首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
One of the most contentious issues in biology today concerns the existence of stem cell plasticity. The term "plasticity" refers to the capacity of tissue-derived stem cells to exhibit a phenotypic potential that extends beyond the differentiated cell phenotypes of their resident tissue. Although evidence of stem cell plasticity has been reported by multiple laboratories, other scientists have not found the data persuasive and have remained skeptical about these new findings. This review will provide an overview of the stem cell plasticity controversy. We will examine many of the major objections that have been made to challenge the stem cell plasticity data. This controversy will be placed in the context of the traditional view of stem cell potential and cell phenotypic diversification. What the implications of cell plasticity are, and how its existence may modulate our present understanding of stem cell biology, will be explored. In addition, we will examine a topic that is usually not included within a discussion of stem cell biology--the direct conversion of one differentiated cell type into another. We believe that these observations on the transdifferentiation of differentiated cells have direct bearing on the issue of stem cell plasticity, and may provide insights into how cell phenotypic diversification is realized in the adult and into the origin of cell phenotypes during evolution.  相似文献   

2.
3.
Reactive oxygen species, cell signaling, and cell injury   总被引:31,自引:0,他引:31  
Oxidative stress has traditionally been viewed as a stochastic process of cell damage resulting from aerobic metabolism, and antioxidants have been viewed simply as free radical scavengers. Only recently has it been recognized that reactive oxygen species (ROS) are widely used as second messengers to propagate proinflammatory or growth-stimulatory signals. With this knowledge has come the corollary realization that oxidative stress and chronic inflammation are related, perhaps inseparable phenomena. New pharmacological strategies aimed at supplementing antioxidant defense systems while antagonizing redox-sensitive signal transduction may allow improved clinical management of chronic inflammatory or degenerative conditions, including Alzheimer's disease. Introduction of antioxidant therapies into mainstream medicine is possible and promising, but will require significant advances in basic cell biology, pharmacology, and clinical bioanalysis.  相似文献   

4.
Vascular endothelial cells (EC) are important clinical targets of radiation and other forms of free radical/oxidant stresses. In this study, we found that the extent of endothelial damage may be determined by the different cytotoxic responses of EC subpopulations. The following characteristics of EC subpopulations were examined: 1) cell volume; 2) cell cycle position; and 3) cytotoxic indexes for both acute cell survival and proliferative capacity after irradiation (137Cs, gamma, 0-10 Gy). EC cultured from bovine aortas were separated by centrifugal elutriation into subpopulations of different cell volumes. Through flow cytometry, we found that cell volume was related to the cell cycle phase distribution. The smallest EC were distributed in G1 phase and the larger cells were distributed in either early S, middle S, or late S + G2M phases. Cell cycle phase at the time of irradiation was not associated with acute cell loss. However, distribution in the cell cycle did relate to cell survival based on proliferative capacity (P less than 0.01). The order of increasing radioresistance was cells in G1 (D0 = 110 cGy), early S (135 cGy), middle S (145 cGy), and late S + G2M phases (180 cGy). These findings 1) suggest an age-related response to radiation in a nonmalignant differentiated cell type and 2) demonstrate EC subpopulations in culture.  相似文献   

5.
Cytochalasin B is known to induce quiescence in cells. We present here a comprehensive view dealing with the effects of cytochalasin B on cell division, movements, exchanges and morphology. The controversial mode of action of the drug is also considered.  相似文献   

6.
Bestatin methyl ester (BME) is an inhibitor of Zn(2+)-binding aminopeptidases that inhibits cell proliferation and induces apoptosis in normal and cancer cells. We have used Dictyostelium as a model organism to study the effects of BME. Only two Zn(2+)-binding aminopeptidases have been identified in Dictyostelium to date, puromycin-sensitive aminopeptidase A and B (PsaA and PsaB). PSA from other organisms is known to regulate cell division and differentiation. Here we show that PsaA is differentially expressed throughout growth and development of Dictyostelium, and its expression is regulated by developmental morphogens. We present evidence that BME specifically interacts with PsaA and inhibits its aminopeptidase activity. Treatment of cells with BME inhibited the rate of cell growth and the frequency of cell division in growing cells and inhibited spore cell differentiation during late development. Overexpression of PsaA-GFP (where GFP is green fluorescent protein) also inhibited spore cell differentiation but did not affect growth. Using chimeras, we have identified that nuclear versus cytoplasmic localization of PsaA affects the choice between stalk or spore cell differentiation pathway. Cells that overexpressed PsaA-GFP (primarily nuclear) differentiated into stalk cells, while cells that overexpressed PsaAΔNLS2-GFP (cytoplasmic) differentiated into spores. In conclusion, we have identified that BME inhibits cell growth, division, and differentiation in Dictyostelium likely through inhibition of PsaA.  相似文献   

7.
8.
Summary Techniques available for the calculation of the time variation of the number of viable mammaliar cells in a cell population are reviewed. Events in the course of the cell's growth may include one or more exposures to ionizing radiations or other cytotoxic agents. The dependence of cell killing upon the cell's position in the cell cycle is emphasized, and a unified model for calculation of cell kinetics and cell survival is discussed. For a cell population not limited in growth by contact inhibition or by nutritional factors, experimental data agree with predictions of the model.The possibility of utilizing the model to arrive at optimum treatment schedules for the management of some malignant diseases is discussed. The conclusion drawn is that the state of knowledge with respect to cellular events in solid tumors is such as to leave most such applications in the realm of speculation.This work was supported by the National Institutes of Health, United States Public Health Service, under Grants CA 5008 and CA 4542.  相似文献   

9.
Dlg,Scribble and Lgl in cell polarity,cell proliferation and cancer   总被引:17,自引:0,他引:17  
Dlg (Discs large), Scrib (Scribble) and Lgl (Lethal giant larvae) are evolutionarily conserved components of a common genetic pathway that link the seemingly disparate functions of cell polarity and cell proliferation in epithelial cells. dlg, scrib and lgl have been identified as tumour suppressor genes in Drosophila, mutations of which cause similar phenotypes, involving disruption of cell polarity and neoplastic overgrowth of tissues. The molecular mechanisms by which Dlg, Scrib and Lgl proteins regulate cell proliferation are not clear, but there is some evidence that epithelial polarisation is required for this regulation. Dlg, Scrib and Lgl are highly conserved between human and Drosophila, and we discuss evidence that these proteins also play a role in cancer progression in humans.  相似文献   

10.
11.
12.
T cell receptor stimulation, reactive oxygen species, and cell signaling   总被引:1,自引:0,他引:1  
In the immune system, much of the focus on reactive oxygen species (ROS) has been regarding their role in antimicrobial defense as part of the innate immune system. In addition to this role, it is now becoming clear that ROS are used by cells of the adaptive immune system as regulators of signal transduction by cell surface receptors. The activation of T lymphocytes through their specific antigen receptor [T cell receptor (TCR)] is vital in regulating the immune response. Much experimental evidence has suggested that activation of T cells is redox dependent and recent studies have shown that engagement of the TCR induces rapid production of ROS. This review examines the evidence for TCR-stimulated generation of ROS and discusses the role(s) of receptor-stimulated ROS production in T cell signal transduction and gene expression.  相似文献   

13.
In 1905, the Russian biologist C. Mereschkowsky postulated that plastids (e.g., chloroplasts) are the evolutionary descendants of endosymbiotic cyanobacteria-like organisms. In 1927, I. Wallin explicitly postulated that mitochondria likewise evolved from once free-living bacteria. Here, we summarize the history of these endosymbiotic concepts to their modern-day derivative, the “serial endosymbiosis theory”, which collectively expound on the origin of eukaryotic cell organelles (plastids, mitochondria) and subsequent endosymbiotic events. Additionally, we review recent hypotheses about the origin of the nucleus. Model systems for the study of “endosymbiosis in action” are also described, and the hypothesis that symbiogenesis may contribute to the generation of new species is critically assessed with special reference to the secondary and tertiary endosymbiosis (macroevolution) of unicellular eukaryotic algae.  相似文献   

14.
Syndecans are transmembrane proteoglycans which can participate in diverse cell surface interactions, involving extracellular matrix macromolecules, growth factors, protease inhibitors, and even viral entry. Currently, all extracellular interactions are believed to be mediated by distinct structures within the heparan sulfate chains, leaving the roles of chondroitin sulfate chains and extracellular portion of the core proteins to be elucidated. Evidence that syndecans are a class of receptor involved in cell adhesion is mounting, and their small cytoplasmic domains may link with the microfilament cytoskeleton, thereby mediating signaling events. The molecular details are unknown, but the conservation of regions of syndecan cytoplasmic domains, and a strong tendency for homotypic association, support the idea that the ligand-induced clustering may be a discrete source of specific transmembrane signaling from matrix to cytoskeleton, as proposed for other classes of adhesion receptors. © 1996 Wiley-Liss, Inc.  相似文献   

15.
The bacterial world is full of varying cell shapes and sizes, and individual species perpetuate a defined morphology generation after generation. We review recent findings and ideas about how bacteria use the cytoskeleton and other strategies to regulate cell growth in time and space to produce different shapes and sizes.  相似文献   

16.
17.
Summary This study examines the effects of cell purity and incubation conditions on testosterone production by rat testis Leydig cells in short-term primary culture. Both basal and luteinizing hormone (LH)-stimulated testosterone production were affected by the purity of the cell preparation, i.e. as the purity of the cell preparation was increased the amount of testosterone produced per Leydig cell was also found to increase. The stimulation ratio of testosterone production, calculated as the secretion of testosterone in the presence of LH (100 ng/ml) divided by the basal secretion of testosterone, increased with the increase in plating density (20 000 to 200 000 cells per well). This pattern of change was independent of the vessel and volume of incubation. In terms of the absolute amount of testosterone produced, increasing the plating density led to a decrease in the amount of steroid produced both basally and in response to LH. Composition of the incubation medium also had an effect on testosterone production; phenol red and sodium bicarbonate exerted negative effects. At all temperatures studied (4°, 24°, 34°, and 37° C), LH increased testosterone production and the degree of stimulation increased with temperature. We conclude that cell purity and incubation conditions markedly affect rat Leydig cell steroidogenesis in vitro. Furthermore, the manner in which the results are presented can affect their interpretation.  相似文献   

18.
In flowering plants, the haploid gamete-forming generation comprises only a few cells and develops within the reproductive organs of the flower. The female gametophyte has become an attractive model system to study the genetic and molecular mechanisms involved in pattern formation and gamete specification. It originates from a single haploid spore through three free nuclear division cycles, giving rise to four different cell types. Research over recent years has allowed to catch a glimpse of the mechanisms that establish the distinct cell identities and suggests dynamic cell–cell communication to orchestrate not only development among the cells of the female gametophyte but also the interaction between male and female gametophytes. Additionally, cytological observations and mutant studies have highlighted the importance of nuclei migration- and positioning for patterning the female gametophyte. Here we review current knowledge on the mechanisms of cell specification in the female gametophyte, emphasizing the importance of positional cues for the establishment of distinct molecular profiles.  相似文献   

19.
Background: Telomeres help maintain chromosomal structure and may influence tumorigenesis. We examined the association between telomere length and skin cancer in a clinic-based case-control study of 198 melanoma cases, 136 squamous cell carcinoma (SCC) cases, 185 basal cell carcinoma (BCC) cases, and 372 healthy controls. Methods: Cases were histologically confirmed patients treated at the Moffitt Cancer Center and University of South Florida Dermatology Clinic in Tampa, FL. Controls self-reported no history of cancer and underwent a skin cancer screening exam at study enrollment to rule out the presence of skin cancer. Quantitative real time PCR was used to measure telomere length in peripheral blood samples. Results: Melanoma patients had longer telomeres than controls (odds ratio (OR) = 3.75; 95% confidence interval (CI): 2.02–6.94 for highest versus lowest tertile) (P for trend = <0.0001). In contrast, longer telomere length was significantly inversely associated with SCC (OR = 0.01; 95% CI: 0.00–0.05 for highest versus lowest tertile) (P for trend = <0.0001) and BCC (OR = 0.10; 95% CI: 0.06–0.19 for highest versus lowest tertile) (P for trend = <0.0001). Conclusion: Telomere length may be involved in the development of skin cancer, although the effect on cancer risk differs for melanoma and non-melanoma carcinomas. Our findings suggest that long telomere length is positively associated with melanoma while inversely associated with SCC and BCC.  相似文献   

20.
We have demonstrated a role for activin A, follistatin, and FSH in male germ cell differentiation at the time when spermatogonial stem cells and committed spermatogonia first appear in the developing testis. Testis fragments from 3-day-old rats were cultured for 1 or 3 days with various combinations of these factors, incubated with bromodeoxyuridine (BrdU) to label proliferating cells, and then processed for stereological analysis and detection of BrdU incorporation. Gonocyte numbers were significantly elevated in cultures treated with activin, while the combination of FSH and the activin antagonist, follistatin, increased the proportion of spermatogonia in the germ cell population after 3 days. All fragment groups treated with FSH contained a significantly higher proportion of proliferating Sertoli cells, while activin and follistatin each reduced Sertoli cell division. In situ hybridization and immunohistochemistry on normal rat testes demonstrated that gonocytes, but not spermatogonia, contain the activin beta(A) subunit mRNA and protein. In contrast, gonocytes first expressed follistatin mRNA and protein at 3 days after birth, concordant with the transition of gonocytes to spermatogonia. Collectively, these data demonstrate that germ cells have the potential to regulate their own maturation through production of endogenous activin A and follistatin. Sertoli cells were observed to produce the activin/inhibin beta(A) subunit, the inhibin alpha subunit, and follistatin, demonstrating that these cells have the potential to regulate germ cell maturation as well as their own development. These findings indicate that local regulation of activin bioactivity may underpin the coordinated development of germ cells and somatic cells at the onset of spermatogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号