首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MOTIVATION: Fold recognition is a key step in the protein structure discovery process, especially when traditional sequence comparison methods fail to yield convincing structural homologies. Although many methods have been developed for protein fold recognition, their accuracies remain low. This can be attributed to insufficient exploitation of fold discriminatory features. RESULTS: We have developed a new method for protein fold recognition using structural information of amino acid residues and amino acid residue pairs. Since protein fold recognition can be treated as a protein fold classification problem, we have developed a Support Vector Machine (SVM) based classifier approach that uses secondary structural state and solvent accessibility state frequencies of amino acids and amino acid pairs as feature vectors. Among the individual properties examined secondary structural state frequencies of amino acids gave an overall accuracy of 65.2% for fold discrimination, which is better than the accuracy by any method reported so far in the literature. Combination of secondary structural state frequencies with solvent accessibility state frequencies of amino acids and amino acid pairs further improved the fold discrimination accuracy to more than 70%, which is approximately 8% higher than the best available method. In this study we have also tested, for the first time, an all-together multi-class method known as Crammer and Singer method for protein fold classification. Our studies reveal that the three multi-class classification methods, namely one versus all, one versus one and Crammer and Singer method, yield similar predictions. AVAILABILITY: Dataset and stand-alone program are available upon request.  相似文献   

2.
Identification on protein folding types is always based on the 27-class folds dataset, which was provided by Ding & Dubchak in 2001. But with the avalanche of protein sequences, fold data is also expanding, so it will be the inevitable trend to improve the existing dataset and expand more folding types. In this paper, we construct a multi-class protein fold dataset, which contains 3,457 protein chains with sequence identity below 35% and could be classified into 76 fold types. It was 4 times larger than Ding & Dubchak's dataset. Furthermore, our work proposes a novel approach of support vector machine based on optimal features. By combining motif frequency, low-frequency power spectral density, amino acid composition, the predicted secondary structure and the values of auto-correlation function as feature parameters set, the method adopts criterion of the maximum correlation and the minimum redundancy to filter these features and obtain a 95-dimensions optimal feature subset. Based on the ensemble classification strategy, with 95-dimensions optimal feature as input parameters of support vector machine, we identify the 76-class protein folds and overall accuracy measures up to 44.92% by independent test. In addition, this method has been further used to identify upgraded 27-class protein folds, overall accuracy achieves 66.56%. At last, we also test our method on Ding & Dubchak's 27-class folds dataset and obtained better identification results than most of the previous reported results.  相似文献   

3.
Homology detection and protein structure prediction are central themes in bioinformatics. Establishment of relationship between protein sequences or prediction of their structure by sequence comparison methods finds limitations when there is low sequence similarity. Recent works demonstrate that the use of profiles improves homology detection and protein structure prediction. Profiles can be inferred from protein multiple alignments using different approaches. The "Conservatism-of-Conservatism" is an effective profile analysis method to identify structural features between proteins having the same fold but no detectable sequence similarity. The information obtained from protein multiple alignments varies according to the amino acid classification employed to calculate the profile. In this work, we calculated entropy profiles from PSI-BLAST-derived multiple alignments and used different amino acid classifications summarizing almost 500 different attributes. These entropy profiles were converted into pseudocodes which were compared using the FASTA program with an ad-hoc matrix. We tested the performance of our method to identify relationships between proteins with similar fold using a nonredundant subset of sequences having less than 40% of identity. We then compared our results using Coverage Versus Error per query curves, to those obtained by methods like PSI-BLAST, COMPASS and HHSEARCH. Our method, named HIP (Homology Identification with Profiles) presented higher accuracy detecting relationships between proteins with the same fold. The use of different amino acid classifications reflecting a large number of amino acid attributes, improved the recognition of distantly related folds. We propose the use of pseudocodes representing profile information as a fast and powerful tool for homology detection, fold assignment and analysis of evolutionary information enclosed in protein profiles.  相似文献   

4.
The recognition of protein folds is an important step in the prediction of protein structure and function. Recently, an increasing number of researchers have sought to improve the methods for protein fold recognition. Following the construction of a dataset consisting of 27 protein fold classes by Ding and Dubchak in 2001, prediction algorithms, parameters and the construction of new datasets have improved for the prediction of protein folds. In this study, we reorganized a dataset consisting of 76-fold classes constructed by Liu et al. and used the values of the increment of diversity, average chemical shifts of secondary structure elements and secondary structure motifs as feature parameters in the recognition of multi-class protein folds. With the combined feature vector as the input parameter for the Random Forests algorithm and ensemble classification strategy, we propose a novel method to identify the 76 protein fold classes. The overall accuracy of the test dataset using an independent test was 66.69%; when the training and test sets were combined, with 5-fold cross-validation, the overall accuracy was 73.43%. This method was further used to predict the test dataset and the corresponding structural classification of the first 27-protein fold class dataset, resulting in overall accuracies of 79.66% and 93.40%, respectively. Moreover, when the training set and test sets were combined, the accuracy using 5-fold cross-validation was 81.21%. Additionally, this approach resulted in improved prediction results using the 27-protein fold class dataset constructed by Ding and Dubchak.  相似文献   

5.
Silva PJ 《Proteins》2008,70(4):1588-1594
Hydrophobic cluster analysis (HCA) has long been used as a tool to detect distant homologies between protein sequences, and to classify them into different folds. However, it relies on expert human intervention, and is sensitive to subjective interpretations of pattern similarities. In this study, we describe a novel algorithm to assess the similarity of hydrophobic amino acid distributions between two sequences. Our algorithm correctly identifies as misattributions several HCA-based proposals of structural similarity between unrelated proteins present in the literature. We have also used this method to identify the proper fold of a large variety of sequences, and to automatically select the most appropriate structure for homology modeling of several proteins with low sequence identity to any other member of the protein data bank. Automatic modeling of the target proteins based on these templates yielded structures with TM-scores (vs. experimental structures) above 0.60, even without further refinement. Besides enabling a reliable identification of the correct fold of an unknown sequence and the choice of suitable templates, our algorithm also shows that whereas most structural classes of proteins are very homogeneous in hydrophobic cluster composition, a tenth of the described families are compatible with a large variety of hydrophobic patterns. We have built a browsable database of every major representative hydrophobic cluster pattern present in each structural class of proteins, freely available at http://www2.ufp.pt/ pedros/HCA_db/index.htm.  相似文献   

6.
In protein structure prediction, a central problem is defining the structure of a loop connecting 2 secondary structures. This problem frequently occurs in homology modeling, fold recognition, and in several strategies in ab initio structure prediction. In our previous work, we developed a classification database of structural motifs, ArchDB. The database contains 12,665 clustered loops in 451 structural classes with information about phi-psi angles in the loops and 1492 structural subclasses with the relative locations of the bracing secondary structures. Here we evaluate the extent to which sequence information in the loop database can be used to predict loop structure. Two sequence profiles were used, a HMM profile and a PSSM derived from PSI-BLAST. A jack-knife test was made removing homologous loops using SCOP superfamily definition and predicting afterwards against recalculated profiles that only take into account the sequence information. Two scenarios were considered: (1) prediction of structural class with application in comparative modeling and (2) prediction of structural subclass with application in fold recognition and ab initio. For the first scenario, structural class prediction was made directly over loops with X-ray secondary structure assignment, and if we consider the top 20 classes out of 451 possible classes, the best accuracy of prediction is 78.5%. In the second scenario, structural subclass prediction was made over loops using PSI-PRED (Jones, J Mol Biol 1999;292:195-202) secondary structure prediction to define loop boundaries, and if we take into account the top 20 subclasses out of 1492, the best accuracy is 46.7%. Accuracy of loop prediction was also evaluated by means of RMSD calculations.  相似文献   

7.
基于氨基酸组成分布的蛋白质同源寡聚体分类研究   总被引:7,自引:0,他引:7  
基于一种新的特征提取方法——氨基酸组成分布,使用支持向量机作为成员分类器,采用“一对一”的多类分类策略,从蛋白质一级序列对四类同源寡聚体进行分类研究。结果表明,在10-CV检验下,基于氨基酸组成分布,其总分类精度和精度指数分别达到了86.22%和67.12%,比基于氨基酸组成成分的传统特征提取方法分别提高了5.74和10.03个百分点,比二肽组成成分特征提取方法分别提高了3.12和5.63个百分点,说明氨基酸组成分布对于蛋白质同源寡聚体分类是一种非常有效的特征提取方法;将氨基酸组成分布和蛋白质序列长度特征组合,其总分类精度和精度指数分别达到了86.35%和67.23%,说明蛋白质序列长度特征含有一定的空间结构信息。  相似文献   

8.
Recognition of protein fold from amino acid sequence is a challenging task. The structure and stability of proteins from different fold are mainly dictated by inter-residue interactions. In our earlier work, we have successfully used the medium- and long-range contacts for predicting the protein folding rates, discriminating globular and membrane proteins and for distinguishing protein structural classes. In this work, we analyze the role of inter-residue interactions in commonly occurring folds of globular proteins in order to understand their folding mechanisms. In the medium-range contacts, the globin fold and four-helical bundle proteins have more contacts than that of DNA-RNA fold although they all belong to all-alpha class. In long-range contacts, only the ribonuclease fold prefers 4-10 range and the other folding types prefer the range 21-30 in alpha/beta class proteins. Further, the preferred residues and residue pairs influenced by these different folds are discussed. The information about the preference of medium- and long-range contacts exhibited by the 20 amino acid residues can be effectively used to predict the folding type of each protein.  相似文献   

9.
The effectiveness of sequence alignment in detecting structural homology among protein sequences decreases markedly when pairwise sequence identity is low (the so‐called “twilight zone” problem of sequence alignment). Alternative sequence comparison strategies able to detect structural kinship among highly divergent sequences are necessary to address this need. Among them are alignment‐free methods, which use global sequence properties (such as amino acid composition) to identify structural homology in a rapid and straightforward way. We explore the viability of using tetramer sequence fragment composition profiles in finding structural relationships that lie undetected by traditional alignment. We establish a strategy to recast any given protein sequence into a tetramer sequence fragment composition profile, using a series of amino acid clustering steps that have been optimized for mutual information. Our method has the effect of compressing the set of 160,000 unique tetramers (if using the 20‐letter amino acid alphabet) into a more tractable number of reduced tetramers (~15–30), so that a meaningful tetramer composition profile can be constructed. We test remote homology detection at the topology and fold superfamily levels using a comprehensive set of fold homologs, culled from the CATH database that share low pairwise sequence similarity. Using the receiver‐operating characteristic measure, we demonstrate potentially significant improvement in using information‐optimized reduced tetramer composition, over methods relying only on the raw amino acid composition or on traditional sequence alignment, in homology detection at or below the “twilight zone”. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
A structural class in the MemGen classification of membrane proteins is a set of evolutionary related proteins sharing a similar global fold. A structural class contains both closely related pairs of proteins for which homology is clear from sequence comparison and very distantly related pairs, for which it is not possible to establish homology based on sequence similarity alone. In the latter case the evolutionary link is based on hydropathy profile analysis. Here, we use these evolutionary related sets of proteins to analyze the relationship between E-values in BLAST searches, sequence similarities in multiple sequence alignments and structural similarities in hydropathy profile analyses. Two structural classes of secondary transporters termed ST[3], which includes the Ion Transporter (IT) superfamily and ST[4], which includes the DAACS family (TC# 2.A.23) were extracted from the NCBI protein database. ST[3] contains 2051 unique sequences distributed over 32 families and 59 subfamilies. ST[4] is a smaller class containing 399 unique sequences distributed over 2 families and 7 subfamilies. One subfamily in ST[4] contains a new class of binding protein dependent secondary transporters. Comparison of the averaged hydropathy profiles of the subfamilies in ST[3] and ST[4] revealed that the two classes represent different folds. Divergence of the sequences in ST[4] is much smaller than observed in ST[3], suggesting different constraints on the proteins during evolution. Analysis of the correlation between the evolutionary relationship of pairs of proteins in a class and the BLAST E-value revealed that: (i) the BLAST algorithm is unable to pick up the majority of the links between proteins in structural class ST[3], (ii) "low complexity filtering" and "composition based statistics" improve the specificity, but strongly reduce the sensitivity of BLAST searches for distantly related proteins, indicating that these filters are too stringent for the proteins analyzed, and (iii) the E-value cut-off, which may be used to evaluate evolutionary significance of a hit in a BLAST search is very different for the two structural classes of membrane proteins.  相似文献   

11.
A structural class in the MemGen classification of membrane proteins is a set of evolutionary related proteins sharing a similar global fold. A structural class contains both closely related pairs of proteins for which homology is clear from sequence comparison and very distantly related pairs, for which it is not possible to establish homology based on sequence similarity alone. In the latter case the evolutionary link is based on hydropathy profile analysis. Here, we use these evolutionary related sets of proteins to analyze the relationship between E-values in BLAST searches, sequence similarities in multiple sequence alignments and structural similarities in hydropathy profile analyses. Two structural classes of secondary transporters termed ST[3], which includes the Ion Transporter (IT) superfamily and ST[4], which includes the DAACS family (TC# 2.A.23) were extracted from the NCBI protein database. ST[3] contains 2051 unique sequences distributed over 32 families and 59 subfamilies. ST[4] is a smaller class containing 399 unique sequences distributed over 2 families and 7 subfamilies. One subfamily in ST[4] contains a new class of binding protein dependent secondary transporters. Comparison of the averaged hydropathy profiles of the subfamilies in ST[3] and ST[4] revealed that the two classes represent different folds. Divergence of the sequences in ST[4] is much smaller than observed in ST[3], suggesting different constraints on the proteins during evolution. Analysis of the correlation between the evolutionary relationship of pairs of proteins in a class and the BLAST E-value revealed that: (i) the BLAST algorithm is unable to pick up the majority of the links between proteins in structural class ST[3], (ii) ‘low complexity filtering’ and ‘composition based statistics’ improve the specificity, but strongly reduce the sensitivity of BLAST searches for distantly related proteins, indicating that these filters are too stringent for the proteins analyzed, and (iii) the E-value cut-off, which may be used to evaluate evolutionary significance of a hit in a BLAST search is very different for the two structural classes of membrane proteins.  相似文献   

12.
MOTIVATION: A method for recognizing the three-dimensional fold from the protein amino acid sequence based on a combination of hidden Markov models (HMMs) and secondary structure prediction was recently developed for proteins in the Mainly-Alpha structural class. Here, this methodology is extended to Mainly-Beta and Alpha-Beta class proteins. Compared to other fold recognition methods based on HMMs, this approach is novel in that only secondary structure information is used. Each HMM is trained from known secondary structure sequences of proteins having a similar fold. Secondary structure prediction is performed for the amino acid sequence of a query protein. The predicted fold of a query protein is the fold described by the model fitting the predicted sequence the best. RESULTS: After model cross-validation, the success rate on 44 test proteins covering the three structural classes was found to be 59%. On seven fold predictions performed prior to the publication of experimental structure, the success rate was 71%. In conclusion, this approach manages to capture important information about the fold of a protein embedded in the length and arrangement of the predicted helices, strands and coils along the polypeptide chain. When a more extensive library of HMMs representing the universe of known structural families is available (work in progress), the program will allow rapid screening of genomic databases and sequence annotation when fold similarity is not detectable from the amino acid sequence. AVAILABILITY: FORESST web server at http://absalpha.dcrt.nih.gov:8008/ for the library of HMMs of structural families used in this paper. FORESST web server at http://www.tigr.org/ for a more extensive library of HMMs (work in progress). CONTACT: valedf@tigr.org; munson@helix.nih.gov; garnier@helix.nih.gov  相似文献   

13.
MOTIVATION: Protein fold recognition is an important approach to structure discovery without relying on sequence similarity. We study this approach with new multi-class classification methods and examined many issues important for a practical recognition system. RESULTS: Most current discriminative methods for protein fold prediction use the one-against-others method, which has the well-known 'False Positives' problem. We investigated two new methods: the unique one-against-others and the all-against-all methods. Both improve prediction accuracy by 14-110% on a dataset containing 27 SCOP folds. We used the Support Vector Machine (SVM) and the Neural Network (NN) learning methods as base classifiers. SVMs converges fast and leads to high accuracy. When scores of multiple parameter datasets are combined, majority voting reduces noise and increases recognition accuracy. We examined many issues involved with large number of classes, including dependencies of prediction accuracy on the number of folds and on the number of representatives in a fold. Overall, recognition systems achieve 56% fold prediction accuracy on a protein test dataset, where most of the proteins have below 25% sequence identity with the proteins used in training.  相似文献   

14.
A new method has been developed to compute the probability that each amino acid in a protein sequence is in a particular secondary structural element. Each of these probabilities is computed using the entire sequence and a set of predefined structural class models. This set of structural classes is patterned after Jane Richardson''s taxonomy for the domains of globular proteins. For each structural class considered, a mathematical model is constructed to represent constraints on the pattern of secondary structural elements characteristic of that class. These are stochastic models having discrete state spaces (referred to as hidden Markov models by researchers in signal processing and automatic speech recognition). Each model is a mathematical generator of amino acid sequences; the sequence under consideration is modeled as having been generated by one model in the set of candidates. The probability that each model generated the given sequence is computed using a filtering algorithm. The protein is then classified as belonging to the structural class having the most probable model. The secondary structure of the sequence is then analyzed using a "smoothing" algorithm that is optimal for that structural class model. For each residue position in the sequence, the smoother computes the probability that the residue is contained within each of the defined secondary structural elements of the model. This method has two important advantages: (1) the probability of each residue being in each of the modeled secondary structural elements is computed using the totality of the amino acid sequence, and (2) these probabilities are consistent with prior knowledge of realizable domain folds as encoded in each model. As an example of the method''s utility, we present its application to flavodoxin, a prototypical alpha/beta protein having a central beta-sheet, and to thioredoxin, which belongs to a similar structural class but shares no significant sequence similarity.  相似文献   

15.
Yang JY  Chen X 《Proteins》2011,79(7):2053-2064
Fold recognition from amino acid sequences plays an important role in identifying protein structures and functions. The taxonomy-based method, which classifies a query protein into one of the known folds, has been shown very promising for protein fold recognition. However, extracting a set of highly discriminative features from amino acid sequences remains a challenging problem. To address this problem, we developed a new taxonomy-based protein fold recognition method called TAXFOLD. It extensively exploits the sequence evolution information from PSI-BLAST profiles and the secondary structure information from PSIPRED profiles. A comprehensive set of 137 features is constructed, which allows for the depiction of both global and local characteristics of PSI-BLAST and PSIPRED profiles. We tested TAXFOLD on four datasets and compared it with several major existing taxonomic methods for fold recognition. Its recognition accuracies range from 79.6 to 90% for 27, 95, and 194 folds, achieving an average 6.9% improvement over the best available taxonomic method. Further test on the Lindahl benchmark dataset shows that TAXFOLD is comparable with the best conventional template-based threading method at the SCOP fold level. These experimental results demonstrate that the proposed set of features is highly beneficial to protein fold recognition.  相似文献   

16.
17.
The knowledge collated from the known protein structures has revealed that the proteins are usually folded into the four structural classes: all-α, all-β, α/β and α + β. A number of methods have been proposed to predict the protein's structural class from its primary structure; however, it has been observed that these methods fail or perform poorly in the cases of distantly related sequences. In this paper, we propose a new method for protein structural class prediction using low homology (twilight-zone) protein sequences dataset. Since protein structural class prediction is a typical classification problem, we have developed a Support Vector Machine (SVM)-based method for protein structural class prediction that uses features derived from the predicted secondary structure and predicted burial information of amino acid residues. The examination of different individual as well as feature combinations revealed that the combination of secondary structural content, secondary structural and solvent accessibility state frequencies of amino acids gave rise to the best leave-one-out cross-validation accuracy of ~81% which is comparable to the best accuracy reported in the literature so far.  相似文献   

18.
Typically, protein spatial structures are more conserved in evolution than amino acid sequences. However, the recent explosion of sequence and structure information accompanied by the development of powerful computational methods led to the accumulation of examples of homologous proteins with globally distinct structures. Significant sequence conservation, local structural resemblance, and functional similarity strongly indicate evolutionary relationships between these proteins despite pronounced structural differences at the fold level. Several mechanisms such as insertions/deletions/substitutions, circular permutations, and rearrangements in beta-sheet topologies account for the majority of detected structural irregularities. The existence of evolutionarily related proteins that possess different folds brings new challenges to the homology modeling techniques and the structure classification strategies and offers new opportunities for protein design in experimental studies.  相似文献   

19.
Finding structural similarities between proteins often helps reveal shared functionality, which otherwise might not be detected by native sequence information alone. Such similarity is usually detected and quantified by protein structure alignment. Determining the optimal alignment between two protein structures, however, remains a hard problem. An alternative approach is to approximate each three-dimensional protein structure using a sequence of motifs derived from a structural alphabet. Using this approach, structure comparison is performed by comparing the corresponding motif sequences or structural sequences. In this article, we measure the performance of such alphabets in the context of the protein structure classification problem. We consider both local and global structural sequences. Each letter of a local structural sequence corresponds to the best matching fragment to the corresponding local segment of the protein structure. The global structural sequence is designed to generate the best possible complete chain that matches the full protein structure. We use an alphabet of 20 letters, corresponding to a library of 20 motifs or protein fragments having four residues. We show that the global structural sequences approximate well the native structures of proteins, with an average coordinate root mean square of 0.69 Å over 2225 test proteins. The approximation is best for all α-proteins, while relatively poorer for all β-proteins. We then test the performance of four different sequence representations of proteins (their native sequence, the sequence of their secondary-structure elements, and the local and global structural sequences based on our fragment library) with different classifiers in their ability to classify proteins that belong to five distinct folds of CATH. Without surprise, the primary sequence alone performs poorly as a structure classifier. We show that addition of either secondary-structure information or local information from the structural sequence considerably improves the classification accuracy. The two fragment-based sequences perform better than the secondary-structure sequence but not well enough at this stage to be a viable alternative to more computationally intensive methods based on protein structure alignment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号