首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A Synaptosomal Preparation from the Guinea Pig Ileum Myenteric Plexus   总被引:6,自引:4,他引:2  
Abstract: Our interest in investigating the presynaptic modulation of acetylcholine release led to the development of a synaptosomal preparation from the guinea pig ileum myenteric plexus-longitudinal muscle. A crude synaptosomal fraction (P2) was obtained by homogenization and differential centrifugation. The preparation exhibited a specific uptake system for choline and for nor-adrenaline (NA), but not for 5-hydroxytryptamine (5-HT). Synaptosomes were isolated from this P2 fraction by an isoosmotic density gradient prepared from sucrose and metrizamide. The resultant synaptosomal fraction was enriched about sevenfold in both choline uptake and in choline acetyltransferase (ChAT). Choline was transported by a high-affinity system with a Km of 6.5 × 10−7 M and a Vmax of 41 pmol/mg protein/min. Electron microscopy confirmed the synaptosomal nature of the gradient fraction. Some synaptosomal profiles contained only small, translucent vesicles whereas others also contained large (approx. 100 nm diameter) electron-opaque vesicles. The crude synaptosomal fraction synthesized acetylcholine (ACh) from exogenous choline and it released the synthesized ACh in a calcium-dependent manner.  相似文献   

2.
Abstract— The effects of salt on the properties of human placental choline acetyltransferase have been examined. Increases in enzyme activity, thermal denaturation and susceptibility to proteolysis can be related to increases in ionic strength, rather than to specific salt effects. Increased ionic strength increases the maximal velocity (Km) of the reaction, with no change in the kinetic parameter Vmax/Km (choline). The pH-Km profile, measured over the range of 6.5–8.0, indicates the requirement of a dissociated acidic residue whose pKa is below 7.5 at high ionic strength, and a protonated residue whose pKa is above 7.5 at low ionic strength. It is proposed that the conformation of the enzyme is different at high ionic strength and at low ionic strength, and that these different conformational states of the enzyme result in different rate-determining steps of the reaction.  相似文献   

3.
Abstract: :The kinetic mechanism of bovine brain choline acetyltransferase has been studied using acetylaminocholine as a dead-end inhibitor and di-methylaminoethanol as an alternate substrate. Acetylaminocholine inhibition is competitive with respect to acetylcholine and noncompetitive with respect to choline. Dimethylaminoethanol exhibits one-sixth the Vmax obtained with choline. These results suggest that the reaction obeys a sequential random kinetic mechanism. Salt activation of the enzyme is nonspecific with respect to monovalent anions, and results in a parallel increase in the Km for choline and the Ki for acetylcholine. These results support the conclusion that salt activation of choline acetyltransferase is a nonspecific effect and that no specific chloride ion regulation of this enzyme occurs in vivo .  相似文献   

4.
ATPase activity was studied in plasma membrane-enriched fractions prepared from cultured Citrus sinensis L. cv. Osbeck cells. In general, properties of the plasma membrane ATPase from cultured cells, such as optimal pH and temperature. Vmax and Km were similar to those already observed in higher plants. The effects of high salt concentrations on ATPase activity were studied in membrane fractions derived from salt-sensitive and salt-tolerant cells grown in the presence or absence of salt. NaCl did not have an in vivo effect on Vmax and the apparent Km value for ATP. However, high concentrations of NaCl, or KCl, added in vitro, induced cooperativity in the enzyme and reduced the affinity of the enzyme for its substrate. Isoosmolar concentrations of sucrose or choline chloride failed to do so. Our results suggest that the plasma membrane ATPase of Citrus cells has more than one substrate-binding site on the native form of the enzyme which interact in the presence of salt and act independently in its absence.  相似文献   

5.
Abstract: Dimethylaminoethanol was studied both as a substrate and as an inhibitor of choline uptake in long-term cultures of foetal rat cerebral hemispheres. A saturable component with an apparent Km of 28 μM and Vmax of 11 pmol/min/μg DNA for dimethylaminoethanol, was observed. Like choline, dimethylaminoethanol was also taken up by a second, low-affinity component, the apparent Vmax of which was about 102 pmol/min/μg DNA. Dimethylaminoethanol inhibited the high-affinity but not the low-affinity choline uptake in a competitive manner with an apparent inhibition constant of 6.0 μM. Monomethylaminoethanol (K1# 60 μM) competitively inhibited high-affinity choline transport. At low concentrations hemicholinium-3, but not ethanolamine, effectively inhibited high-affinity uptake of choline and to a lesser degree the uptake of the dimethylaminoethanol. While the high-affinity uptake of both substrates was inhibited by high concentrations of hemicholinium-3 or ethanolamine, the low-affinity system was not affected by hemicholinium-3. From the kinetics of uptake and inhibition patterns of choline and its related analogs, the methyl group seems to play a major role in determining the affinity rate constants for these substrates. The maximum rate of choline uptake via the high-affinity component increases about sixfold during a period of 2 weeks. In the absence of serum the maximum velocity of the high-affinity component is greatly reduced. These observations suggest that the high-affinity choline uptake component is an integral property and a useful marker, of the developing cerebral cells.  相似文献   

6.
Abstract— Choline acetyltransferase catalyzes the formation of acetylcholine from choline and acetyl-CoA in cholin-ergic neurons. The present study examined conditions for modulation of kinase-mediated phosphorylation of this enzyme. By using a monospecific polyclonal rabbit anti-human choline acetyltransferase antibody to immunoprecipi-tate cytosolic and membrane-associated subcellular pools of enzyme from rat hippocampal synaptosomes, we determined that only the cytosolic fraction of the enzyme (67,000 ± 730 daltons) was phosphorylated under basal, unstimulated conditions. The quantity of this endogenous phosphoprotein was dependent, in part, upon the level of intracellular calcium, with 32Pi incorporation into the enzyme in nerve terminals incubated in nominally calcium-free medium only 43 ± 7% of control. The corresponding enzymatic activity of cytosolic choline acetyltransferase did not appear to be altered by lowered cytosolic calcium, whereas membrane-associated choline acetyltransferase activity was decreased to 58 ± 11 % of control. Depolarization of synaptosomes with 50 μ M veratridine neither altered the extent of phosphorylation or specific activity of cytosolic choline acetyltransferase, nor induced detectable phosphorylation of membrane-associated choline acetyltransferase, although the specific activity of the membrane-associated enzyme was increased to 132 ± 5% of control. In summary, phosphorylation of choline acetyltransferase does not appear to regulate cholinergic neurotransmission by a direct action on catalytic activity of the enzyme.  相似文献   

7.
Activity and properties of sugar beet ( Beta vulgaris var. Polyrave) leaf ribulose-1,5-bisphosphate (RuBP) carboxylase were investigated following the exposure of plants to NaCl in the range of 45 to 270 m M for 7 days. An enhancement in RuBP carboxylase activity was found both in crude extracts and in purified preparations following plant exposure to 180 m M NaCl. Kinetic properties of the enzyme were significantly affected by salinity as determined by a 4.5 fold increase in Km [HCO-3] and Km [CO2], and a Vmax increase of 50%. Data based on polyacrylamide-gel-electrophoresis suggest that the molecular weight of the small subunit of RuBP carboxylase was reduced from 15,500 to 12,500 in plants grown under salinity. The large subunit was much less affected and no change was found in the whole enzyme. The enzyme isolated from plants exposed to salinity contained about 50% fewer titratable SH groups as compared with the control. The results indicate that in this plant, mild salt concentrations induced conformational changes in RuBP carboxylase which may be responsible for its tolerance to semi-salinity.  相似文献   

8.
Abstract: The choline analog homocholine is not acetylated in vitro by choline- O -acetyltransferase (ChAT, EC 2.3.1.6), which is solubilized by 100 mM-sodium phosphate buffer washes of a crude vesicular fraction of mouse forebrain. However, both homocholine and choline are acetylated by a form of ChAT which is nonionically associated with a subcellular fraction of mouse forebrain containing membrane-associated organelles and occluded acetylcho-line (P4). Acetylation of homocholine by membrane-associated ChAT is saturable. 4-(1-Naphthylvinyl)pyridine (NVP) inhibits the acetylation of both choline (60%) and homocholine (40%) by membrane-associated ChAT but reduces the acetylation of choline alone by soluble ChAT (76%). Choline and homocholine serve as competitive alternative substrates for the same membrane-associated ChAT, whereas homocholine acts only as a competitive inhibitor of choline acetylation by soluble ChAT. Acetylhomocholine competitively inhibits the acetylation of choline by both soluble and membrane-associated ChAT more dramatically than does the natural end product, acetylcholine.  相似文献   

9.
The objectives of the present study were to validate the presence of cytoplasmic and membrane-associated pools of choline acetyltransferase (ChAT) in rat brain synaptosomes, and to evaluate inhibition of these different forms of the enzyme by the nitrogen mustard analogue of choline, choline mustard aziridinium ion (ChM Az). The relative distribution of ChAT and lactate dehydrogenase (LDH) was followed in subfractions of synaptosomes to establish whether ChAT activity associated with salt-washed presynaptic membranes represents membrane-bound protein rather than cytosolic enzyme trapped within undisrupted synaptosomes or revesiculated membrane fragments. The percentage of total synaptosomal ChAT activity (14%) recovered in the final membrane pellet always exceeded that of LDH (6%), lending support to the hypothesis that much of the ChAT associated with the membranes was a membrane bound form of the enzyme. Incubation of purified synaptosomes with ChM Az led to irreversible inhibition of ChAT activity; this loss of enzyme activity could not be accounted for by lysis of nerve terminals during incubation in the presence of the mustard analogue. Subfractionation of the ChM Az-treated nerve terminals revealed that the membrane-bound form of ChAT was inhibited to the greatest extent, followed by the ionically membrane-associated enzyme, with the activity of the water-solubilized enzyme not differing significantly from control. Preparation of the synaptosomal ChAT subfractions from untreated nerve terminals prior to incubation with varying concentrations of ChM Az or naphthylvinylpyridine revealed that under these conditions water-solubilized, ionically membrane-associated, and detergent-solubilized membrane-bound pools of ChAT were not differentially inhibited by either compound.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Abstract— The synthesis of ACh by choline acetyltransferase (ChAc) has been examined using acetyl-CoA, acetyl-dephospho-CoA and acetylpantetheine phosphate. At pH 7.5 Km values of 25.7 μ m for acetyl-CoA, 54.8 μ m for acetyl-dephospho-CoA and 382 μ m for acetylpantetheine phosphate were obtained and are similar to those at pH 6.0. This indicates that the 3-phosphate may not be required for binding the substrate to the enzyme unlike carnitine acetyltransferase.
Inhibitor constants ( Ki ) for CoA, dephospho-CoA and pantetheine phosphate were also measured and when considered with the Km values obtained for the acetyl derivatives it is concluded that acetyl-dephospho-CoA could be a successful acetyl donor in the synthesis of ACh.
Acetyl-dephospho-CoA was found to be less satisfactory as a substrate for citrate synthase.  相似文献   

11.
Abstract: Electrolytic lesions made in the medial septum of the rat brain caused an 80% decrease in the activity of choline acetyltransferase and a 33% reduction in ATP-citrate lyase activity in the synaptosomal fraction from the hippocampus. Decreases in the activities of the two enzymes in the cytosol (S3) fraction were 70 and 13%, respectively. The activities of pyruvate dehydrogenase, citrate synthase, acetyl-CoA synthase, and carnitine acetyltransferase in crude hippocampal homogenates and in subcellular fractions were not affected by septal lesions. The data indicate that ATP-citrate lyase is linked to the septal-hippocampal pathway and that the enzyme is preferentially located in cholinergic nerve endings that terminate within the hippocampus.  相似文献   

12.
Abstract: The choline acetyltransferase (ChAT) reaction involves the transfer of the acetyl group of acetyl-CoA to choline, in which an active site histidine is believed to act as a general acid/base catalyst. A comparison of the deduced amino acid sequences of the enzyme from Drosophila , pig, rat, and Caernohabditis elegans revealed three conserved histidines: Drosophila His268, His393, and His426. Each of these histidines was replaced by a leucine and a glutamine, and the kinetic properties of each of the recombinant mutant enzymes were determined. The mutations yielded active His268Leu-ChAT, HisZ68Gln-ChAT, and His393Gln-ChAT and inactive His393Leu-ChAT, His426Leu- ChAT, and His426Gln-ChAT. The kinetic constants Km(CoA), Km(acetyloholine). and Vmax were essentially the same for all of the active mutants. When the integrity of the CoASAc binding site was investigated in the inactive mutants, the data suggested that the binding site in His393Leu-ChAT is disrupted but conserved in His426Leu-ChAT and His426Gln- ChAT. These results suggest that His426 is an essential catalytic residue and could serve as an acid/base catalyst.  相似文献   

13.
Byssochlamys fulva was found to produce a glucoamylase (EC 3.2.1.3) that exhibited its maximal activity at 50°C and had a broad optimum pH range of 4.0–5.2. The Km and Vmax values of the crude enzyme for amylopectin were 0.15% and 17.9 mg glucose l-1 min--1, respectively. The molecular weight of the enzyme as estimated by the gel-filtration method was 34 kDa.  相似文献   

14.
Abstract— Subcellular fractions have been prepared from normal human caudate nucleus and substantia nigra by a standard fractionation technique and the fractions assayed for the following enzymes, which were studied because of their relevance to neurotransmission and pathological change: glutamate decarboxylase (EC 4.1.1.15), choline acetyltransferase (EC 2.3.1.6), acetylcholinesterase (EC 3.1.1.7), acid phosphatase (EC 3.1.3.2) and succinate dehydrogenase (EC 1.3.99.1). The distribution of these enzymes was assessed in relation to the morphology of the fractions as observed by electron microscopy. As with preparations from animal cerebral cortex, acetylcholinesterase and acid phosphatase were found mainly in fractions known to contain plasma membranes, synaptosomal membranes and microsomes. The levels of choline acetyltransferase in fractions from the substantia nigra were too low to measure but, in the caudate nucleus, the enzyme was concentrated in the crude mitochondrial fraction (P2), especially in the P2B and P2C subfractions. A high proportion of the glutamate decarboxylase activity was present in the P2 fractions of the substantia nigra and caudate nucleus and, although the synaptosomal (P2B) fraction contained the enzyme, significant amounts were found in the mitochondrial (P2C) fraction. This may have been due to some contamination of the mitochondria with small synaptosomes. Succinate dehydrogenase showed a conventional bimodal distribution between synaptosomes and mitochondria with a concentration in the latter.  相似文献   

15.
Abstract: Recent studies indicate the lumped constant (LC), which defines the relative rates of brain utilization of glucose and 2-deoxyglucose (2-DG), doubles to values > 1.0 under conditions of hypoglycemia. Since changes in the LC should be predictable given the kinetic parameters of blood-brain barrier (BBB) transport and brain phosphorylation of glucose and 2-DG, the present studies were designed to measure the necessary kinetic parameters. The carotid injection technique was used to determine cerebral blood flow and the Km , Vmax, and K D of glucose and 2-DG transport through the BBB in seven brain regions in rats anesthetized with 50 mg/kg i.p. pentobarbital. Regional glucose transport through the BBB was characterized by an average Km = 6.3 m m , average Vmax = 0.53 μmol min−1g−1, and average K D= 0.022 ml min−1g−1. The nonsaturable route of transport of glucose represented on the average 40% of the total glucose influx into brain regions at an arterial glucose concentration of 10 m m . In addition, the rate constants of phosphorylation of glucose and 2-DG were measured for each region. Substitutions of the measured kinetic parameters for sugar transport and phosphorylation into equations defining the LC confirm the observation that the LC would be expected to vary under extreme conditions such as hypoglycemia and to exceed values of 1.0 under these conditions.  相似文献   

16.
Atlantic salmon ( Salmo salar L.) fry hatched from eggs transferred from high-Na to low-Na water during the eyed stage of development had a significantly higher Vmax and lower Km (P <0.01) of the sodium uptake mechanism than fry hatched from eggs incubated entirely in low-Na or high-Na water.
Fry hatched from eggs transferred to acid, high aluminium water during the eyed stage of development had a similar Vmax and Km to fry hatched from eggs incubated entirely in high- or low-Na water. Eggs incubated continuously in acid, high aluminium (low-Na) water produced fry with significantly lower Km and Vmax values than fry hatched from eggs incubated continuously in low-Na water. Eggs and fry in acid, high aluminium water continually lost sodium and mortality was 100% at 5 5 M O degree-days (2–3 weeks after hatching).
The results are discussed with respect to the influence of perivitelline fluid ion activities in eggs in acid, high aluminium water on the kinetic characteristics of sodium uptake in yolk-sac fry. A possible mechanism for the long-term adaptation of teleosts in acidified natural waters is also proposed.  相似文献   

17.
Abstract— When suboesophageal ganglia of the snail Helix comalia were incubated at 25°C in a medium containing [3H]choline, tissue: medium ratios of about 14:1 were obtained after 20 min incubation, and only 15°, of the accumulated choline was metabolized to form [3H]acetylcholine. The uptake of [3H]choline showed saturation kinetics and was dependent upon temperature and sodium ions. Kinetic analysis suggested the existence of a high affinity uptake process (Km= 1.7 μM, Vmax= 0.21 nmol/g/min) and a low affinity process (Km= 100 μM, Vmax= 1.2 nmol/g/min). The high affinity uptake differed from the low affinity system in that it was sensitive to various metabolic inhibitors and was competitively inhibited by low concentrations of hemicholinium- and acetylcholine. Neither uptake system was greatly influenced by the absence of calcium, potassium or magnesium ions or by the presence of low concentrations of 5-HT, dopamine. tetrabenazine, chlorpromazine, decamethonium, nalaxone or imipramine. The high affinity uptake process may be important in supplying choline for the biosynthesis of acetylcholine in cholinergic neurons.  相似文献   

18.
Abstract: Choline uptake in Y79 human retinoblastoma cells occurs through two kinetically distinguishable processes. The high-affinity system shows little sodium or energy dependence, and it does not appear to be linked to acetyl CoA: choline O -acetyltransferase. When the cells are grown in a culture medium containing 10% fetal bovine serum, the high-affinity system has a K' m= 2.16 ± 0.13 μ m and V' max= 27.0 ± 2.9 pmol min−1 mg−1, whereas the low-affinity system has K' m= 20.4 ± 1.3 μ m and V' max= 402 ± 49 pmol min−1 mg−1. Under these conditions, the polyunsaturated fatty acid content of the cell membranes is relatively low. When the polyunsaturated fatty acid content of the microsomal membrane fraction was increased by supplementing the culture medium with linolenic or docosahexaenoic acids (n-3 polyunsaturated fatty acids) or arachidonic acid (n-6 polyunsaturated fatty acid), the K' m of the high-affinity choline transport system was reduced by 40–60%. The V' max also was reduced by 20–40%. Supplementation with oleic acid, the most prevalent monounsaturated fatty acid, did not affect either kinetic parameter. The results suggest that one functional effect of the high unsaturated fatty acid content of neural cell membranes is to facilitate the capacity of the high-affinity choline uptake system to transport low concentrations of choline. This effect appears to be specific for polyunsaturated fatty acids but not for a single type, for it is produced by members of both the n-3 and n-6 classes of polyunsaturated fatty acids.  相似文献   

19.
Ornithine decarboxylase (ODC, EC 4.1.1.17) was studied in crude extracts of parenchyma slices of dormant tubers activated for 12 h, tuber shoots and shoot apices. It was highest in shoot apices. The enzyme activity was measured by the production of 14CO2 from labelled ornithine; Vmax was 450 nmol (mg protein)-1h-1, Km for ornithine and pyridoxal phosphate were, respectively, 30 m M and 5μ M . Only when partially purified, the 14CO2 production was inhibited by α-difluoromethylornithine, while in crude extracts dithiothreitol was inhibitory. Ornithine and arginine decarboxylase (ADC, EC 4.1.1.19) activities from parenchyma tubers were not greatly altered by exogenously supplemented ornithine, even though its endogenous pool increased. Exogenously supplemented arginine enhanced ornithine decarboxylase activity, whereas putrescine decreased it slightly. The possibility of artifactual activities in the crude extract is also discussed.  相似文献   

20.
In the present paper, we confirmed that alkaline phosphatase (ALP) is the main phosphatase present in ascocarps of the edible mycorrhizal fungus Terfezia claveryi. The enzyme was partially purified by precipitation with polyethylene glycol. The purification achieved from a crude extract was fivefold, with 53% of the activity recovered, and acid phosphatase, most of the lipids and phenolic compounds were eliminated. Alkaline phosphatase was kinetically characterised at pH 10.0, the optimum for this enzyme, using p -nitrophenyl phosphate as substrate. The Vmax and Km values were 0.3 μmol·min−1·mg−1 protein and 9.0 m m , respectively. Orthovanadate was a competitive inhibitor of ALP, with a Ki of 42.5 μ m . The enzyme was histochemically localised in the peridium, the hypothecium and in the ascogenic hyphae of the gleba using both colour and fluorescent reactions. The results presented suggest that the ascocarp of T. claveryi, at some stages of its development, may become nutritionally autonomous and independent of the host plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号