首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The number of reactive amino groups in cuticular proteins decreases during the early period of insect cuticular sclerotization, presumably due to reaction with oxidation products of N-acetyldopamine (NADA) and N-beta-alanyldopamine (NBAD). We have quantitated the decrease in cuticular N-terminal amino groups and lysine epsilon-amino groups during the first 24h of sclerotization in adult locusts, Schistocerca gregaria, and in larval and adult beetles, Tenebrio molitor, as well as the increase in beta-alanine amino groups in Tenebrio cuticle. The results indicate that nearly all glycine N-terminal groups and a significant part of the epsilon-amino groups from lysine residues are involved in the sclerotization process in both locusts and Tenebrio. A pronounced increase in the amount of free beta-alanine amino groups was observed in cuticle from adult Tenebrio and to a lesser extent also in Tenebrio larval cuticle, but from locust cuticle no beta-alanine was obtained. Hydrolysis of sclerotized cuticles from locusts and Tenebrio by dilute hydrochloric acid released a large number of compounds containing amino acids linked to catecholic moieties. Products have been identified which contain histidine residues linked via their imidazole group to the beta-position of various catechols, such as dopamine, 3,4-dihydroxyphenyl-ethanol (DOPET), and 3,4-dihydroxyphenyl-acetaldehyde (DOPALD), and a ketocatecholic compound has also been identified composed of lysine linked via its epsilon-amino group to the alpha-carbon atom of 3,4-dihydroxyacetophenone. Some of the hydrolysis products have previously been obtained from sclerotized pupal cuticle of Manduca sexta [Xu, R., Huang, X., Hopkins, T.L., Kramer, K.J., 1997. Catecholamine and histidyl protein cross-linked structures in sclerotized insect cuticle. Insect Biochemistry and Molecular Biology 27, 101-108; Kerwin, J.L., Turecek, F., Xu, R., Kramer, K.J., Hopkins, T.L., Gatlin, C.L., Yates, J.R., 1999. Mass spectrometric analysis of catechol-histidine adducts from insect cuticle. Analytical Biochemistry 268, 229-237; Kramer, K.J., Kanost, M.R., Hopkins, T.L., Jiang, H., Zhu, Y.C., Xu, R., Kerwin, J.L., Turecek, F., 2001. Oxidative conjugation of catechols with proteins in insect skeletal systems. Tetrahedron 57, 385-392], but the lysine-dihydroxyacetophenone compound and the histidine-DOPALD adduct have not been reported before. It is suggested that the compounds are derived from NADA and NBAD residues which were incorporated into the cuticle during sclerotization, and that the lysine-dihydroxyacetophenone as well as the DOPET and DOPALD containing adducts are degradation products derived from cross-links between the cuticular proteins, whereas the dopamine-containing adducts are derived from a non-crosslinking reaction product.  相似文献   

2.
《Insect Biochemistry》1986,16(3):441-447
Proteins were extracted from the still unhardened (teneral) cuticle of the migratory locust, Locusta migratoria. The proteins are soluble only at extreme pH-values and at low ionic strength, the solubility increases with decreasing temperature. The unhardened cuticle contains approx. 100 different proteins according to two-dimensional polyacrylamide gel electrophoresis. The majority of the proteins are very basic. The basicity and solubility properties of the proteins have necessitated development of modified electrophoretic procedures. The amino acid composition of the bulk protein shows that alanine, proline, glycine, valine and tyrosine constitute two thirds of the total amino acid content and that cysteine, methionine and tryptophan are absent.The proteins have been extracted from various parts of the cuticle and analysed by two-dimensional electrophoresis. Characteristic protein compositions were found for cuticle from the different body parts. Amino acid analyses of these extracts are strikingly similar. The only significant difference is in the glycine-alanine ratio. Cuticles that are destined to become hard are extremely rich in alanine, whereas the flexible parts of the cuticle are enriched in glycine. The results indicate that the proteins of locust cuticle constitute a group of structural proteins different from other known structural proteins.  相似文献   

3.
The complete amino acid sequence of a structural protein isolated from pharate cuticle of the locust Locusta migratoria was determined. The protein has an unusual amino acid composition: 42% of the residues are alanine and only 14 of the 20 common amino acid residues are present. The primary structure consists of regions enriched in particular amino acid residues. The N-terminal region and a region close to the C-terminus are enriched in glycine. The rest of the protein is dominated by alanine, except for two short regions enriched in hydrophilic residues. Almost all the proline residues are situated in the alanine-rich regions in a conserved sequence 'A-A-P-A/V'. An internal duplication has taken place covering most of the protein except for the glycine-rich regions. Owing to the unusual features of the protein a combination of automated Edman degradations and plasma-desorption m.s. was used to determine the complete sequence. The protein does not show sequence homology to other proteins, but proteins divided into regions enriched in the same kind of amino acid residues have been isolated from other insect structures.  相似文献   

4.
Cuticular proteins (CPs) are structural proteins of insects as well as other arthropods. Several CP families have been described, among them a small family defined by a 51 amino acid motif [Andersen, S.O., Rafn, K., Roepstorff, P., 1997. Sequence studies of proteins from larval and pupal cuticle of the yellow meal worm, Tenebrio molitor. Insect Biochem. Mol. Biol. 27, 121-131]. We identified four proteins of this family in Anopheles gambiae that we have named CPF. We have also identified CPFs from other insects by searching databases. Alignment of these CPF proteins showed that the conserved region is only 44 aa long and revealed another conserved motif at the C-terminus. A dendrogram divided the CPF proteins into four groups, one basal and three specialized. We also identified several proteins of another CP family, CPFL, which has similarities to CPFs. CPFs and CPFLs share some protein motifs. Expression studies with real-time qRT-PCR of the A. gambiae CPFs and CPFLs showed that the four CPFs and one CPFL gene are expressed just before pupal or adult ecdysis, suggesting that they are components of the outer layer of pupal and adult cuticles. The other CPFLs appear to contribute to larval cuticle. Recombinant CPF proteins did not bind to chitin in the assay we used.  相似文献   

5.
Proteins were purified from the carapace cuticle of a juvenile horseshoe crab, Limulus polyphemus, and several of them were characterized by amino acid sequence determination. The proteins are small (7-16 kDa) and their isoelectric points range from 6.5 to 9.2. They have high contents of tyrosine, ranging from 13.5 to 35.4%. Some of the proteins show sequence similarity to cuticular proteins from other arthropod groups, with the most pronounced similarity to proteins from the cuticle of the spider Araneus diadematus. Two proteins show sequence similarity to a hexamerin storage protein from Blaberus discoidalis.  相似文献   

6.
Several clones encoding serine protease inhibitors were isolated from larval and adult flea cDNA expression libraries by immunoscreening and PCR amplification. Each cDNA contained an open reading frame encoding a protein of approximately 45 kDa, which had significant sequence similarity with the serpin family of serine protease inhibitors. The thirteen cDNA clones isolated to date encode serpin proteins, which share a primary structure that includes a nearly identical constant region of about 360 amino acids, followed by a C-terminal variable region of about 40-60 amino acids. The variable C-terminal sequences encode most of the reactive site loop (RSL) and are generated by mutually exclusive alternative exon splicing, which may confer unique protease selectivity to each serpin. Utilization of an alternative exon splicing mechanism has been verified by sequence analysis of a flea serpin genomic clone and adjacent genomic sequences. RNA expression patterns of the cloned genes have been examined by Northern blot analysis using variable region-specific probes. Several putative serpins have been overexpressed using the cDNA clones in Escherichia coli and baculovirus expression systems. Two purified baculovirus-expressed recombinant proteins have N-terminal amino acid sequences identical to the respective purified native mature flea serpins indicating that appropriate N-terminal processing occurred in the virus-infected insect cells.  相似文献   

7.
The proteins in the distensible alloscutal cuticle of the blood-feeding tick, Ixodes ricinus, have been characterized by electrophoresis and chromatography, two of the proteins were purified and their total amino acid sequence determined. They show sequence similarity to cuticular proteins from the spider, Araneus diadematus, and the horseshoe crab, Limulus polyphemus, and to a lesser extent to insect cuticular proteins. They contain a conserved sequence region, which is closely related to the chitin-binding Rebers-Riddiford consensus sequence present in many insect cuticular proteins. Only a fraction of the alloscutal proteins can be readily dissolved, and the dissolved proteins are difficult to separate by electrophoresis and column chromatography. The insoluble fraction can only be dissolved after degradation to smaller peptides. The mixture of extractable proteins as well as hydrolysates of the insoluble fraction are fluorescent when exposed to ultraviolet light, and the fluorescence corresponds in excitation and emission maxima to the fluorescence of the rubber-like arthropodan protein, resilin, and to the amino acid dityrosine. Small amounts of dityrosine were obtained from ticks in the early phase of a blood meal when the cuticle weighs less than 4 mg; increasing amounts were obtained from animals in the initial period of feeding, during which the cuticular weight increases from 4 to 11 mg, whereas little increase in dityrosine content was observed during the final period of engorgement. Cuticle from fully distended ticks contains about 60-80 nmole dityrosine per tick, corresponding to 2-3 microg/mg cuticle. It is suggested that the major part of the cuticular proteins is made inextractable by cross-linking by dityrosine residues, and that dityrosine plays a role in stabilizing the cuticular structure during the extensive distension occurring during a blood meal. Small amounts of 3-monochlorotyrosine and 3,5-dichlorotyrosine were obtained from the distended tick cuticle, corresponding to chlorination of between 0.5% and 1.5% of the tyrosine residues. It is suggested that the chlorotyrosines are a side-product of oxidative processes in the cuticle.  相似文献   

8.
《Insect Biochemistry》1987,17(1):45-51
The urea-extractable proteins from the abdominal cuticle of mature locusts Locusta migratoria, have been characterized by two-dimensional electrophoresis and by amino acid analysis of purified components. The existence of sex-related differences in protein composition was confirmed in mature cuticle, whereas such differences are absent in pharate cuticle. The proteins from mature cuticle are mainly acidic, while the pharate proteins are mainly basic. The deposition of the proteins characteristic for mature cuticle starts within a few days after ecdysis; the different proteins do not appear simultaneously in the extracts. It is suggested that the pharate proteins represent exocuticle, that the proteins extracted from mature cuticle are derived from endocuticle, and that the differences between the two groups of proteins will give the two layers different physical properties.  相似文献   

9.
10.
Protein acylation processes involve the covalent attachment of acyl moieties to the alpha- and epsilon-amino groups of polypeptide chains. The N-terminal blocking of proteins occurs in a wide range of eukariotic cells, where more than 50% of the cytosolic proteins can be N-alpha-acetylated. The acetylation which occurs during or after the biosynthesis of the polypeptide chains serves to protect the intracellular proteins from proteolysis. Food processing can also generate N-alpha-acetylated proteins and peptides. The mechanism underlying the intracellular catabolism of N-acetylated proteins has not yet been elucidated, however. It is generally assumed that two enzymes are involved in the hydrolysis of the N-terminal part of the proteins. The NH(2)-blocked peptides generated during proteolysis may be cleaved by an N-acylpeptide hydrolase (APH). This releases the N-terminal amino acid, which is in turn deacetylated by an aminoacylase, the most common of which is aminoacylase 1 (ACY 1). The corresponding free amino acid is therefore available for protein synthesis. Both APH and ACY 1 are cytoplasmic enzymes, which have been isolated from various mammalian tissues. APH belongs to a novel class of serine-type peptidases called the prolyl oligopeptidase (PROP) family. ACY 1 belongs to the M20 metalloenzyme family. In this review, the processes involved in alpha- and epsilon-acetylation and the catabolism of endogenous proteins and proteins involved in food processing are discussed. We then focus on the characteristics of the APH and ACY 1 enzymes involved in the final release of the free amino acids, which are essential to protein synthesis.  相似文献   

11.
The human fungal pathogen Candida albicans colonizes and invades a wide range of host tissues. Adherence to host constituents plays an important role in this process. Two members of the C. albicans Als protein family (Als1p and Als5p) have been found to mediate adherence; however, the functions of other members of this family are unknown. In this study, members of the ALS gene family were cloned and expressed in Saccharomyces cerevisiae to characterize their individual functions. Distinct Als proteins conferred distinct adherence profiles to diverse host substrates. Using chimeric Als5p-Als6p constructs, the regions mediating substrate-specific adherence were localized to the N-terminal domains in Als proteins. Interestingly, a subset of Als proteins also mediated endothelial cell invasion, a previously unknown function of this family. Consistent with these results, homology modeling revealed that Als members contain anti-parallel beta-sheet motifs interposed by extended regions, homologous to adhesins or invasins of the immunoglobulin superfamily. This finding was confirmed using circular dichroism and Fourier transform infrared spectrometric analysis of the N-terminal domain of Als1p. Specific regions of amino acid hypervariability were found among the N-terminal domains of Als proteins, and energy-based models predicted similarities and differences in the N-terminal domains that probably govern the diverse function of Als family members. Collectively, these results indicate that the structural and functional diversity within the Als family provides C. albicans with an array of cell wall proteins capable of recognizing and interacting with a wide range of host constituents during infection.  相似文献   

12.
13.
Apidermin (APD)蛋白家族是一个新的昆虫结构性表皮蛋白家族。本研究结合生物信息学和RT-PCR扩增, 对意大利蜜蜂Apis mellifera ligustica(简称“意蜂”)的apd-1-like, apd-3-like和中华蜜蜂Apis cerena cerena(简称“中蜂”)的apd-2 等3个新的apd基因的结构特征和表达进行了分析, 并分析了昆虫APD蛋白家族的序列特征。结果显示, 在西方蜜蜂Apis mellifera(简称“西蜂”)中, apd基因家族的6个成员串联排列在基因组序列第4号连锁群上, 它们在A. m. ligustica雄蜂头部中的转录水平差异明显, 且其启动子序列所含顺式元件也不同。中蜂apd-2和意蜂apd-1-like都含有3个外显子和2个内含子, 而意蜂apd-3-like则由4个外显子和3个内含子组成。蛋白序列分析结果显示, 目前已知的10条APD蛋白序列N末端均具有相似的信号肽序列, 其成熟蛋白分子量为6.0~37.0 kD, pI为6.2~10.8。其中西蜂的APD1-3、APD-like和东方蜜蜂Apis cerena的APD-2等5条较短的多肽中疏水氨基酸残基达52%~67%, 且Ala含量最为丰富(占25%~34%); 而丽蝇蛹集金小蜂Nasonia vitripennis的APD 1-3和西蜂APD-1-like, APD-3-like等另外5条APD多肽富含Gly(21%~30%), 其序列中疏水氨基酸残基含量为35%~41%。多肽序列多重比对和系统进化分析结果显示, APD家族可划分为2个亚家族。亚家族Ⅰ含有西蜂APD 1-3和东方蜜蜂APD-2等4条较短的多肽序列, 其N末端为一个长33 aa的保守基序; 亚家族Ⅱ由另外6条相对较长的多肽序列组成, 其N末端保守基序长50 aa, C末端保守基序长16 aa。本文所描述的APD蛋白家族序列特征有助于以后从其他昆虫中鉴定新的apd基因。  相似文献   

14.
The insect cuticle is a unique material that covers the exterior of the animal as well as lining the foregut, hindgut, and tracheae. It offers protection from predators and desiccation, defines body shape, and serves as an attachment site for internal organs and muscle. It has demonstrated remarkable variations in hardness, flexibility and elasticity, all the while being light weight, which allows for ease of movement and flight. It is composed primarily of chitin, proteins, catecholamines, and lipids. Proteomic analyses of cuticle from different life stages and species of insects has allowed for a more detailed examination of the protein content and how it relates to cuticle mechanical properties. It is now recognized that several groups of cuticular proteins exist and that they can be classified according to conserved amino acid sequence motifs. We have annotated the genome of the tobacco hornworm, Manduca sexta, for genes that encode putative cuticular proteins that belong to seven different groups: proteins with a Rebers and Riddiford motif (CPR), proteins analogous to peritrophins (CPAP), proteins with a tweedle motif (CPT), proteins with a 44 amino acid motif (CPF), proteins that are CPF-like (CPFL), proteins with an 18 amino acid motif (18 aa), and proteins with two to three copies of a C-X5-C motif (CPCFC). In total we annotated 248 genes, of which 207 belong to the CPR family, the most for any insect genome annotated to date. Additionally, we discovered new members of the CPAP family and determined that orthologous genes are present in other insects. We established orthology between the M. sexta and Bombyx mori genes and identified duplication events that occurred after separation of the two species. Finally, we utilized 52 RNAseq libraries to ascertain gene expression profiles that revealed commonalities and differences between different tissues and developmental stages.  相似文献   

15.
The pattern of cuticular protein synthesis by the epidermis of the tobacco hornworm larva changes during the final day of feeding, leading to an alteration in cuticular structure and a stiffening of the cuticle. We have isolated a small multigene family which codes for at least three of the new cuticular proteins made at this time. The five genes which were isolated from this family map to two different genomic regions. Sequencing shows that one of the genes is 1.9 kb and consists of three exons coding for a 12.2-kDa acidic (pI = 5.26) protein that is predominantly hydrophilic. The deduced amino acid sequence shows regions of similarity to proteins from flexible lepidopteran cuticles and from Drosophila larval and pupal cuticles, but not to proteins found in highly sclerotized cuticles. This gene family is first expressed late on the penultimate day (Day 2) of feeding in the final larval instar and ceases expression 2 days later when metamorphosis begins. In situ hybridization shows that this gene family is expressed in all the epidermal cells of Day 3 larvae except the bristle cells and those at the muscle attachment site. Expression can be induced in Day 1 epidermis by exposure to 50 ng/ml 20-hydroxyecdysone in vitro, but only if juvenile hormone is absent. Its developmental expression, tissue specificity, and hormonal regulation strongly suggest that this multigene family is involved in the structural changes that occur in the larval cuticle just prior to the onset of metamorphosis.  相似文献   

16.
The cDNA encoding the 182 amino acid long precursor stellacyanin from Cucumis sativus was isolated and characterized. The protein precursor consists of four sequence domains: I, a 23 amino acid hydrophobic N-terminal signal peptide with features characteristic of secretory proteins; II, a 109 amino acid copper-binding domain; III, a 26 amino acid hydroxyproline- and serine-rich peptide characteristic of motifs found in the extension family, extracellular structural glycoproteins found in plant cell walls; and IV, a 22 amino acid hydrophobic extension. Maturation of the protein involves posttranslational processing of domains I and IV. The copper-binding domain (domain II), which shares high sequence identity with other stellacyanins, has been expressed without its carbohydrate attachment sites, refolded from the Escherichia coli inclusion bodies, purified, and characterized by electronic absorption, EPR, ESEEM, and RR spectroscopy. Its spectroscopic properties are nearly identical to those of stellacyanin from the Japanese lacquer tree Rhus vernicifera, the most extensively studied and best characterized stellacyanin, indicating that this domain folds correctly, even in the absence of its carbohydrate moiety. The presence of a hydroxyproline- and serine-rich domain III suggests that stellacyanin may have a function other than that of a diffusible electron transfer protein, conceivably participating in redox reactions localized at the plant cell wall, which are known to occur in response to wounding or infection of the plant.  相似文献   

17.
The complete amino acid sequence of a structural protein, protein 8, isolated from the pharate cuticle of the locust Locusta migratoria was determined. Protein 8 contains 148 amino acid residues and has an Mr of 15,224. By the extensive use of information obtained by plasma-desorption mass spectrometry (p.d.m.s.) it was possible to reduce the need for conventional sequence determination and to improve the reliability of the results. On the basis of the determined Mr of the intact protein all the peptides that constitute the complete sequence could be isolated from a time-course enzymic digestion. The isolated peptides were sequenced by using a combination of Edman degradation and carboxypeptidase digestion monitored by p.d.m.s. The alignment of the peptides was established from the time-course digestion and further verified by a second enzymic digestion. The primary structure of the protein consists of two hydrophilic and two hydrophobic regions. The hydrophobic regions are enriched in alanine, valine and proline and dominated by a repetitive sequence Ala-Ala-Pro-(Ala/Val). The sequence strengthens the view that the cuticle proteins belong to a unique family of structural proteins.  相似文献   

18.
CAP-50 is a member of annexin family proteins which binds specifically to calcyclin in a Ca2+ dependent manner (Tokumitsu. H., Mizutani. A., Minami. H., Kobayashi. R., and Hidaka. H. (1992) J. Biol. Chem. 267,8919-8924). The cDNA representing the rabbit form of this protein has been cloned from rabbit lung cDNA library. Sequence analysis of two overlapping clones revealed a 81-nucleotides 5'-nontranslated region, 1512-nucleotides of open reading frame, a 672-nucleotides 3'-nontranslated region, and a poly(A) tail. Authenticity of the clones was confirmed by comparison of portions of the deduced amino acid sequence with eight sequences of proteolytic peptides obtained from rabbit lung protein. CAP-50 cDNA encodes a 503 residue protein with a calculated M(r) of 54,043 and shows that the protein is composed of four imperfect repeats and hydrophobic N-terminal region. C-terminal region including four imperfect repeats shows 58.1% identity with human synexin (annexin VII), 48.0% identity with annexin I, 47.4% identity with annexin II, 60.1% identity with annexin IV, 54.5% identity with annexin V. Hydrophobic N-terminal region composed of 202 amino acid residues is not homologous with other annexin proteins suggesting that CAP-50 is a novel member of annexin family proteins.  相似文献   

19.
Two blue-pigment binding proteins, BP1 and BP2, are present in larval and pupal haemolymph of cabbage white butterfly, Pieris rapae, and fluctuate in expression during development. Both BP1 and BP2 are found in pupal haemolymph in varying proportions as well as in adult haemolymph, while only small amounts of BP2 are found in larval haemolymph. BPs are separated by 75% ammonium sulfate, and then purified effectively by ion exchange column chromatography and preparative gel electrophoresis. It was shown that BP1 and BP2 have molecular masses of 20,244 and 19,878 Da, and isoelectric points of 7.0 and 6.8, respectively. Considering their amino acid compositions and N-terminal amino acid sequences, the two proteins are almost identical except the first N-terminal amino acid. The first amino acid of BP1 is asparagine, whereas the initial residue of BP2 is aspartic acid. Anti-BP1 cross-reacts with BP2, indicating that they have immunological homogeneity. Western blotting analyses revealed that only BP1 was present in the larval tissues such as fat body, integument, muscle, and hindgut. However, BP1 was not found in midgut, Malphigian tubules, and silk gland. BP1 was also present in the protein bodies, and both cuticle and hemocoel sides of larval epidermis cells by the transmission electron microscopic observation. The information in this report will facilitate studies on the molecular biology and biological significance of insect BPs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号