首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accumulation of beta-amyloid (Aβ) is an important pathological event in Alzheimer’s disease (AD). It is now well known that vaccination against fibrillar Aβ prevents amyloid accumulation and preserves cognitive function in transgenic mouse models. To study the effect of vaccination against generic oligomer epitopes, Aβ oligomers, islet amyloid polypeptide oligomers, random peptide oligomer (3A), and Aβ fibrils were used to vaccinate 3xTg-AD, which develop a progressive accumulation of plaques and cognitive impairment. Subcutaneous administration of these antigens markedly reduced total plaque load (Aβ burden) and improved cognitive function in the 3xTg-AD mouse brains as compared to controls. We demonstrated that vaccination with this nonhuman amyloid oligomer generated high titers of specifically antibodies recognizing Aβ oligomers, which in turn inhibited accumulation of Aβ pathology in mice. In addition to amyloid plaques, another hallmark of AD is tau pathology. It was found that there was a significant decline in the level of hyper-phosphorylated tau following vaccination. We have previously shown that immunization with 3A peptide improves cognitive function and clears amyloid plaques in Tg2576 mice, which provides a novel strategy of AD therapy. Here, we have shown that vaccination with 3A peptide in 3xTg-AD mice not only clears amyloid plaques but also extensively clears abnormal tau in brain.  相似文献   

2.
The critical pathological feature of Alzheimer’s disease (AD) is the accumulation of β-amyloid (Aβ), the main constituent of amyloid plaques. β-amyloid precursor protein (APP) undergoes amyloidogenic cleavage by β- and γ-secretase generating Aβ at endosomes or non-amyloidogenic processing by α-secretase precluding the production of Aβ at the plasma membrane. Recently, several natural products have been widely researched on the prevention of Aβ accumulation for AD treatment. We previously reported that Lycoris chejuensis K. Tae et S. Ko (CJ), which originated from Jeju Island in Korea, improved the disrupted memory functions and reduced Aβ production in vivo. Here, we further explored the effect of its active component, 7-deoxy-trans-dihydronarciclasine (coded as E144), on Aβ generation and the underlying mechanism. Our results showed that E144 reduced the level of APP, especially its mature form, in HeLa cells overexpressing human APP with the Swedish mutation. Concomitantly, E144 decreased the levels of Aβ, sAPPβ, sAPPα, and C-terminal fragment. In addition, administration of E144 normalized the behavioral deficits in Tg2576 mice, an APP transgenic mouse model of AD. E144 also decreased the Aβ and APP levels in the cerebral cortex of Tg2576 mice. Thus, we propose that E144 could be a potential drug candidate for an anti-amyloid disease-modifying AD therapy.  相似文献   

3.
Conflicting findings exist regarding the formation of diffuse and dense-core β-amyloid (Aβ) plaques in Alzheimer’s disease (AD). In the present study, we characterized Aβ plaque types in the brain and spinal cord of TgCRND8 mice, which express a transgene incorporating both the Indiana mutation (V717F) and the Swedish mutations (K670N/M671L) in the human amyloid-β protein precursor (APP) gene. By combining immunohistochemistry and thioflavin S staining, we were able to define dense-core and diffuse plaques in neocortex of the brain and spinal cord of 9 week-, 5 month-, 10 month- and 20-month-old TgCRND8 mice. The senile plaques in the neocortex were predominantly dense-core plaques, even in the youngest mice. However, diffuse plaques were instead detected in spinal cord of the mice, regardless of age. Our results that relative predominance of dense-core plaques in the neocortex and diffuse plaques in the spinal cord of TgCNRD8 mice of all disease durations argue against the notion that diffuse plaques may represent an early stage in the evolution of dense-core plaques. Furthermore, we also found that the ratio of Aβ42/Aβ40 of the brain was much higher than that of the spinal cord by Aβ ELISA assay. Our findings strongly indicate that diffuse and dense-core plaques may form via independent processes in AD and Aβ42 is more prone to form dense-core plaques than is Aβ40.  相似文献   

4.
An increasing body of evidence indicates that accumulation of soluble oligomeric assemblies of β-amyloid polypeptide (Aβ) play a key role in Alzheimer's disease (AD) pathology. Specifically, 56 kDa oligomeric species were shown to be correlated with impaired cognitive function in AD model mice. Several reports have documented the inhibition of Aβ plaque formation by compounds from natural sources. Yet, evidence for the ability of common edible elements to modulate Aβ oligomerization remains an unmet challenge. Here we identify a natural substance, based on cinnamon extract (CEppt), which markedly inhibits the formation of toxic Aβ oligomers and prevents the toxicity of Aβ on neuronal PC12 cells. When administered to an AD fly model, CEppt rectified their reduced longevity, fully recovered their locomotion defects and totally abolished tetrameric species of Aβ in their brain. Furthermore, oral administration of CEppt to an aggressive AD transgenic mice model led to marked decrease in 56 kDa Aβ oligomers, reduction of plaques and improvement in cognitive behavior. Our results present a novel prophylactic approach for inhibition of toxic oligomeric Aβ species formation in AD through the utilization of a compound that is currently in use in human diet.  相似文献   

5.
Down syndrome (DS) results in an overproduction of amyloid‐β (Aβ) peptide associated with early onset of Alzheimer's disease (AD). DS cases have Aβ deposits detectable histologically as young as 12–30 years of age, primarily in the form of diffuse plaques, the type of early amyloid pathology also seen at pre‐clinical (i.e., pathological aging) and prodromal stages of sporadic late onset AD. In DS subjects aged >40 years, levels of cortical Aβ deposition are similar to those observed in late onset AD and in addition to diffuse plaques involve cored plaques associated with dystrophic neurites (neuritic plaques), which are of neuropathological diagnostic significance in AD. The purpose of this review is to summarize and discuss findings from amyloid PET imaging studies of DS in reference to postmortem amyloid‐based neuropathology. PET neuroimaging applied to subjects with DS has the potential to (a) track the natural progression of brain pathology, including the earliest stages of amyloid accumulation, and (b) determine whether amyloid PET biomarkers predict the onset of dementia. In addition, the question that is still incompletely understood and relevant to both applications is the ability of amyloid PET to detect Aβ deposits in their earliest form.  相似文献   

6.
Amyloid plaques, which are primarily composed of aggregated amyloid-beta (Aβ) peptide, are the neuropathological hallmarks of Alzheimer's disease (AD). Fluorescent markers containing 2-styrylpyridazin-3(2H)-ones were developed to detect intracellular aggregated Aβ peptides. Nine compounds exhibited a greater than 10-fold increase of in emission spectra before and after mixing with Aβ aggregates compared with before mixing. Among these compounds, compound 9n exhibited the highest affinity for Aβ aggregates (K(d)=1.84 μM) and selectively stained both aggregated intracellular Aβ and Aβ plaques in the transgenic AD model mice (APP/PS1). These preliminary results indicate that 2-styrylpyridazin-3(2H)-one derivatives are promising alternative fluorescence imaging agent for the study of AD.  相似文献   

7.
Alzheimer’s disease (AD) is characterized by Amyloid-β (Aβ) deposition in senile plaques in specific areas of the brain and by intraneuronal p-tau accumulation in neurofibrillary tangles. Cumulative evidence supports that oxidative stress is an important factor in the pathogenesis of AD and contributes to Aβ generation. However, there is no effective treatment for AD. Human umbilical cord mesenchymal stem cells (HUMSCs) have potential therapeutic value for the treatment of neurological disease. However, the therapeutic impact of systemic administration of HUMSCs and their mechanism of action in AD have not yet been determined. Here, we found that intravenous infusion of HUMSCs significantly improved spatial learning and alleviated memory decline in an AβPP/PS1 mouse model of AD. HUMSC treatment also increased glutathione (GSH) activity and ratio of GSH to oxidative glutathione as well as superoxide dismutase activity, while decreasing malondialdehyde activity and protein carbonyl level, which suggests that HUMSC infusion alleviated oxidative stress in AβPP/PS1 mice. In addition, HUMSC infusion reduced β-secretase 1 and CTFβ, thus reducing Aβ deposition in mice. HUMSCs may have beneficial effects in the prevention and treatment of AD.  相似文献   

8.
Alzheimer's disease (AD) is a devastating disease affecting predominantly the aging population. One of the characteristic pathological hallmarks of AD are neuritic plaques, consisting of amyloid-β peptide (Aβ). While there has been some advancement in diagnostic classification of AD patients according to their clinical severity, no fully reliable method for pre-symptomatic diagnosis of AD is available. To enable such early diagnosis, which will allow the initiation of treatments early in the disease progress, neuroimaging tools are under development, making use of Aβ-binding ligands that can visualize amyloid plaques in the living brain. Here we investigate the properties of a newly designed series of D-enantiomeric peptides which are derivatives of ACI-80, formerly called D1, which was developed to specifically bind aggregated Aβ1-42. We describe ACI-80 derivatives with increased stability and Aβ binding properties, which were characterized using surface plasmon resonance and enzyme-linked immunosorbent assays. The specific interactions of the lead compounds with amyloid plaques were validated by ex vivo immunochemistry in transgenic mouse models of AD. The novel compounds showed increased binding affinity and are promising candidates for further development into in vivo imaging compounds.  相似文献   

9.
The main signs of Alzheimer’s disease (AD) are cognitive impairment and senile plaques composed of amyloid beta (Aβ) observed in patients’ brains. Therefore, therapy for AD focuses on the removal of Aβ. We developed an “edible vaccine” that employs intestinal immunity with little to no side effects. Rice was utilized as an edible vaccine. It expressed GFP-Aβ42. Aβ rice was administered orally to wild-type (WT) mice causing production of anti-Aβ antibodies. Since Aβ rice was mixed with the cholera toxin B subunit (CTB), antibody against the rice seed protein was also produced. Then, mice were caused to develop immune tolerance against the rice seed protein by oral administration of Aβ rice mixed with CTB. The results indicated that only anti-Aβ antibodies were produced.  相似文献   

10.
The main signs of Alzheimer's disease (AD) are cognitive impairment and senile plaques composed of amyloid beta (Aβ) observed in patients' brains. Therefore, therapy for AD focuses on the removal of Aβ. We developed an "edible vaccine" that employs intestinal immunity with little to no side effects. Rice was utilized as an edible vaccine. It expressed GFP-Aβ42. Aβ rice was administered orally to wild-type (WT) mice causing production of anti-Aβ antibodies. Since Aβ rice was mixed with the cholera toxin B subunit (CTB), antibody against the rice seed protein was also produced. Then, mice were caused to develop immune tolerance against the rice seed protein by oral administration of Aβ rice mixed with CTB. The results indicated that only anti-Aβ antibodies were produced.  相似文献   

11.
Several lines of evidence suggest that dysregulated lipid metabolism may participate in the pathogenesis of Alzheimer’s disease (AD). Epidemiologic studies suggest that elevated mid-life plasma cholesterol levels may be associated with an increased risk of AD and that statin use may reduce the prevalence of AD. Cellular studies have shown that the levels and distribution of intracellular cholesterol markedly affect the processing of amyloid precursor protein into Aβ peptides, which are the toxic species that accumulate as amyloid plaques in the AD brain. Most importantly, genetic evidence identifies apolipoprotein E, the major cholesterol carrier in the central nervous system, as the primary genetic risk factor for sporadic AD. In humans, apoE exists as three major alleles (apoE2, apoE3, and apoE4), and inheritance of the apoE4 allele increases the risk of developing AD at an earlier age. However, exactly how apoE functions in the pathogenesis of AD remains to be fully determined. Our studies have identified that the cholesterol transporter ABCA1 is a crucial regulator of apoE levels and lipidation in the brain. Deficiency of ABCA1 leads to the loss of approximately 80% of apoE in the brain, and the residual 20% that remains is poorly lipidated. Several independent studies have shown this poorly lipidated apoE increases amyloid burden in mouse models of AD, demonstrating that apoE lipidation by ABCA1 affects key steps in amyloid deposition or clearance. Conversely, robust overexpression of ABCA1 in the brain promotes apoE lipidation and nearly eliminates the formation of mature amyloid plaques. These studies show that the lipid binding capacity of apoE is a major mechanism of its function in the pathogenesis of AD, and suggest that increasing apoE lipidation may be of therapeutic importance for this devastating disease.  相似文献   

12.
《Autophagy》2013,9(1):32-44
Current evidence suggests a central role for autophagy in Alzheimer disease (AD), and dysfunction in the autophagic system may lead to amyloid-β (Aβ) accumulation. Using in vitro and in vivo AD models, the present study investigated whether mesenchymal stem cells (MSCs) could enhance autophagy and thus exert a neuroprotective effect through modulation of Aβ clearance In Aβ-treated neuronal cells, MSCs increased cellular viability and enhanced LC3-II expression compared with cells treated with Aβ only. Immunofluorescence revealed that MSC coculture in Aβ-treated neuronal cells increased the number of LC3-II-positive autophagosomes that were colocalized with a lysosomal marker. Ultrastructural analysis revealed that most autophagic vacuoles (AVs) in Aβ-treated cells were not fused with lysosomes, whereas a large portion of autophagosomes were conjoined with lysosomes in MSCs cocultured with Aβ-treated neuronal cells. Furthermore, MSC coculture markedly increased Aβ immunoreactivity colocalized within lysosomes and decreased intracellular Aβ levels compared with Aβ-treated cells. In Aβ-treated animals, MSC administration significantly increased autophagosome induction, final maturation of late AVs, and fusion with lysosomes. Moreover, MSC administration significantly reduced the level of Aβ in the hippocampus, which was elevated in Aβ-treated mice, concomitant with increased survival of hippocampal neurons. Finally, MSC coculture upregulated BECN1/Beclin 1 expression in AD models. These results suggest that MSCs significantly enhance autolysosome formation and clearance of Aβ in AD models, which may lead to increased neuronal survival against Aβ toxicity. Modulation of the autophagy pathway to repair the damaged AD brain using MSCs would have a significant impact on future strategies for AD treatment.  相似文献   

13.
Despite a key role of amyloid‐beta (Aβ) in Alzheimer's disease (AD), mechanisms that link Aβ plaques to tau neurofibrillary tangles and cognitive decline still remain poorly understood. The purpose of this study was to quantify proteins in the sarkosyl‐insoluble brain proteome correlated with Aβ and tau insolubility in the asymptomatic phase of AD (AsymAD) and through mild cognitive impairment (MCI) and symptomatic AD. Employing label‐free mass spectrometry‐based proteomics, we quantified 2711 sarkosyl‐insoluble proteins across the prefrontal cortex from 35 individual cases representing control, AsymAD, MCI and AD. Significant enrichment of Aβ and tau in AD was observed, which correlated with neuropathological measurements of plaque and tau tangle density, respectively. Pairwise correlation coefficients were also determined for all quantified proteins to Aβ and tau, across the 35 cases. Notably, six of the ten most correlated proteins to Aβ were U1 small nuclear ribonucleoproteins (U1 snRNPs). Three of these U1 snRNPs (U1A, SmD and U1‐70K) also correlated with tau consistent with their association with tangle pathology in AD. Thus, proteins that cross‐correlate with both Aβ and tau, including specific U1 snRNPs, may have potential mechanistic roles in linking Aβ plaques to tau tangle pathology during AD progression.  相似文献   

14.
Alzheimer disease (AD) is characterized by extracellular senile plaques, intracellular neurofibrillary tangles, and memory loss. Aggregated amyloid-β (Aβ), oxidative stress, and inflammation have pivotal roles in the pathogenesis of AD. Therefore, the inhibition of Aβ-induced neurotoxicity, oxidative stress, and inflammation is a potential therapeutic strategy for the treatment of AD. In this study, a heptapeptide, isolated from a Ph.D.-C7C library by phage display, attenuated Aβ42-induced cytotoxicity in SH-SY5Y neuroblastoma cells and reduced Aβ42-induced oxidative stress by decreasing the production of reactive oxygen species and glutathione disulfide. As a result, glutathione level increased and superoxide dismutase and glutathione peroxidase activities were enhanced in vitro and in vivo. This peptide also suppressed the inflammatory response by decreasing the release of proinflammatory cytokines, such as tumor necrosis factor α and interleukin 1β, in microglia and by reducing microgliosis and astrogliosis in AD transgenic mice. This peptide was intracerebroventricularly administered to APPswe/PS1dE9 transgenic mice. We found that this peptide significantly improved spatial memory and reduced the amyloid plaque burden and soluble and insoluble Aβ levels. Our findings suggest that this multifunctional peptide has therapeutic potential for an Aβ-targeted treatment of AD.  相似文献   

15.
The amyloid-beta peptide (Aβ) cascade hypothesis posits that Aβ accumulation is the fundamental initiator of Alzheimer's disease (AD), and mounting evidence suggests that impaired Aβ clearance rather than its overproduction is the major pathogenic event for AD. Recent genetic studies have identified cluster of differentiation 33 (CD33) as a strong genetic locus linked to AD. As a type I transmembrane protein, CD33 belongs to the sialic acid-binding immunoglobulin-like lectins, mediating the cell–cell interaction and inhibiting normal functions of immune cells. In the brain, CD33 is mainly expressed on microglial cells. The level of CD33 was found to be increased in the AD brain, which positively correlated with amyloid plaque burden and disease severity. More importantly, CD33 led to the impairment of microglia-mediated clearance of Aβ, which resulted in the formation of amyloid plaques in the brain. In this article, we review the recent epidemiological findings of CD33 that related with AD and discuss the levels and pathogenic roles of CD33 in this disease. Based on the contributing effects of CD33 in AD pathogenesis, targeting CD33 may provide new opportunities for AD therapeutic strategies.  相似文献   

16.
Amyloid-β peptide (Aβ) is the amyloid component of senile plaques in Alzheimer disease (AD) brains. Recently a soluble oliomeric form of Aβ in Aβ precursor protein transgenic mouse brains and AD brains was identified as a potential causative molecule for memory impairment, suggesting that soluble Aβ oligomers cause neurodegeneration in AD. Further characterization of this species has been hampered, however, because the concentrations are quite small and it is difficult to monitor Aβ oligomers specifically. Here we developed a novel method for monitoring Aβ oligomers using a split-luciferase complementation assay. In this assay, the N- and C-terminal fragments of Gaussia luciferase (Gluc) are fused separately to Aβ. We found that conditioned media from both N- and C-terminal fragments of Gluc-tagged Aβ1-42 doubly transfected HEK293 cells showed strong luminescence. We used gel filtration analyses to analyze the size of oligomers formed by the luciferase complementation assay, and found that it matched closely with oligomers formed by endogenous Aβ in Tg2576 neurons. Large oligomers (24-36-mers), 8-mers, trimers, and dimers predominate. In both systems, Aβ formed oligomers intracellularly, which then appear to be secreted as oligomers. We then evaluated several factors that might impact oligomer formation. The level of oligomerization of Aβ1-40 was similar to that of Aβ1-42. Homodimers formed more readily than heterodimers. The level of oligomerization of murine Aβ1-42 was similar to that of human Aβ1-42. As expected, the familial AD-linked Arctic mutation (E22G) significantly enhanced oligomer formation. These data suggest that Gluc-tagged Aβ enables the analysis of Aβ oligomers.  相似文献   

17.
Aggregated β-amyloid (Aβ) plays crucial roles in Alzheimer's disease (AD) pathogenesis, therefore blockade of Aβ aggregation is considered as a potential therapeutic target. We designed and synthesized small molecules to reduce Aβ-induced cytotoxicity by inhibiting Aβ aggregation. The small molecules were screened via ThT, MTT, and cell-based cytotoxicity assay (Aβ burden assay). Selected compounds 1c, 1d, 1e, and 1f were then investigated by evaluating their effects on cognitive impairment of acute AD mice model. Learning and memory dysfunction by injection of Aβ(1-42) was recovered by administration of these molecules. Especially, 1d showed the best recovery activity in Y-maze task, object recognition task, and passive avoidance task with dose dependent manner. These results suggest that 1d has high potential as a therapeutic agent for AD.  相似文献   

18.
While the molecular mechanisms underlying Alzheimer's disease (AD) remain largely unknown, abnormal accumulation and deposition of beta amyloid (Aβ) peptides into plaques has been proposed as a critical pathological process driving disease progression. Over the last years, neuronal lipid species have been implicated in biological mechanisms underlying amyloid plaque pathology. While these processes comprise genetic features along with lipid signaling as well as direct chemical interaction of lipid species with Aβ mono- and oligomers, more efforts are needed to spatially delineate the exact lipid-Aβ plaque interactions in the brain. Chemical imaging using mass spectrometry (MS) allows to probe the spatial distribution of lipids and peptides in complex biological tissues comprehensively and at high molecular specificity. As different imaging mass spectrometry (IMS) modalities provide comprehensive molecular and spatial information, we here describe a multimodal ToF-SIMS- and MALDI-based IMS strategy for probing lipid and Aβ peptide changes in a transgenic mouse model of AD (tgAPPArcSwe). Both techniques identified a general AD-associated depletion of cortical sulfatides, while multimodal MALDI IMS revealed plaque specific lipid as well as Aβ peptide isoforms. In addition, MALDI IMS analysis revealed chemical features associated with morphological heterogeneity of individual Aβ deposits. Here, an altered GM1 to GM2/GM3 ganglioside metabolism was observed in the diffuse periphery of plaques but not in the core region. This was accompanied by an enrichment of Aβ1–40arc peptide at the core of these deposits. Finally, a localization of arachidonic acid (AA) conjugated phosphatidylinositols (PI) and their corresponding degradation product, lyso-phosphatidylinositols (LPI) to the periphery of Aβ plaques was observed, indicating site specific macrophage activation and ganglioside processing.  相似文献   

19.
Fibrillar amyloid β (fAβ) peptide is the major component of Aβ plaques in the brains of Alzheimer's disease (AD) patients. Inflammatory mediators have previously been proposed to be drivers of Aβ pathology in AD patients by increasing amyloidogenic processing of APP and promoting Aβ accumulation, but recent data have shown that expression of various inflammatory cytokines attenuates Aβ pathology in mouse models. In an effort to further study the role of different inflammatory cytokines on Aβ pathology in vivo, we explored the effect of murine Tumor Necrosis Factor α (mTNFα) in regulating Aβ accumulation. Recombinant adeno-associated virus serotype 1 (AAV2/1) mediated expression of mTNFα in the hippocampus of 4 month old APP transgenic TgCRND8 mice resulted in significant reduction in hippocampal Aβ burden. No changes in APP levels or APP processing were observed in either mTNFα expressing APP transgenic mice or in non-transgenic littermates. Analysis of Aβ plaque burden in mTNFα expressing mice showed that even after substantial reduction compared to EGFP expressing age-matched controls, the Aβ plaque burden levels of the former do not decrease to the levels of 4 month old unmanipulated mice. Taken together, our data suggests that proinflammatory cytokine expression induced robust glial activation can attenuate plaque deposition. Whether such an enhanced microglial response actually clears preexisting deposits without causing bystander neurotoxicity remains an open question.  相似文献   

20.
One of the neuropathological hallmarks of Alzheimer's disease (AD)—causing neurodegeneration and consequent memory deterioration, and eventually, cognitive decline—is amyloid-β (Aβ) aggregation forming amyloid plaques. Our previous study showed the potential of a tocotrienol-rich fraction—a mixture of naturally occurring of vitamin E analogs—to inhibit Aβ aggregation and restore cognitive function in an AD mouse model. The current study examined the effect of three vitamin E analogs—α-tocopherol (α-TOC), α-tocotrienol (α-T3), and γ-tocotrienol (γ-T3)—on Aβ aggregation, disaggregation, and oligomerization in vitro. Thioflavin T (ThT) assay showed α-T3 reduced Aβ aggregation at 10 μM concentration. Furthermore, both α-T3 and γ-T3 demonstrated Aβ disaggregation, as shown by the reduction of ThT fluorescence. However, α-TOC showed no significant effect. We confirmed the results for ThT assays with scanning electron microscopy imaging. Further investigation in photo-induced cross-linking of unmodified protein assay indicated a reduction in Aβ oligomerization by γ-T3. The present study thus revealed the individual effect of each tocotrienol analog in reducing Aβ aggregation and oligomerization as well as disaggregating preformed fibrils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号