimera was perinuclear distributed, stable expression of a Pyk2 chimera with the FAK-CT domain (Pyk2/FAK-CT) localized to focal contact sites and enhanced fibronectin (FN)-stimulated haptotactic cell migration equal to FAK-reconstituted cells. Disruption of paxillin binding to the FAK-CT domain (S-1034) inhibited Pyk2/FAK-CT localization to focal contacts and its capacity to promote cell motility. Paxillin binding to the FAK-CT was necessary but not sufficient to mediate the indirect association of FAK or Pyk2/FAK-CT with a beta 1-integrin-containing complex. Both FAK and Pyk2/FAK-CT but not Pyk2/FAK-CT S-1034 reconstituted FAK(-/-) cells, exhibit elevated FN-stimulated extracellular signal-regulated kinase 2 (ERK2) and c-Jun NH(2)-terminal kinase (JNK) kinase activation. FN-stimulated FAK or Pyk2/FAK-CT activation enhanced both the extent and duration of FN-stimulated ERK2 activity which was necessary for cell motility. Transient overexpression of the FAK-CT but not FAK-CT S-1034 domain inhibited both FN-stimulated ERK2 and JNK activation as well as FN-stimulated motility of Pyk2/FAK-CT reconstituted cells. These gain-of-function studies show that the NH(2)-terminal and kinase domains of Pyk2 can functionally substitute for FAK in promoting FN-stimulated signaling and motility events when localized to beta-integrin-containing focal contact sites via interactions mediated by the FAK-CT domain.  相似文献   

17.
Fgr participates in integrin signaling in myeloid leukocytes. To examine the role of its specific domains in regulating cell migration, we expressed various Fgr molecules in COS-7 cells. Full-length, membrane-bound Fgr, but not an N-terminal truncation mutant that distributed to an intracellular compartment, increased cell migration on fibronectin and enhanced phosphorylation of the p85 subunit of phosphatidylinositol 3-kinase (PI3K), cortactin and focal adhesion kinase (FAK) at Y397 and Y576. Fgr increased Rac GTP loading, and phosphorylation of the Rac GEF Vav2, and bound to a protein complex formed by the Rho inhibitor p190RhoGAP and FAK, increasing p190RhoGAP phosphorylation, in a manner absolutely dependent on membrane localization. A kinase-defective truncation mutant of Fgr increased cell migration, albeit to a much lower extent than full-length Fgr, and was found to associate with the plasma membrane, to activate Rac and to form complexes with p190RhoGAP/FAK. Formation of complexes between p190RhoGAP, Fgr, and the FAK-related protein Pyk2 were also detected in murine macrophages. These findings suggest that the proto-oncogene Fgr regulates cell migration impinging on a signaling pathway implicating FAK/Pyk2 and leading to activation of Rac and the Rho inhibitor p190RhoGAP.  相似文献   

18.
B-lymphocytes produce protective antibodies but also contribute to autoimmunity. In particular, marginal zone (MZ) B cells recognize both microbial components and self-antigens. B cell trafficking is critical for B cell activation and is controlled by chemoattactants such as CXCL13 and sphingosine 1-phosphate (S1P). The related tyrosine kinases focal adhesion kinase (FAK) and proline-rich tyrosine kinase (Pyk2) regulate cell migration and adhesion but their roles in B cells are not fully understood. Using a novel Pyk2-selective inhibitor described herein (PF-719), as well as a FAK-selective inhibitor, we show that both Pyk2 and FAK are important for CXCL13- and S1P-induced migration of B-2 cells and MZ B cells. In contrast, LFA-1-mediated adhesion required only Pyk2 whereas activation of the Akt pro-survival kinase required FAK but not Pyk2. Thus Pyk2 and FAK mediate critical processes in B cells and these inhibitors can be used to further elucidate their functions in B cells.  相似文献   

19.
Suppression of Pyk2 kinase and cellular activities by FIP200   总被引:5,自引:0,他引:5  
Proline-rich tyrosine kinase 2 (Pyk2) is a cytoplasmic tyrosine kinase implicated to play a role in several intracellular signaling pathways. We report the identification of a novel Pyk2-interacting protein designated FIP200 (FAK family kinase-interacting protein of 200 kD) by using a yeast two-hybrid screen. In vitro binding assays and coimmunoprecipitation confirmed association of FIP200 with Pyk2, and similar assays also showed FIP200 binding to FAK. However, immunofluorescent staining indicated that FIP200 was predominantly localized in the cytoplasm. FIP200 bound to the kinase domain of Pyk2 and inhibited its kinase activity in in vitro kinase assays. FIP200 also inhibited the kinase activity of the Pyk2 isolated from SYF cells (deficient in Src, Yes, and Fyn expression) and the Pyk2 mutant lacking binding site for Src, suggesting that it regulated Pyk2 kinase directly rather than affecting the associated Src family kinases. Consistent with its inhibitory effect in vitro, FIP200 inhibited activation of Pyk2 and Pyk2-induced apoptosis in intact cells, which correlated with its binding to Pyk2. Finally, activation of Pyk2 by several biological stimuli correlated with the dissociation of endogenous FIP200-Pyk2 complex, which provided further support for inhibition of Pyk2 by FIP200 in intact cells. Together, these results suggest that FIP200 functions as an inhibitor of Pyk2 via binding to its kinase domain.  相似文献   

20.
Endothelial cell spreading, migration, and morphogenesis are essential for angiogenesis, the formation of new blood vessels. In the present study, we explored roles of tyrosine kinase Pyk2 in angiogenesis of pulmonary endothelial cells. We found that tyrosine kinase Pyk2 was particularly enriched in pulmonary vascular endothelial cells and lung, a major organ site for tumor metastasis. By using adenovirus-mediated expression of various Pyk2 mutants, we demonstrated that Pyk2 tyrosine kinase activity was essential for the pulmonary vascular endothelial cell spreading, migration, morphogenesis, as well as pulmonary vein and artery angiogenesis ex vivo. We further showed that Pyk2 kinase activity was required for the expression of focal adhesion kinase, p130Crk-associated substrate, and its homologue human enhancer of filamentation 1, thus regulating formation of focal adhesions and cytoskeletal reorganization. These results indicate that Pyk2 plays a crucial role in the pulmonary endothelial cell motility such as spreading and migration necessary for angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号