共查询到20条相似文献,搜索用时 15 毫秒
1.
An increasing number of experimental and theoretical studies have demonstrated the importance of the 3(10)-helix/ alpha-helix/coil equilibrium for the structure and folding of peptides and proteins. One way to perturb this equilibrium is to introduce side-chain interactions that stabilize or destabilize one helix. For example, an attractive i, i + 4 interaction, present only in the alpha-helix, will favor the alpha-helix over 3(10), while an i, i + 4 repulsion will favor the 3(10)-helix over alpha. To quantify the 3(10)/alpha/coil equilibrium, it is essential to use a helix/coil theory that considers the stability of every possible conformation of a peptide. We have previously developed models for the 3(10)-helix/coil and 3(10)-helix/alpha-helix/ coil equilibria. Here we extend this work by adding i, i + 3 and i, i + 4 side-chain interaction energies to the models. The theory is based on classifying residues into alpha-helical, 3(10)-helical, or nonhelical (coil) conformations. Statistical weights are assigned to residues in a helical conformation with an associated helical hydrogen bond, a helical conformation with no hydrogen bond, an N-cap position, a C-cap position, or the reference coil conformation plus i, i + 3 and i, i + 4 side-chain interactions. This work may provide a framework for quantitatively rationalizing experimental work on isolated 3(10)-helices and mixed 3(10)-/alpha-helices and for predicting the locations and stabilities of these structures in peptides and proteins. We conclude that strong i, i + 4 side-chain interactions favor alpha-helix formation, while the 3(10)-helix population is maximized when weaker i, i + 4 side-chain interactions are present. 相似文献
2.
Päiviö A Nordling E Kallberg Y Thyberg J Johansson J 《Protein science : a publication of the Protein Society》2004,13(5):1251-1259
Several proteins and peptides that can convert from alpha-helical to beta-sheet conformation and form amyloid fibrils, including the amyloid beta-peptide (Abeta) and the prion protein, contain a discordant alpha-helix that is composed of residues that strongly favor beta-strand formation. In their native states, 37 of 38 discordant helices are now found to interact with other protein segments or with lipid membranes, but Abeta apparently lacks such interactions. The helical propensity of the Abeta discordant region (K16LVFFAED23) is increased by introducing V18A/F19A/F20A replacements, and this is associated with reduced fibril formation. Addition of the tripeptide KAD or phospho-L-serine likewise increases the alpha-helical content of Abeta(12-28) and reduces aggregation and fibril formation of Abeta(1-40), Abeta(12-28), Abeta(12-24), and Abeta(14-23). In contrast, tripeptides with all-neutral, all-acidic or all-basic side chains, as well as phosphoethanolamine, phosphocholine, and phosphoglycerol have no significant effects on Abeta secondary structure or fibril formation. These data suggest that in free Abeta, the discordant alpha-helix lacks stabilizing interactions (likely as a consequence of proteolytic removal from a membrane-associated precursor protein) and that stabilization of this helix can reduce fibril formation. 相似文献
3.
M E Karpen P L de Haseth K E Neet 《Protein science : a publication of the Protein Society》1992,1(10):1333-1342
Local determinants of 3(10)-helix stabilization have been ascertained from the analysis of the crystal structure data base. We have clustered all 5-length substructures from 51 nonhomologous proteins into classes based on the conformational similarity of their backbone dihedral angles. Several clusters, derived from 3(10)-helices and multiple-turn conformations, had strong amino acid sequence patterns not evident among alpha-helices. Aspartate occurred over twice as frequently in the N-cap position of 3(10)-helices as in the N-cap position of alpha-helices. Unlike alpha-helices, 3(10)-helices had few C-termini ending in a left-handed alpha conformation; most 3(10) C-caps adopted an extended conformation. Differences in the distribution of hydrophobic residues among 3(10)- and alpha-helices were also apparent, producing amphipathic 3(10)-helices. Local interactions that stabilize 3(10)-helices can be inferred both from the strong amino acid preferences found for these short helices, as well as from the existence of substructures in which tertiary interactions replace consensus local interactions. Because the folding and unfolding of alpha-helices have been postulated to proceed through reverse-turn and 3(10)-helix intermediates, sequence differences between 3(10)- and alpha-helices can also lend insight into factors influencing alpha-helix initiation and propagation. 相似文献
4.
Tests for helix-stabilizing interactions between various nonpolar side chains in alanine-based peptides. 下载免费PDF全文
S. Padmanabhan R. L. Baldwin 《Protein science : a publication of the Protein Society》1994,3(11):1992-1997
Straight-chain, non-natural, nonpolar amino acids norleucine, norvaline, and alpha-amino-n-butyric acid at various spacings do not interact with themselves to stabilize helix formation in alanine-based peptides, but do interact with a Tyr spaced i, i + 4 to stabilize alanine helices, similar to the helix-stabilizing i, i + 4 Tyr-Leu and Tyr-Val interactions reported earlier (Padmanabhan S, Baldwin RL, 1994, J Mol Biol 241:706-713). Leu spaced i, i + 4 from another Leu is measurably helix-stabilizing relative to the corresponding i, i + 3 pair, but less so than for i, i + 4 Val-Leu, Ile-Leu, or Phe-Leu pairs (relative to the corresponding i, i + 3 pairs) when Leu is C-terminal to the other nonpolar amino acid. Our results indicate that limited side-chain flexibility in an alpha-helix strongly favors the interaction between 2 nonpolar residues to stabilize an isolated alpha-helix. 相似文献
5.
The prediction of the secondary structure of proteins from their amino acid sequences remains a key component of many approaches to the protein folding problem. The most abundant form of regular secondary structure in proteins is the alpha-helix, in which specific residue preferences exist at the N-terminal locations. Propensities derived from these observed amino acid frequencies in the Protein Data Bank (PDB) database correlate well with experimental free energies measured for residues at different N-terminal positions in alanine-based peptides. We report a novel method to exploit this data to improve protein secondary structure prediction through identification of the correct N-terminal sequences in alpha-helices, based on existing popular methods for secondary structure prediction. With this algorithm, the number of correctly predicted alpha-helix start positions was improved from 30% to 38%, while the overall prediction accuracy (Q3) remained the same, using cross-validated testing. Although the algorithm was developed and tested on multiple sequence alignment-based secondary structure predictions, it was also able to improve the predictions of start locations by methods that use single sequences to make their predictions. Furthermore, the residue frequencies at N-terminal positions of the improved predictions better reflect those seen at the N-terminal positions of alpha-helices in proteins. This has implications for areas such as comparative modeling, where a more accurate prediction of the N-terminal regions of alpha-helices should benefit attempts to model adjacent loop regions. The algorithm is available as a Web tool, located at http://rocky.bms.umist.ac.uk/elephant. 相似文献
6.
Analysis of interactive packing of secondary structural elements in alpha/beta units in proteins 下载免费PDF全文
Reddy BV Nagarajaram HA Blundell TL 《Protein science : a publication of the Protein Society》1999,8(3):573-586
An alpha-helix and a beta-strand are said to be interactively packed if at least one residue in each of the secondary structural elements loses 10% of its solvent accessible contact area on association with the other secondary structural element. An analysis of all such 5,975 nonidentical alpha/beta units in protein structures, defined at < or = 2.5 A resolution, shows that the interaxial distance between the alpha-helix and the beta-strand is linearly correlated with the residue-dependent function, log[(V/nda)/n-int], where V is the volume of amino acid residues in the packing interface, nda is the normalized difference in solvent accessible contact area of the residues in packed and unpacked secondary structural elements, and n-int is the number of residues in the packing interface. The beta-sheet unit (beta u), defined as a pair of adjacent parallel or antiparallel hydrogen-bonded beta-strands, packing with an alpha-helix shows a better correlation between the interaxial distance and log(V/nda) for the residues in the packing interface. This packing relationship is shown to be useful in the prediction of interaxial distances in alpha/beta units using the interacting residue information of equivalent alpha/beta units of homologous proteins. It is, therefore, of value in comparative modeling of protein structures. 相似文献
7.
A A Rashin 《Proteins》1992,13(2):120-131
A computational study of the role of all ionizable groups of the C-peptide in its helix-coil transition is performed within the framework of continuum electrostatics. The method employed in our computations involves a numeric solution of the Poisson equation with the Boundary Element Method. Our calculations correctly predict the experimentally observed trends in the helix-coil equilibrium of the C-peptide, and suggest that the mechanisms involved are more complex than usually presumed in the literature. Our results suggest that electrostatic interactions in the unfolded conformation are often more important than in the helix, total electrostatic contribution to the helix-coil transition due to the side chains of the C-peptide destabilizes the helix, changes in the helix stability produced by the changes in the ionization state of the side chains are dominated by side chain effects, the effect of the helix dipole on the energetics of the helix-coil transition of the C-peptide is either minor or similar to other contributions in magnitude; while the formation of a salt bridge is electrostatically favorable, formation of the hydrogen bond between a charged and a polar side chains is not. Factors limiting the accuracy of the computations are discussed. 相似文献
8.
C. R. Robinson S. G. Sligar 《Protein science : a publication of the Protein Society》1993,2(5):826-837
Charge substitutions generated by site-directed mutagenesis at the termini of adjacent anti-parallel alpha-helices in a four-helix bundle protein were used to determine a precise value for the contribution of indirect charge-charge interactions to overall protein stability, and to simulate the electrostatic effects of alpha-helix macrodipoles. Thermodynamic double mutant cycles were constructed to measure the interaction energy between such charges on adjacent anti-parallel helices in the four-helix bundle cytochrome b562 from Escherichia coli. Previously, theoretical calculations of helix macrodipole interactions using modeled four-helix bundle proteins have predicted values ranging over an order of magnitude from 0.2 to 2.5 kcal/mol. Our system represents the first experimental evidence for electrostatic interactions such as those between partial charges due to helix macrodipole charges. At the positions mutated, we have measured a favorable interaction energy of 0.6 kcal/mol between opposite charges simulating an anti-parallel helix pair. Pairs of negative or positive charges simulating a parallel orientation of helices produce an unfavorable interaction of similar magnitude. The interaction energies show a strong dependence upon ionic strength, consistent with an electrostatic effect. Indirect electrostatic contacts do appear to confer a limited stabilization upon the association of anti-parallel packing of helices, favoring this orientation by as much as 1 kcal/mol at 20 mM K phosphate. 相似文献
9.
Structure comparison of the pheromones Er-1, Er-10, and Er-2 from Euplotes raikovi. 总被引:1,自引:3,他引:1 下载免费PDF全文
P. Luginbühl M. Ottiger S. Mronga K. Wüthrich 《Protein science : a publication of the Protein Society》1994,3(9):1537-1546
The NMR structures of the homologous pheromones Er-1, Er-10, and Er-2 from the ciliated protozoan Euplotes raikovi are compared. For all 3 proteins the molecular architecture is made up of an antiparallel 3-helix bundle. The preservation of the core part of the structure is directly manifested by similar patterns of slowed backbone amide proton exchange rates, hydrogen bond formation, and relative solvent accessibility. To align the 6 half-cystine residues in the individual sequences within the preserved 3-dimensional core structure, several deletions and insertions had to be introduced that differ from those previously proposed on the basis of the primary structures. Of special interest is a deletion in the second helix of Er-2, which is accommodated by a transition from an alpha-helix in Er-1 and Er-10 to a 3(10)-helix in Er-2. The most significant structural differences are located in the C-terminal part of the proteins, which may have an important role in specific receptor recognition. 相似文献
10.
The packing of peptide helices in crystals of the leucine-rich decapeptide Boc-Aib-Leu-Aib-Aib-Leu-Leu-Leu-Aib-Leu-Aib-OMe provides an example of ladder-like leucylleucyl interactions between neighboring molecules. The peptide molecule forms a helix with five 5----1 hydrogen bonds and two 4----1 hydrogen bonds near the C terminus. Three head-to-tail NH ... O = C hydrogen bonds between helices form continuous columns of helices in the crystal. The helicial columns associate in an antiparallel fashion, except for the association of Leu ... Leu side chains, which occurs along the diagonal of the cell where the peptide helices are parallel. The peptide, with formula C56H102N10O13, crystallizes in space group P2(1)2(1)2(1) with Z = 4 and cell parameters a = 16.774(3) A, b = 20.032(3) A and c = 20.117(3) A; overall agreement factor R = 10.7% for 2014 data with magnitude of F(obs) greater than 3 sigma (F); resolution 1.0 A. 相似文献
11.
By analyzing transmembrane (TM) helices in known structures, we find that some polar amino acids are more frequent at the N terminus than at the C terminus. We propose the asymmetry occurs because most polar amino acids are better able to snorkel their polar atoms away from the membrane core at the N terminus than at the C terminus. Two findings lead us to this proposition: (1) side-chain conformations are influenced strongly by the N or C-terminal position of the amino acid in the bilayer, and (2) the favored snorkeling direction of an amino acid correlates well with its N to C-terminal composition bias. Our results suggest that TM helix predictions should incorporate an N to C-terminal composition bias, that rotamer preferences of TM side-chains are position-dependent, and that the ability to snorkel influences the evolutionary selection of amino acids for the helix N and C termini. 相似文献
12.
Tishgarten T Yin FF Faucher KM Dluhy RA Grant TR Fischer von Mollard G Stevens TH Lipscomb LA 《Protein science : a publication of the Protein Society》1999,8(11):2465-2473
In protein transport between organelles, interactions of v- and t-SNARE proteins are required for fusion of protein-containing vesicles with appropriate target compartments. Mammalian SNARE proteins have been observed to interact with NSF and SNAP, and yeast SNAREs with yeast homologues of NSF and SNAP proteins. This observation led to the hypothesis that, despite low sequence homology, SNARE proteins are structurally similar among eukaryotes. SNARE proteins can be classified into two groups depending on whether they interact with SNARE binding partners via conserved glutamine (Q-SNAREs) or arginine (R-SNAREs). Much of the published structural data available is for SNAREs involved in exocytosis (either in yeast or synaptic vesicles). This paper describes circular dichroism, Fourier transform infrared spectroscopy, and dynamic light scattering data for a set of yeast v- and t-SNARE proteins, Vti1p and Pep12p, that are Q-SNAREs involved in intracellular trafficking. Our results suggest that the secondary structure of Vti1p is highly alpha-helical and that Vti1p forms multimers under a variety of solution conditions. In these respects, Vti1p appears to be distinct from R-SNARE proteins characterized previously. The alpha-helicity of Vti1p is similar to that of Q-SNARE proteins characterized previously. Pep12p, a Q-SNARE, is highly alpha-helical. It is distinct from other Q-SNAREs in that it forms dimers under many of the solution conditions tested in our experiments. The results presented in this paper are among the first to suggest heterogeneity in the functioning of SNARE complexes. 相似文献
13.
T. M. Klingler D. L. Brutlag 《Protein science : a publication of the Protein Society》1994,3(10):1847-1857
We have developed a new representation for structural and functional motifs in protein sequences based on correlations between pairs of amino acids and applied it to alpha-helical and beta-sheet sequences. Existing probabilistic methods for representing and analyzing protein sequences have traditionally assumed conditional independence of evidence. In other words, amino acids are assumed to have no effect on each other. However, analyses of protein structures have repeatedly demonstrated the importance of interactions between amino acids in conferring both structure and function. Using Bayesian networks, we are able to model the relationships between amino acids at distinct positions in a protein sequence in addition to the amino acid distributions at each position. We have also developed an automated program for discovering sequence correlations using standard statistical tests and validation techniques. In this paper, we test this program on sequences from secondary structure motifs, namely alpha-helices and beta-sheets. In each case, the correlations our program discovers correspond well with known physical and chemical interactions between amino acids in structures. Furthermore, we show that, using different chemical alphabets for the amino acids, we discover structural relationships based on the same chemical principle used in constructing the alphabet. This new representation of 3-dimensional features in protein motifs, such as those arising from structural or functional constraints on the sequence, can be used to improve sequence analysis tools including pattern analysis and database search. 相似文献
14.
E. J. Milner-White 《Protein science : a publication of the Protein Society》1997,6(11):2477-2482
A majority of the standard texts dealing with proteins portray the peptide link as a mixture of two resonance forms, in one of which the nitrogen atom has a positive charge. As a consequence, it is often believed that the nitrogen atom has a net positive charge. This is in apparent contradiction with the partial negative charge on the nitrogen that is used in force fields for molecular modeling. However, charges on resonance forms are best regarded as formal rather than actual charges and current evidence clearly favors a net negative charge for the nitrogen atom. In the course of the discussion, new ideas about the electronic structure of amides and the peptide bond are presented. 相似文献
15.
Pulmonary surfactant-associated polypeptide C in a mixed organic solvent transforms from a monomeric alpha-helical state into insoluble beta-sheet aggregates. 下载免费PDF全文
T. Szyperski G. Vandenbussche T. Curstedt J. M. Ruysschaert K. Wüthrich J. Johansson 《Protein science : a publication of the Protein Society》1998,7(12):2533-2540
In the 35-residue pulmonary surfactant-associated lipopolypeptide C (SP-C), the stability of the valyl-rich alpha-helix comprising residues 9-34 has been monitored by circular dichroism, nuclear magnetic resonance, and Fourier transform infrared spectroscopy in both a mixed organic solvent and in phospholipid micelles. The alpha-helical form of SP-C observed in freshly prepared solutions in a mixed solvent of CHCl3/CH3OH/0.1 M HCl 32:64:5 (v/v/v) at 10 degrees C undergoes within a few days an irreversible transformation to an insoluble aggregate that contains beta-sheet secondary structure. Hydrogen exchange experiments revealed that this conformational transition proceeds through a transition state with an Eyring free activation enthalpy of about 100 kJ mol(-1), in which the polypeptide segment 9-27 largely retains a helical conformation. In dodecylphosphocholine micelles, the helical form of SP-C was maintained after seven weeks at 50 degrees C. The alpha-helical form of SP-C thus seems to be the thermodynamically most stable state in this micellar environment, whereas its presence in freshly prepared samples in the aforementioned mixed solvent is due to a high kinetic barrier for unfolding. These observations support a previously proposed pathway for in vivo synthesis of SP-C through proteolytic processing from a 21-kDa precursor protein. 相似文献
16.
Experimentally determined mean pK(a) values of carboxyl residues located at the N-termini of alpha-helices are lower than their overall mean values. Here, we perform three types of analyses to account for this phenomenon. We estimate the magnitude of the helix macrodipole to determine its potential role in lowering carboxyl pK(a) values at the N-termini. No correlation between the magnitude of the macrodipole and the pK(a) values is observed. Using the pK(a) program propKa we compare the molecular surroundings of 18 N-termini carboxyl residues versus 233 protein carboxyl groups from a previously studied database. Although pK(a) lowering interactions at the N-termini are similar in nature to those encountered in other protein regions, pK(a) lowering backbone and side-chain hydrogen bonds appear in greater number at the N-termini. For both Asp and Glu, there are about 0.5 more hydrogen bonds per residue at the N-termini than in other protein regions, which can be used to explain their lower than average pK(a) values. Using a QM-based pK(a) prediction model, we investigate the chemical environment of the two lowest Asp and the two lowest Glu pK(a) values at the N-termini so as to quantify the effect of various pK(a) determinants. We show that local interactions suffice to account for the acidity of carboxyl residues at the N-termini. The effect of the helix dipole on carboxyl pK(a) values, if any, is marginal. Backbone amide hydrogen bonds constitute the single biggest contributor to the lowest carboxyl pK(a) values at the N-termini. Their estimated pK(a) lowering effects range from about 1.0 to 1.9 pK(a) units. 相似文献
17.
Sequence determinants of the capping box, a stabilizing motif at the N-termini of alpha-helices. 下载免费PDF全文
J. W. Seale R. Srinivasan G. D. Rose 《Protein science : a publication of the Protein Society》1994,3(10):1741-1745
The capping box, a recurrent hydrogen bonded motif at the N-termini of alpha-helices, caps 2 of the initial 4 backbone amide hydrogen donors of the helix (Harper ET, Rose GD, 1993, Biochemistry 32:7605-7609). In detail, the side chain of the first helical residue forms a hydrogen bond with the backbone of the fourth helical residue and, reciprocally, the side chain of the fourth residue forms a hydrogen bond with the backbone of the first residue. We now enlarge the earlier definition of this motif to include an accompanying hydrophobic interaction between residues that bracket the capping box sequence on either side. The expanded box motif--in which 2 hydrogen bonds and a hydrophobic interaction are localized within 6 consecutive residues--resembles a glycine-based capping motif found at helix C-termini (Aurora R, Srinivasan R, Rose GD, 1994, Science 264:1126-1130). 相似文献
18.
N- and C-capping preferences for all 20 amino acids in alpha-helical peptides. 总被引:1,自引:9,他引:1 下载免费PDF全文
A. J. Doig R. L. Baldwin 《Protein science : a publication of the Protein Society》1995,4(7):1325-1336
We have determined the N- and C-capping preferences of all 20 amino acids by substituting residue X in the peptides NH2-XAKAAAAKAAAAKAAGY-CONH2 and in Ac-YGAAKAAAAKAAAAKAX-CO2H. Helix contents were measured by CD spectroscopy to obtain rank orders of capping preferences. The data were further analyzed by our modified Lifson-Roig helix-coil theory, which includes capping parameters (n and c), to find free energies of capping (-RT ln n and -RT ln c), relative to Ala. Results were obtained for charged and uncharged termini and for different charged states of titratable side chains. N-cap preferences varied from Asn (best) to Gln (worst). We find, as expected, that amino acids that can accept hydrogen bonds from otherwise free backbone NH groups, such as Asn, Asp, Ser, Thr, and Cys generally have the highest N-cap preference. Gly and acetyl group are favored, as are negative charges in side chains and at the N-terminus. Our N-cap preference scale agrees well with preferences in proteins. In contrast, we find little variation when changing the identity of the C-cap residue. We find no preference for Gly at the C-cap in contrast to the situation in proteins. Both N-cap and C-cap results for Tyr and Trp are inaccurate because their aromatic groups affect the CD spectrum. The data presented here are of value in rationalizing mutations at capping sites in proteins and in predicting the helix contents of peptides. 相似文献
19.
A model of heparin bound to bovine platelet factor 4 (BPF4) was completed using a graphically designed heparin molecule and the crystallographic coordinates of the native bovine platelet factor 4 tetramer. The oligosaccharides had a chain length of at least eight disaccharide units with the major repeating disaccharide unit consisting of (1----4)-O-(alpha-L-idopyranosyluronic acid 2-sulfate)-(1----4)-(2-deoxy-2-sulfamino-2-D-glucopyranosyl 6-sulfate). Each disaccharide unit carried a -4.0 charge. The structure of BPF4 was solved to 2.6 A resolution with R = 0.237. Each monomer of BPF4 contains an alpha-helix lying across 3 strands of antiparallel beta-sheet. Each helix has four lysines, which have been implicated in heparin binding. These lysine residues are predominantly on one side of the helix and are solvent accessible. Electrostatic calculations performed on the BPF4 tetramer show a ring of strong, positive charge which runs perpendicularly across the helices. Included in this ring of density is His-38, which has been shown by NMR to have a large pKa shift when heparin binds to BPF4. Our model of heparin bound to PF4 has the anionic polysaccharide perpendicular to the alpha-helices, wrapped about the tetramer along the ring of positive charge, and salt linked to all four lysines on the helix of each monomer. 相似文献
20.
Jose A. Negrete Yolanda Viuales Jaume Palau 《Protein science : a publication of the Protein Society》1998,7(6):1368-1379
We made several statistical analyses in a large sample of nearly 4,000 helices (from 546 redundancy-controlled PDB protein subunits), which give new insights into the helical properties of globular proteins. In a first experiment, the amino acid composition of the whole sample was compared with the composition of two helical sample subgroups (the "mainly-alpha" and the "(alpha/beta)8 barrel" domain classes); we reached the conclusion that composition-based helical propensities for secondary structure prediction do not depend on the structural class. Running a five-residue window through the whole sample, the positional composition revealed that positive and negative residues are located throughout the helices and tend to neutralize the macrodipole effect. On this basis, we analyzed charged triplets using a running five-residue window. The conclusion was that only mixed charged residues [positive (+) and negative (-)] located at positions 1-2-5 and 1-4-5 are clearly favored. In these locations the most abundant are (- -..+) and (-..+ +), and this shows the existence of side chain microdipoles, which neutralize the large macrodipole of the helix. We made a systematic statistical analysis of charged, dipolar, and hydrophobic + aromatic residues, which enabled us to work out rules that should be useful for modeling and design purposes. Finally, we analyzed the relative abundance of all the different amphipathic double-arcs that are present in helices formed by octapeptides (8) and nonapeptides (18). All of the double-arcs that make up Schiffer and Edmundson''s classical helical wheel are found in abundance in the sample. 相似文献