首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an in vitro incubation, 8-azidoguanosine 5'-[gamma-32P]triphosphate ( [gamma-32P]-8-azido-GTP) labeled bleached rhodopsin independent of ultraviolet light. Characterization of this labeling indicated that rhodopsin was phosphorylated with [gamma-32P]-8-azido-GTP as a phosphate donor. At low concentrations, ATP increased this labeling activity 5-fold. In the same incubation, [gamma-32P]-8-azido-GTP also labeled G alpha (Mr 40 000). This labeling was ultraviolet light dependent. G beta (Mr 35 000) was also labeled dependent for the most part upon ultraviolet light, but a smaller component of labeling appeared to result from phosphorylation. Differential labeling of G alpha and G beta was found to vary intricately with experimental conditions, especially prebleaching of rhodopsin, tonicity of the medium, and the presence or absence of 2-mercaptoethanol. Affinity labeling of G alpha and G beta by [gamma-32P]-8-azido-GTP in competition with ATP or GTP was kinetically complex, consistent with possible multiple binding sites for GTP on both subunits. Independent evidence for two or more binding sites on G alpha has been offered by other laboratories, and recently, at least one binding site on G beta and its analogues among the N proteins of adenylate cyclases has been identified.  相似文献   

2.
These studies provide further information regarding the mechanism of the light/dark-mediated regulation of pyruvate,Pi dikinase in leaves. It is shown that a catalysis-linked phosphorylation of pyruvate,Pi dikinase can be demonstrated following incubation of the enzyme with [32P]phosphoenolpyruvate or [beta-32P]ATP plus Pi, that the enzyme-bound phosphate is located on a histidine residue, and that this phosphate is retained during ADP-mediated inactivation. Further evidence is provided that phosphorylation of this histidine is a prerequisite for ADP-mediated inactivation through phosphorylation of a threonine residue from the beta-phosphate of ADP. It is demonstrated that diethylpyrocarbonate (which forms a derivative with histidine residues) prevents [32P]phosphoenolpyruvate-dependent labeling (catalytic labeling) and [beta-32P]ADP-dependent labeling (inactivation labeling) of the enzyme. In addition, it is demonstrated that oxalate, an analog of pyruvate, competitively inhibits ADP-dependent inactivation with respect to ADP. The significance of these results is discussed with regard to the mechanism of regulation of pyruvate,Pi dikinase in vivo.  相似文献   

3.
Direct photoaffinity labeling of purified bovine heart NADH:ubiquinone oxidoreductase (complex I) with 32P-labeled NAD(H), NADP(H) and ADP has shown that five polypeptides become labeled, with molecular masses of 51, 42, 39, 30, and 18-20 kDa. The 51 and the 30-kDa polypeptides were labeled with either [32P]NAD(H), [32P]NADP(H) or [beta-32P]ADP. The 42-kDa polypeptide was labeled with [32P]NAD(H) and to a small extent with [beta-32P]ADP. It was not labeled with [32P]NADP(H). The 39-kDa polypeptide was labeled with [32P]NADPH and to a small extent with [beta-32P]ADP. Our previous studies had shown that this subunit also binds NADP, but not NAD(H) [Yamaguchi, M., Belogrudov, G.I. & Hatefi, Y. (1998) J. Biol. Chem. 273, 8094-8098]. The 18-20-kDa polypeptide was labeled only with [32P]NADPH. Among these polypeptides, the 51-kDa subunit is known to contain FMN and a [4Fe-4S] cluster, and is the NAD(P)H-binding subunit of the primary dehydrogenase domain of complex I. The possible roles of the other nucleotide-binding subunits of complex I have been discussed.  相似文献   

4.
Three photoactive derivatives of the 7-methylguanosine-containing cap of eukaryotic mRNA were used to investigate protein synthesis initiation factor eIF-4E from human erythrocytes and rabbit reticulocytes. Sensitive and specific labeling of eIF-4E was observed with the previously described probe, [gamma-32P]-gamma-[[(4-benzoylphenyl)methyl]amido]-7-methyl-GTP [Blaas et al. (1982) Virology 116, 339; abbreviated [32P]BPM]. A second probe was synthesized that was an azidophenyltyrosine derivative of m7GTP [( 125I]APTM), the monoanhydride of m7GDP with [125I]-N-(4-azidophenyl)-2-(phosphoramido)-3-(4-hydroxy-3-iodop hen yl) propionamide. This probe allowed rapid and quantitative introduction of radioactivity in the last rather than the first step of synthesis and placed the radioactive label on the protein-proximal side of the weak P-N bond. A dissociation constant of 6.9 microM was determined for [125I]APTM, which is comparable to the published values for m7GTP. m7GTP and APTM were equally effective as competitive inhibitors of eIF-4E labeling with [125I]APTM. Like [32P]BPM, [125I]APTM labeled both the full-length (25 kDa) polypeptide and a 16-kDa degradation product, designated eIF-4E*, with labeling occurring in proportion to the amounts of each polypeptide present. A third probe, an azidophenylglycine derivative of m7GTP [( 32P]APGM), the monoanhydride of m7GDP with [32P]-N-(4-azidophenyl)-2-(phosphoramido)acetamide, was also synthesized and shown to label eIF-4E specifically. Unlike [32P]BPM and [125I]APTM, however, [32P]APGM labeled eIF-4E* approximately 4-fold more readily than intact eIF-4E. Tryptic and CNBr cleavage suggested that eIF-4E* consists of a protease-resistant core of eIF-4E that retains the cap-binding site and consists of approximately residues 47-182.  相似文献   

5.
The vanadate-sensitive ATPase of Methanococcus voltae has been purified by a procedure which includes, purification of the cytoplasmic membrane by sucrose gradient centrifugation, solubilization with Triton X-100, and DEAE-Sephadex and Sephacryl S-300 chromatography. While the DEAE-Sephadex step provided a preparation consisting of two polypeptides (74 and 52 kDa), the Sephacryl S-300 step yields a product with a subunit of 74 kDa. Incubation of either membranes or purified ATPase with [gamma-32P]ATP followed by acidic (pH 2.4) lithium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated the vanadate-sensitive labeling of a 74-kDa acyl phosphate intermediate. These results indicate that the M. voltae ATPase is of the P-type.  相似文献   

6.
The radioactive, photoactivatable labeling probe [beta-32P]5-azidouridine 5'-diphosphoglucose has recently been shown to label a 62-kDa protein in crude homogenates and in partially purified enzyme preparations without photoactivation. Here, we report that a portion of this radioactivity is due to labeling of phosphoglucomutase by contaminating levels of [32P]alpha Glc-1-P initially present at less than 1% of the total 32P. This conclusion is based in part on the ability of excess unlabeled alpha Glc-1-P and Glc-6-P, but not UDP-Glc, to block the labeling. In addition, the labeled protein in liver homogenates had a tryptic peptide pattern similar to that of authentic phosphoglucomutase. These findings, however, raised a second question. Assays for the UDP-Glc: glycoprotein glucosyl phosphotransferase (Glc phosphotransferase) have utilized [beta-32P]UDP-Glc and have resulted in the labeling of a small number of acceptors, including one of approximately 62 kDa. Despite the fact that these assays had routinely been performed in the presence of 1 mM alpha Glc-1-P, the coincidence in molecular weights led to these further studies. We conclude that the acceptor of approximately 62 kDa is distinct from phosphoglucomutase. This conclusion is based on differences in the time courses of incorporation, the specificity of blocking agents, the presence of covalently linked glucose, the products of acid hydrolysis and of beta-elimination, and isoelectric points.  相似文献   

7.
A series of proteins are covalently labeled when human lymphocytes are incubated with [32P]NAD+. The majority of this labeling is effectively inhibited when the lymphocytes are coincubated with 3-aminobenzamide, a potent inhibitor of poly(ADP-ribose) polymerase. However, labeling of a 72 000 molecular weight protein was resistant to the inhibitory effect of 3-aminobenzamide. Labeling of this protein from [32P]NAD+ was shown to be Mg2+-dependent. The 72 000 molecular weight protein could also be labeled on incubation with [alpha-32P]ATP, [gamma-32P]ATP and [32P]orthophosphate, but not from [3H]NAD+ or [14C]NAD+. In the present study, we show that the 72 000 molecular weight protein is not ADP-ribosylated but rather, phosphorylated on incubation with [32P]NAD+. This phosphorylation appears to occur via an Mg2+-dependent conversion of NAD+ to AMP with the eventual utilization of the alpha-phosphate for phosphorylation of the 72 000 molecular weight protein.  相似文献   

8.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca(2+)-mobilizing agent in invertebrate eggs that has recently been shown to be active in certain mammalian and plant systems. Little, however, is known concerning the properties of putative NAADP receptors. Here, for the first time, we report binding sites for NAADP in brain. In contrast to sea urchin egg homogenates, [(32)P]NAADP bound reversibly to multiple sites in brain membranes. The rank order of potency of NAADP, 2',3'-cyclic NAADP and 3'-NAADP in displacing [(32)P]NAADP was, however, the same in the two systems and in agreement with their ability to mobilize Ca(2+) from homogenates. These data indicate that [(32)P]NAADP likely binds to receptors mediating Ca(2+) mobilization. Autoradiography revealed striking heterogeneity in the distribution of [(32)P]NAADP binding sites throughout the brain. Our data strongly support a role for NAADP-induced Ca(2+) signaling in the brain.  相似文献   

9.
Glutamine synthetase from the photosynthetic bacterium Rhodospirillum rubrum is the target of both ATP- and NAD-dependent modification. Incubation of R. rubrum cell supernatant with [alpha-32P]NAD results in the labeling of glutamine synthetase and two other unidentified proteins. Dinitrogenase reductase ADP-ribosyltransferase does not appear to be responsible for the modification of glutamine synthetase or the unidentified proteins. The [alpha-32P]ATP- and [alpha-32P] NAD-dependent modifications of R. rubrum glutamine synthetase appear to be exclusive and the two forms of modified glutamine synthetase are separable on two-dimensional gels. Loss of enzymatic activity by glutamine synthetase did not correlate with [alpha-32P]NAD labeling. This is in contrast to inactivation by nonphysiological ADP-ribosylation of other glutamine synthetases by an NAD:arginine ADP-ribosyltransferase from turkey erythrocytes (Moss, J., Watkins, P.A., Stanley, S.J., Purnell, M.R., and Kidwell, W.R. (1984) J. Biol. Chem. 259, 5100-5104). A 32P-labeled protein spot comigrates with the NAD-treated glutamine synthetase spot when glutamine synthetase purified from H3 32PO4-grown cells is analyzed on two-dimensional gels. The adenylylation site of R. rubrum glutamine synthetase has been determined to be Leu-(Asp)-Tyr-Leu-Pro-Pro-Glu-Glu-Leu-Met; the tyrosine residue is the site of modification.  相似文献   

10.
G Lauquin  R Pougeois  P V Vignais 《Biochemistry》1980,19(20):4620-4626
4-Azido-2-nitrophenyl phosphate (ANPP) was synthesized and characterized. ANPP, unlabeled or labeled by 32P, was used as a photoreactive analogue of Pi to study the Pi binding site(s) in isolated F1-ATPase and inside-out particles from beef heart mitochondria. In the dark, the phosphate bond of ANPP was cleaved by alkaline phosphatase but not by mitochondrial F1-ATPase. ANPP bound reversibly to the phosphate site of F1-ATPase as shown by competitive inhibition of binding of Pi to F1-ATPase by ANPP in the dark; the Ki value was 60 microM. Upon photoirradiation with visible light, [32P]ANPP bound covalently to F1-ATPase and inactivated the enzyme. Part of the added ANPP was, however, photolyzed with release of Pi. By extrapolation, it could be calculated that complete inactivatin of F1-ATPase was accompanied by incorporation of 32P radioactivity corresponding to 1 mol of [32P]ANPP per mol of F1-ATPase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of [32P]-ANPP-labeled F1-ATPase revealed only one radioactive peptide with a Mr of 50000. This peptide was characterized as the beta subunit of F1-ATPase by specific labeling with [14C]dicyclohexylcarbodiimide [Pougeois, R., Satre, M., & Vignais, P. V. (1979) Biochemistry 18, 1408-1413]. Photoirradiation of inside-out submitochondrial particles with [32P]ANPP resulted in the labeling of two peptides with a Mr of 50000 and 30000-32000; both labelings were significantly decreased by incubation of the particles with Pi prior to photoirradiation. The Mr 50000 peptide is most probably the beta subunit of F1-ATPase; the other peptide might be the Pi carrier protein.  相似文献   

11.
12.
The ability to verify the sequence of a nucleic acid-based therapeutic is an essential step in the drug development process. The challenge associated with sequence identification increases with the length and nuclease resistance of the nucleic acid molecule, the latter being an important attribute of therapeutic oligonucleotides. We describe methods for the sequence determination of Spiegelmers, which are enantiomers of naturally occurring RNA with high resistance to enzymatic degradation. Spiegelmer sequencing is effected by affixing a label or hapten to the 5'-end of the oligonucleotide and chemically degrading the molecule in a controlled fashion to generate fragments that are then resolved and identified using liquid chromatography-mass spectrometry. The Spiegelmer sequence is then derived from these fragments. Examples are shown for two different Spiegelmers (NOX-E36 and NOX-A12), and the specificity of the method is shown using a NOX-E36 mismatch control.  相似文献   

13.
Both ATP sites of human P-glycoprotein are essential but not symmetric.   总被引:5,自引:0,他引:5  
Human P-glycoprotein (P-gp) is a cell surface drug efflux pump that contains two nucleotide binding domains (NBDs). Mutations were made in each of the Walker B consensus motifs of the NBDs at positions D555N and D1200N, thought to be involved in Mg(2+) binding. Although the mutant and wild-type P-gps were expressed equivalently at the cell surface and bound the drug analogue [(125)I]iodoarylazidoprazosin ([(125)I]IAAP) comparably, neither of the mutant proteins was able to transport fluorescent substrates nor had detectable basal nor drug-stimulated ATPase activities. The wild-type and D1200N P-gps were labeled comparably with [alpha-(32)P]-8-azido-ATP at a subsaturating concentration of 2.5 microM, whereas labeling of the D555N mutant was severely impaired. Mild trypsin digestion, to cleave the protein into two halves, demonstrated that the N-half of the wild-type and D1200N proteins was labeled preferentially with [alpha-(32)P]-8-azido-ATP. [alpha-(32)P]-8-Azido-ATP labeling at 4 degrees C was inhibited in a concentration-dependent manner by ATP with half-maximal inhibition at approximately 10-20 microM for the P-gp-D1200N mutant and wild-type P-gp. A chimeric protein containing two N-half NBDs was found to be functional for transport and was also asymmetric with respect to [alpha-(32)P]-8-azido-ATP labeling, suggesting that the context of the ATP site rather than its exact sequence is an important determinant for ATP binding. By use of [alpha-(32)P]-8-azido-ATP and vanadate trapping, it was determined that the C-half of wild-type P-gp was labeled preferentially under hydrolysis conditions; however, the N-half was still capable of being labeled with [alpha-(32)P]-8-azido-ATP. Neither mutant was labeled under vanadate trapping conditions, indicating loss of ATP hydrolysis activity in the mutants. In confirmation of the lack of ATP hydrolysis, no inhibition of [(125)I]IAAP labeling was observed in the mutants in the presence of vanadate. Taken together, these data suggest that the two NBDs are asymmetric and intimately linked and that a conformational change in the protein may occur upon ATP hydrolysis. Furthermore, these data are consistent with a model in which binding of ATP to one site affects ATP hydrolysis at the second site.  相似文献   

14.
A 20-kilodalton adenosine nucleotide-binding protein (A-protein) extracted from rod outer segments is shown to catalyze the cholera toxin-mediated ADP-ribosylation of GTP-binding protein (G-protein) from the outer segment. Radiolabel from [adenylate-32P] NAD+ was associated specifically with both the alpha-subunit of G-protein and with A-protein in the presence of activated cholera toxin. In the absence of added A-protein, G-protein appears to undergo ADP-ribosylation at a slower rate. In the absence of G-protein, A-protein was found to be labeled following incubation with [adenylate-32P]NAD+ and cholera toxin. In the presence of G-protein, a light-dependent component of A-protein labeling was observed. A-protein is a labile component of rod outer segments and has an affinity for ADP. The findings suggest that A-protein may act as an ADP-ribosyltransferase in the cholera toxin-mediated ADP-ribosylation of G-protein.  相似文献   

15.
H Bernardi  M Fosset  M Lazdunski 《Biochemistry》1992,31(27):6328-6332
Covalent labeling of nucleotide binding sites of the purified sulfonylurea receptor has been carried out with alpha-32P-labeled oxidized ATP. The main part of 32P incorporation is in the 145-kDa glycoprotein that has been previously shown to be the sulfonylurea binding protein (Bernardi et al., 1988). ATP and ADP protect against this covalent labeling with K0.5 values of 100 microM and 500 microM, respectively. Non-hydrolyzable analogs of ATP also inhibit 32P incorporation. Interactions between nucleotide binding sites and sulfonylurea binding sites have then been observed. AMP-PNP, a nonhydrolyzable analog of ATP, produces a small inhibition of [3H]glibenclamide binding (20-25%) which was not influenced by Mg2+. Conversely, ADP, which also produced a small inhibition (20%) in the absence of Mg2+, produced a large inhibition (approximately 80%) in the presence of Mg2+. This inhibitory effect of the ADP-Mg2+ complex was observed with a K0.5 value of 100 +/- 40 microM. All the results taken together indicate that ATP and ADP-Mg2+ binding sites that control the activity of KATP channels are both present on the same subunit that bears the receptors for antidiabetic sulfonylureas.  相似文献   

16.
Cultured bovine adrenal chromaffin cells contain a pool of ATP sequestered within the chromaffin vesicles and an extravesicular pool of ATP. In a previous study it was shown that the turnover of ATP in the extravesicular pool was biphasic. One phase occurred with a t1/2 of 3.5-4.5 h whereas the second phase occurred with a t1/2 of several days. The studies described here were undertaken to characterize further the vesicular and extravesicular pools of ATP by examining the effects of metabolic inhibitors, adenosine, and digitonin on ATP utilization and subcellular localization immediately after and 48 h after labeling with [3H]adenosine and 32Pi. Immediately after labeling a combination of cyanide, 2-deoxy-D-glucose, the beta-glucono-1,5-lactone resulted in a 90-95% depletion of the labeled ATP but only a 25% depletion of the endogenous ATP within 30 min. Forty-eight hours after labeling, addition of the inhibitors resulted in a 70% depletion of the [3H]ATP but only a 25% depletion of the [32P]ATP and endogenous ATP. Addition of 10 microM adenosine to the media resulted in a similar loss of [3H]ATP in cells examined immediately after or 48 h after labeling. Adenosine increased the amounts of [32P]ATP when added immediately after labeling but had no effect on the [32P]ATP content when added 48 h after labeling.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The phosphohydrolase component of the microsomal glucose-6-phosphatase system has been identified as a 36.5-kDa polypeptide by 32P-labeling of the phosphoryl-enzyme intermediate formed during steady-state hydrolysis. A 36.5-kDa polypeptide was labeled when disrupted rat hepatic microsomes were incubated with three different 32P-labeled substrates for the enzyme (glucose-6-P, mannose-6-P, and PPi) and the reaction terminated with trichloroacetic acid. Labeling of the phosphoryl-enzyme intermediate with [32P]glucose-6-P was blocked by several well-characterized competitive inhibitors of glucose-6-phosphatase activity (e.g. Al(F)-4 and Pi) and by thermal inactivation, and labeling was not seen following incubations with 32Pi and [U-14C]glucose-6-P. In agreement with steady-state dictates, the amount of [32P]phosphoryl intermediate was directly and quantitatively proportional to the steady-state glucose-6-phosphatase activity measured under a variety of conditions in both intact and disrupted hepatic microsomes. The labeled 36.5-kDa polypeptide was specifically immunostained by antiserum raised in sheep against the partially purified rat hepatic enzyme, and the antiserum quantitatively immunoprecipitated glucose-6-phosphatase activity from cholate-solubilized rat hepatic microsomes. [32P]Glucose-6-P also labeled a similar-sized polypeptide in hepatic microsomes from sheep, rabbit, guinea pig, and mouse and rat renal microsomes. The glucose-6-phosphatase enzyme appears to be a minor protein of the hepatic endoplasmic reticulum, comprising about 0.1% of the total microsomal membrane proteins. The centrifugation of sodium dodecyl sulfate-solubilized membrane proteins was found to be a crucial step in the resolution of radiolabeled microsomal proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

18.
The topography and properties of plasma membrane proteins from mouse L-929 cells are studied by comparing their availability for enzymatic labeling on the external and internal surfaces of the membrane. In order to study the internal surface, phagolysosomes are prepared from cells after they ingest latex particles. The plasma membrane surrounding these seems to have an “inside-out” orientation. The sugars of the membrane glycoproteins in intact phagolysosomes are not available for interaction with lectins or available for periodate-borotritide labeling. A comparison of the lectin-binding proteins lableled by lactoperoxidase-catalyzed iodination on the external cell surface with those labeled on the internal cell surface suggests that a variety of plasma membrane glycoproteins span the lipid bilayer. Using two-dimensional gel electrophoresis it has been shown that selected proteins are labeled at both the internal and external faces of the plasma membrane. Analysis of the 2-D gel electrophoregrams reveals that there are two distinct prominent proteins at 60,000 and 100,000 daltons which are enzymatically iodinated from both sides of the membrane. The partial hydrolysis of the 100,000 dalton protein reveals that different peptides are iodinated when the iodination is performed on intact cells or on the phagolysosomes. These proteins are extensively phosphorylated in cells incubated with inorganic 32P. We conclude that the phagolysosome is probably oriented in an “inside-out” configuration and that this membrane preparation can be used to study the topographic organization of membrane proteins. The use of oriented membranes, selective labeling of proteins, and affinity separation of proteins in combination with gel electrophoresis to define the position and properties of proteins is discussed.  相似文献   

19.
The population of short DNA molecules (less than 10(3) nucleotides) in 3T3 cells has been studied using in vivo and in vitro pulse labeling techniques and in vitro end-labeling. There is a large number of molecules of less than 100 nucleotides present in equal numbers in both Go and S phase cells. In S phase cells, most of these molecules are not replicating intermediates because they do not become density-labeled after a moderate period of substitution of BrdUMP, although they are detected by end-labeling in vitro. This population includes the nascent Okazaki pieces that can be labeled in a short pulse with [3H]dThd or [3H]dTTP, however, these represent less than 10% of the total population. Alkaline hydrolysis of the molecules that had been end-labeled with 32P using [gamma32P]ATP and polynucleotide kinase did not reveal significant release of [32P] 2'(3'), 5' ribonucleoside diphosphates.  相似文献   

20.
In the preceeding paper (Brown, D. R., Roth, M. J., Reinberg, D., and Hurwitz, J. (1984) J. Biol. Chem. 259, 10545-10555), it was shown that following bacteriophage phi X174 (phi X) DNA synthesis in vitro using purified proteins, the phi X A protein could be detected covalently linked to nascent 32P-labeled DNA. This phi X A protein-[32P]DNA complex was the product of the reinitiation reaction. The phi X A protein-[32P]DNA complex could be trapped as a protein-32P-oligonucleotide complex by the inclusion of ddGTP in reaction mixtures. In this report, the structure of the phi X A protein-32P-oligonucleotide complex has been analyzed. The DNA sequence of the oligonucleotide bound to the phi X A protein has been determined and shown to be homologous to the phi X (+) strand sequence immediately adjacent (3') to the replication origin. The phi X A protein was directly linked to the 5' position of a dAMP residue of the oligonucleotide; this residue corresponded to position 4306 of the phi X DNA sequence. The phi X A protein-32P-oligonucleotide complex was exhaustively digested with either trypsin or proteinase K and the 32P-labeled proteolytic fragments were analyzed. Each protease yielded two different 32P-labeled peptides in approximately equimolar ratios. The two 32P-labeled peptides formed after digestion with trypsin (designated T1 and T2) and with proteinase K (designated PK1 and PK2) were isolated and characterized. Digestion of peptide T1 with proteinase K yielded a product which co-migrated with peptide PK2. In contrast, peptide T2 was unaffected by digestion with proteinase K. These results suggest that the phi X A protein contains two active sites that are each capable of binding covalently to DNA. The peptide-mononucleotide complexes T1-[32P]pdA and T2-[32P]pdA were isolated and subjected to acid hydrolysis in 6.0 N HCl. In each case, the major 32P-labeled products were identified as [32P] phosphotyrosine and [32P]Pi. This indicates that each active site of the phi X A protein participates in a phosphodiester linkage between a tyrosyl moiety of the protein and the 5' position of dAMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号