首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Random transposon Tn5 mutagenesis of Bradyrhizobium sp. (Arachis) strain NC92, a member of the cowpea cross-inoculation group, was carried out, and kanamycin-resistant transconjugants were tested for their symbiotic phenotype on three host plants: groundnut, siratro, and pigeonpea. Two nodulation (Nod- phenotype) mutants were isolated. One is unable to nodulate all three hosts and appears to contain an insertion in one of the common nodulation genes (nodABCD); the other is a host-specific nodulation mutant that fails to nodulate pigeonpea, elicits uninvaded nodules on siratro, and elicits normal, nitrogen-fixing nodules on groundnut. In addition, nine mutants defective in nitrogen fixation (Fix- phenotype) were isolated. Three fail to supply symbiotically fixed nitrogen to all three host plants. Surprisingly, nodules elicited by one of these mutants exhibit high levels of acetylene reduction activity, demonstrating the presence of the enzyme nitrogenase. Three more mutants have partially effective phenotypes (Fix +/-) in symbiosis with all three host plants. The remaining three mutants fail to supply fixed nitrogen to one of the host plants tested while remaining partially or fully effective on the other two hosts; two of these mutants are Fix- in pigeonpea and Fix +/- on groundnut and on siratro, whereas the other one is Fix- on groundnut but Fix+ on siratro and on pigeonpea. These latter mutants also retain significant nodule acetylene reduction activity, even in the ineffective symbioses. Such bacterial host-specific fixation (Hsf) mutants have not previously been reported.  相似文献   

2.
KJAeR  SOREN 《Annals of botany》1992,70(1):11-17
The patterns of plant growth and N2 fixation capability in Pachyrhizusahipa (Wedd) Parodi inoculated with BradyrhizobiumPachyrhizusSpec 1’ strains (Lipha Tech) were investigated in a zero-Nculture system under greenhouse conditions The P ahipa plantis day-neutral with respect to reproductive development Competitionoccurred between the two storage organs (legume and tuber) andprevented high tuber yield in P ahipa The symbiotic effectivenessof the association was high, as the profuse nodulation providedthe inoculated plants with adequate amounts of N Nodules werepresent throughout the cycle of P ahipa The change in rate ofN2 fixation (RNF) and relative growth rate (RGR) was almostparallel during ontogenesis The developmental pattern of N2fixation activity revealed that 65% of total N2 fixation occurredafter N began to accumulate in the reproductive (pod wall plusseed) tissue During pod filling allocation of N compounds tothe seeds exceeded N2 fixation, the pod walls being the primarysource of redistributed N, followed by the leaves. Pachyrhizus ahipa (Wedd) Parodi, ahipa, tuber crop, dinitrogen fixation, dry matter, N partitioning, reproductive growth  相似文献   

3.
The influence of hydrogenase in Bradyrizobum-Phaseoleae symbioseswas studied ex-planta and in-planra in soybean (Glycine max)and cowpea (Vigna unguiculata). The hydrogenase was activatedby the addition of hydrogen in the incubation gas phase whichmodified the response of nitrogenase activity of Hup+ (hydrogenuptake positive) symbiosis to the external oxygen partial pressure.For bacteroids the hydrogenase expression increased nitrogenaseactivity at supraoptimal pO2, acting possibly as a respiratoryprotection of nitrogenase. However, at suboptimal pO2, nitrogenaseactivity of Hup+ bacteroids decreased with hydrogen, a phenomenonattributed to the lower efficiency of ATP synthesis from hydrogenthan from carbon substrates oxidation. For undisturbed nodules,the hydrogenase expression in soybean increased the optimalpO2 for ARA (COP), from 35.3 to 40.3 kPa O2, and the ARA atsupraoptimal pO2; at suboptimal PO2 there was a negative effectof hydrogenase on ARA, although this inhibition was less thanon bacteroids and was not detected if plants were grown at 15°C rather than 20 °C root temperature. No H2 effectwas detected on cowpea nodules. The results on soybean nodulesare consistent with the concept that symbiotic nitrogen fixationis oxygen-limited and that hydrogenase activity has no beneficialeffect on nitrogen fixation in O2 limitation. Key words: Glycine max, hydrogenase, nitrogenase, nitrogen fixation, nodules, Vigna unguiculata  相似文献   

4.
In two experiments, the functioning and metabolism of nodulesof white clover, following a defoliation which removed abouthalf the shoot tissue, were compared with those of undefoliatedplants. In one experiment, the specific respiration rates of nodulesfrom undefoliated plants varied between 1160 and 1830 µmolCO2 g–1h–1, of which nodule ‘growth and maintenance’accounted for 22 ± 2 per cent, or 27 ± 3.6 percent, according to method of calculation. Defoliation reducedspecific nodule respiration and nodule ‘growth and maintenance’respiration by 60–70 per cent, and rate of N2 fixationby a similar proportion. The original rate of nodule metabolismwas re-established after about 5 d of regrowth; during regrowthnodule respiration was quantitatively related to rate of N2,fixation: 9.1 µmol CO2 µmol–1N2. With the possible exception of nodules examined 24 h after defoliation,the efficiency of energy utilization in nitrogenase functioningin both experiments was the same in defoliated and undefoliatedplants: 2.0±0.1 µmol CO2 µmol–1 C2H4;similarly, there was no change in the efficiency of nitrogenasefunctioning as rate of N2 fixation increased with plant growthfrom 1 to 22 µmol N2 per plant h–1. Exposure of nodulated white clover root systems to a 10 percent acetylene gas mixture resulted in a sharp peak in rateof ethylene production after 1.5–2.5 min; subsequently,rate of ethylene production declined rapidly before stabilisingafter 0.5–1 h at a rate about 50 per cent of that initiallyobserved. Regression of ‘peak’ rate of ethyleneproduction on rate of N2 fixation indicated a value of 2.9 µmolC2H4 µmol–1 N2, for rates of N2 fixation between1 and 22 µmol N2 per plant h–1. The relationshipsbetween nitrogenase respiration, acetylene reduction rates andN2 fixation rates are discussed. Trifolium repens, white clover, defoliation, nodule respiration, N2, fixation, nitrogenase  相似文献   

5.
From homogenates prepared from surface-sterilized nodules ofseedlings of Casuarina cunninghamiana grown aeroponically, astrain of Frankia designated HFPCc13 was isolated and has beengrown in pure filamentous culture in a defined synthetic nutrientmedium. Vesicle and sporangium formation can be induced by removalof combined nitrogen from the medium.Frankia strain HFPCc13nodulates young seedlings of C. cunninghamiana and C. equisetifoliawithin three weeks of inoculation with an optimum root mediumpH of 6–7 for nodulation and optimum temperature of 30–35°C. The presence of combined nitrogen in the root mediuminhibits nodulation with NH4+ more inhibitory than NO3.Frankia HFPCc13 does not nodulate Allocasuarina species withinthe same family nor several other possible actinorhizal plantstested. Thus this strain is quite precise in its host specificity.The rate of acetylene reduction was greater in C. cunninghamianathan the closely related species C. equisetifolia. In neitherof these host species were vesicles observed to occur withinthe infected root nodules which had been demonstrated to beactively fixing dinitrogen. Root nodules were shown to be activein acetylene reduction over a range of O2 concentration in thegaseous environment with an optimum at about 20 per cent O2,the ambient PO2 of the air. The mechanism(s) for oxygen protectionof nitrogenase within the filamentous form of Frankia withinthese nodules remains to be explained. Casuarina, Frankia, nodulation, nitrogen fixation  相似文献   

6.
Transformed hairy roots were induced at the excised site ofthe epicotyl of dry mature seed of a Spanish type peanut(Arachishypogaea)cv. Java 13 2 weeks after inoculation with a wild typestrain ofAgrobacterium rhizogenes,MAFF-02-10266. Composite plantsconsisting of transformed roots with non-transformed shootswere cultured using pouches. Forty days after inoculation, thecomposite plant showed a root system with abundant root mass,more lateral branching and high fractal dimension compared tothe control. No differences were observed in production of rosette-typeroot hairs or the cross sectional structure between transformedand non-transformed roots. The inoculation ofBradyrhizobiumsp.A2R1 strain to the composite plants led to the induction oftransformed root nodules. These transformed root nodules showedproduction of leghaemoglobin in the bacterial zone and nitrogenaseactivity as assayed by C2H2reduction, and exhibited enlargementof the nodule cortex region andde novoroot formation from thenodule cortex.Copyright 1998 Annals of Botany Company Agrobacterium rhizogenes;Arachis hypogaeaL.; composite plant; peanut; transformation; root nodule.  相似文献   

7.
Hansen, A. P., Pate, J. S. and Atkins, C. A. 1987. Relationshipsbetween acetylene reduction activity, hydrogen evolution andnitrogen fixation in nodules of Acacia spp.: Experimental backgroundto assaying fixation by acetylene reduction under field conditions.—J.exp. Bot. 38: 1–12 Glasshouse grown, symbiotically-dependent seedlings of Acaciaalata R.Br., .A. extensa Lindl., and A. pulchella R.Br. wereexamined for acetylene reduction in closed assay systems usingundisturbed potted plants, excavated whole plants, nodulatedroots or detached nodules. Nitrogenase activity declined sharplyover the first hour after exposure of detached nodules to acetylene(10% v/v in air), less steeply or not at all over a 3 h periodin assays involving attached nodules. Using detached nodules,rates of acetylene reduction, nitrogen (15N2) fixation, andhydrogen evolution in air (15N2) and acetylene-containing atmosphereswere measured in comparable 30 min assays. Total electron flowthrough nitrogenase in air was determined from rates of nitrogen(15N2) fixation ( ? 3) plus hydrogen evolution, that in thepresence of acetylene from rates of acetylene reduction andhydrogen evolution in air: acetylene. Values for the ratio ofelectron flow in air: acetylene to that in air ranged from 0?43to 0?83 in A. pulcheila, from 0?44 to 0?66 in A. alala and from0?37 to 0?70 in A. extensa, indicating substantial inhibitionof electron flow through nitrogenase of detached nodules byacetylene. Relative efficiencies of nitrogenase functioningbased on hydrogen evolution and acetylene reduction were from0?15 to 0?79, those based on nitrogen (15N2) fixation and hydrogenevolution from 0?53 to 0?87. Molar ratios of acetylene reducedto nitrogen (15N2) fixed were 2?82 ? 0?24, 201 ? 0?15, and 1?91? 0?11 (?s.e.; n = 7) for A. pulcheila,A. extensa and A. alata respectively A standard 5–10 min acetylene reduction assay, conductedon freshly detached unwashed nodules in daytime (12.00–14.00h), was calibrated for field use by comparing total N accumulationof seedlings with estimated cumulative acetylene reduction overa 7-week period of glasshouse culture. Molar ratios for acetylenereduced: nitrogen fixed using this arbitrary method were 3?58for A. alata, 4?82 for A. extensa and 1?60 for A. pulchella.The significance of the data is discussed. Key words: Acacia spp, nitrogenase functioning  相似文献   

8.
No measurable differences in Trichodesmium nitrogenase activitywere observed between colonies collected by diving and incubatedunder ultra-clean conditions compared with those collected andincubated using standard techniques. Measurements were madein the northeastern Caribbean Sea, near the Bahama Islands andin the Sargasso Sea. Surprisingly, mean rates of ethylene productionwere high relative to most previous in situ measurements onTrichodesmium. The calculated cellular N doubling times (viaN2 fixation) ranged from 1.13 days in the northeastern CaribbeanSea, 1.48 days in the Sargasso Sea to 1.8 days near the BahamaIslands. A comparison of these doubling times with those inthe literature illustrates the high variability in rate of N2fixation by Trichodesmium. From this study, we conclude thatthe often observed slow rates of N2 fixation are valid. Populationsof Trichodesmium can probably remain within the water columnat low growth rates via gas vesicles, which keep the colonysuspended, and low grazing rates by herbivores.  相似文献   

9.
Cratoneuron filicinum, a drought-sensitive moss, and Tortularuralis, a drought-tolerant moss, fix CO2 non-autotrophicallyat a rate of about 1.2 and 2.2 µmol h–1 g–1dry wt. respectively. During drying, T. ruralis fixes CO2 atan undiminished rate until the tissue loses about 60% of theinitial fresh weight. Thereafter, CO2 fixation rapidly declinesto zero. Dark CO2 fixation by C.filicinum declines steadilyduring the dehydration period. On rehydration, dark CO2 fixationis resumed immediately in T. ruralis but not in C.filicinum.When dried T. ruralis is equilibrated with an atmosphere ofnearly 100% relative humidity, its weight increases to about40% of the original fresh weight and dark CO2 fixation resumesat a rate about 60% of the fresh moss. In C.filicinum thereis only a small increase in weight and little CO2 fixation inthe dark. The non-autotrophically fixed carbon, in both mossesstudied, is incorporated into amino acids (more than 60% ofthe total, mainly into aspartate, alanine and glutamate) andorganic acids (less than 40% of the total, mainly into malate).It is suggested that on rehydration immediate availability ofNADPH, known to be produced by transhydrogenation from NADHduring dark CO2 fixation, may be an important factor in therepair of drought-induced cellular damage by reductive biosynthesisof membrane components and other cellular constituents. Key words: Mosses, Dehydration, Rehydration, Dark CO2 fixation, Amino acids, Organic acids, NADPH, Drought tolerance.  相似文献   

10.
Ryle, G. J. A., Powell, C. E. and Gordon, A. J. 1988. Responsesof N2 fixation-linked respiration to host-plant energy statusin white clover acclimated to a controlled environment.—J.exp. Bot. 39: 879–887. Single plants of white clover, acclimated to a controlled environmentand dependent for nitrogen on N2 fixation in their root nodules,were darkened, defoliated or exposed to enhanced CO2 levelsto establish the quantitative relationships between the photosynthesisof the host plant and the N2 fixation metabolism of root nodules. The nodule respiration associated with N2 fixation (FLR) declinedrapidly to 10–15% of its normal rate following plant darkeningearly in the photoperiod. Darkening at progressively later intervalsduring the photoperiod demonstrated a positive, apparently linearrelationship between duration of illumination and total FLRduring the photoperiod and the following night period. Completeor partial defoliation reduced FLR according to the leaf arearemoved: again, there was a strong positive correlation betweencurrent rate of photosynthesis, whether of defoliated or undefoliatedplants and the FLR of root nodules. Doubling the current rateof photosynthesis, by enhancing CO2 levels around the shoots,promoted FLR within 1–2 h when plants were stressed bylack of light. However, enhanced CO2 levels increased FLR onlyslowly over a period of several hours in plants entrained tothe normal growing conditions. It is concluded that, in these plants acclimated to a uniformand favourable controlled environment, the supply and utilizationof photosynthetic assimilate in N2 fixation was finely balancedand quantitatively linked during a single diurnal period andthat nodule functioning was not depressed by lack of energysubstrate. Key words: White clover, N2 fixation, photosynthesis.  相似文献   

11.
Ineffective nodules of peanut induced by two nod+fixstrains of Bradyrhizobium sp. were compared with the ones inducedby nod+fix+ strain NC92. One of the fix strains, 639is a transconjugate Tn5 mutant of NC92, while the other, 7091,is an isolate from ICRISAT soil. Both induce small nodules lackingleghemoglobin and nitrogen-fixing activity. Ultrastructuralobservations revealed that the nodules of 639, have enlargedperibacteroid space and lack persistence of nodule function.The 7091-induced nodules showed impediment in bacteroid releaseand differentiation. In both the ineffective nodules large amountsof lipid bodies were found to accumulate several times in excess,compared to the effective NC92 nodules. The large lipid accumulationin absence of nitrogen fixation supports the hypothesis thatin peanut nodules lipid bodies are utilized as a supplementarysource of carbon and energy for nitrogen fixation. Peanut, lipid bodies, nitrogen fixation, nod+fix Bradyrhizobium, ultrastructure  相似文献   

12.
The effect of denitrification on N2 fixation was studied ina denitrifying photosynthetic bacterium, Rhodopseudomonas sphaeroidesforma sp. denitrificans. KNO3 inhibited diazotrophic growthin light, but NC3–-dependent diazotrophic growth in darknesswas found. NO3– inhibited C2H2 reduction activity in lightin cells grown with NO3–. NO3–-dependent C2H2 reductionactivity in darkness also was present in cells grown with N2plus NO3–, but not in cells grown on glutamate with NO3–.NO3– repressed the synthesis of nitrogenase in light.This repression was not overcome by the addition of methioninesulfoximine. The inhibitory and repressive effect of NO3– was not mediatedby the NO2– produced from NC3– nor by the NH4+ excretedinto the medium. But, as N2 fixation is controlled by O2 (redoxcontrol) it seems to be mediated through the denitrificationprocesses. Much of the glutamine synthetase was adenylylatedin cells grown with NO3– and its adenylylation state closelyparallelled nitrogenase activity in the cells. (Received September 4, 1982; Accepted December 11, 1982)  相似文献   

13.
The effect of elevated temperature on root hair formation, adsorptionof rhizobia, and nodulation of pigeonpea was studied. Nodulationwas adversely affected at both 28°C and 37°C, and theeffect was more pronounced during the first 3 d of nodule formation.Temperatures above 32°C resulted in the reduction or evencomplete absence of root hairs. The root hairs formed at elevatedtemperatures were spheroid and stunted in growth. The numberof loosely and firmly adsorbed cells of Bradyrhizobium spp.(Cajanus) strain CC1021 on pigeonpea roots were reduced to 49%and 38%, respectively, at 37°C. Key words: Pigeonpea, Bradyrhizobium spp. (Cajanus), high root temperature, root hairs, adsorption  相似文献   

14.
Diffusion resistance to oxygen within nodules was calculatedusing the respiratory quotient (RQ) of nodules from intact plantsof subterranean clover (Trifolium subterraneum L.) cv. SeatonPark nodulated by Rhizobiun trifolii WU95. From 21 to 52% O2,the RQ remained between 0.94 and 1.04, whereas at 10% O2, theRQ was 1.65. When nodulated roots of intact plants were exposedto sub-ambient pO2 in a continuous flow-through system, respirationdeclined immediately, followed by a partial recovery within30 min. The magnitude of the final respiration rate was dependentupon the pO2 in the gas stream. Initial rates of respirationwere re-established after 24 h at sub-ambient pO2 as a resultof changes in the resistance of the variable barrier to oxygendiffusion within the nodules. Nitrogenase activity also decreasedlinearly with decreasing pO2 in the gas stream, but partialrecovery occurred after 24 h incubation at sub-ambient pO2.Maximum rates of nitrogenase activity occurred at rhizosphereoxygen concentrations between 21% and 36% O2. Resistance tothe diffusion of oxygen within the nodules increased at supra-ambientpO2 and at oxygen concentrations above 36% O2, resulted in adecrease in both nitrogenase activity and nodulated root respiration.The diffusion resistance of nodules to oxygen increased rapidlyin the presence of either supra-ambient pO2 or saturating pC2H2.Reductions in nodule diffusion resistance either during recoveryfrom exposure to 10% acetylene or to sub-ambient pO2 occurredmore slowly. It is concluded that subterranean clover is welladapted for maximum nitrogen fixation at ambient pO2. Key words: Nitrogenase activity, oxygen, subterranean clover, diffusion resistance  相似文献   

15.
The effects of water stress (drought) on the pattern of photosynthesisin Sedum telephium have been determined. Well-watered plantsexhibit a weak-CAM pattern, with substantial CO2 fixation inthe day, a low level of CO2 fixation at night, high daytimestomatal conductance with a lower conductance at night, andno diurnal fluctuation in acid content. Imposition of water-stress causes a switch from weak-CAM toa full-CAM mode of photosynthesis, as indicated by cessationof daytime CO2 fixation, a marked increase in night-time CO2fixation, very low daytime stomatal conductance, increased night-timeconductance and significant diurnal fluctuations in acid content. Sedum telephium, CAM, CO2 fixation, drought, malate, photosynthesis, water stress  相似文献   

16.
Clones of excised roots of wild type tomato (Lycopersicon esculentum,Mill., cv. Moneymaker) and a near-isogenic GA-deficient mutant(gib-1/gib-1) were cultured in modified White's medium containing1.5% w/v sucrose. The linear elongation rate of the main axisof the gib-1 mutant was 40% less than that of the wild type.In addition, the main axis of the gib-1 mutant was thicker thanthat of the wild type but main axis volume growth was the samein both genotypes, indicating that the gib-1 allele was affectingthe orientation of root expansion. There was no evidence tosuggest that the gib-1 allele affected either the pattern ofemergence or the density of lateral roots. Elongation rate andthickness of gib-1 mutant roots were restored to those of thewild type by the addition of low concentrations (0.1–1.0µM) of gibberellic acid (GA3). These concentrations ofGA3 caused a slight reduction in extension growth of wild typeroots, indicating that endogenous GAs were not limiting elongationof normal roots in culture. The GA biosynthesis inhibitor, 2S,3S paclobutrazol, at 0.1 µM, significantly reduced elongationof wild type roots and this inhibition was counteracted by 0.1µM GA3. It is concluded that the difference in growthbetween the gib-1 mutant and the wild type represented GA-dependentgrowth. Low concentrations of 2S, 3S paclobutrazol caused onlya small (5%) reduction in growth of the gib-1 mutant and thisgrowth inhibition was not reversed by GA3. This observation,and the fact that gib-1 mutant roots grow in the absence ofadded GA3, suggested that part of root growth was GA-independent.However, the possibilities that the gib-1 mutant is ‘leaky’and that paclobutrazol does not inhibit GA biosynthesis completelycannot be excluded. Key words: gib-1 mutant, gibberellic acid, Lycopersicon esculentum, 2S, 3S paclobutrazol, root growth  相似文献   

17.
Carbonic anhydrase (CA) activity in wild type cells of Chlamydomonasreinhardtii was low when cells were cultured under 2% CO3 inthe light. When the gas phase was changed to air, CA activityincresaed as much as 20 fold over the next 24 hours. In contrast,CA activity did not change markedly in cells of the mutantspet 20-8 (PS II-negative), lip 10-2 (photophosphorylation-negative),and F60 (phosphoribulokinase-negative), when they were subjectedto the same induction regimen. DCMU (10–5 M) and cydoheximide(3 µg/ml) severely inhibited the induction in wild typecells. No induction occured when CO2 concentration was loweredin darkness. 3Present adress: Photoconversion Research Branch, Solar EnergyResearch Institute, Golden, Colorado 80401, USA. (Received June 7, 1982; Accepted December 25, 1982)  相似文献   

18.
The analysis of acetylene reduction at low concentrations ofacetylene involves a number of assumptions and both technicaland kinetic complexities. The major difficulty in convertingacetylene reduction rates to apparent N2 reduction rates isdetermining the Km for acetylene in the presence of N2. Thissubstrate competition is dominant over diffusion limitationeffects, but both introduce equivalent deviations in the observedKm. Because N2 is a non-linear partial competitive inhibitorof acetylene reduction, correction for its presence is difficult.Two further complications are introduced by the non-linear responseof nitrogenase to acetylene concentration even in the absenceof N2, and changes in the apparent Km of acetylene and K1 ofN2 as a function of other variables in the enzyme assay. Itis proposed that transient analysis may be used for measurementof diffusion coefficients and calculations of possible diffusionlimitations. It is demonstrated that one proposed model forestimating diffusion limitation (Denison et al., 1983, PlantPhysiology 73, 648–51) confounds substrate competitionwith diffusion limitation. Acetylene reduction, nitrogen fixation, diffusion limitation  相似文献   

19.
Chickpea cultivar ILC 482 was inoculated with salt-tolerantRhizobium strain Ch191 in solution culture with different saltconcentrations added either immediately with inoculation or5 d later. The inhibitory effect of salinity on nodulation ofchickpea occurred at 40 dS m–1 (34.2 mol m–3 NaCl)and nodulation was completely inhibited at 7 dS m–1 (61.6mol m–3 NaCl); the plants died at 8 dS m–1 (71.8mol m–3 NaCl). Chickpea cultivar ILC 482 inoculated with Rhizobium strain Ch191spcstrwas grown in two pot experiments and irrigated with saline water.Salinity (NaCl equivalent to 1–4 dS m–1) significantlydecreased shoot and root dry weight, total nodule number perplant, nodule weight and average nodule weight. The resultsindicate that Rhizobium strain Ch191 forms an infective andeffective symbiosis with chickpea under saline and non-salineconditions; this legume was more salt-sensitive compared tothe rhizobia, the roots were more sensitive than the shoots,and N2 fixation was more sensitive to salinity than plant growth. Key words: Cicer arietinum, nodulation, N2 fixation, Rhizobium, salinity  相似文献   

20.
  1. The effects of 3-(4'-chlorophenyl)-1, 1-dimethylurea (CMU)onthe fluorescence of photosynthetic pigments in vivo wereinvestigatedin blue-green, red and brown algae and in isolatedspinach chloroplasts.CMU caused an increase in steady statelevel of fluorescenceof chlorophyll a, but did not influencethe fluorescence ofphycobilins. The spectrum of the fluorescenceincrement hada peak at 685 m/µ and a shoulder at 730–740mµ.These two bands probably arise from chlorophyll a(Cf684) belongingto pigment system II.
  2. On excitation of chlorophylla in a red alga, Porphyra yezoensis,a fluorescence band witha peak at 720 mµ was observedbesides a shoulder at 685mµ. The 720 m band is inferredto arise from chlorophylla (probably, Cf-1) in pigment systemI.
  3. On addition of CMUto the algal cells, the induction of fluorescencewas modifiedto take a simple time course. The induction wasobserved onlywith respect to the fluorescence of chlorophylla, but not inthe fluorescence of phycobilins. The spectrumof the "transient"fluorescence showed two emission bands ofchlorophyll a at 685mµ and 740 mµ, and was quitesimilar in form tothe spectrum of the CMU-caused increase insteady state fluorescence.
  4. These facts were interpreted in terms of the correlation offluorescence of chlorophyll a and the photochemical reactionsof photosynthesis
(Received July 20, 1967; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号