首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies on sulphur in vertisols   总被引:1,自引:0,他引:1  
Summary Some soil and plant test methods were evaluated for predicting response of soybean crop (Glycine max (L.) Merr.) to S application in vertisols. Morgan's reagent, 500 ppm P containing Ca(H2PO4)2.H2O and KH2PO4 solutions, 0.5N NH4OAc+0.25N HOAc and 0.15% CaCl2 were found to be suitable extractants for measuring available soil S. The critical limits of extractable S were 9.0 ppm by Morgan's reagent, 10.0 ppm by phosphate solutions, 8.0 ppm by 0.5N NH4OAc +0.25N HOAc and 14.0 ppm by 0.15% CaCl2. Morgan's reagent was regarded as superior to other soil test methods in view of its high relationship with S uptake by plants, A values and relative yield. Critical S concentration in soybean plants varied with age. It was 0.15% and 0.185% for 36 and 60 days old plants, respectively. The critical N/S ratio on the other hand appeared to be constant at about 16.5 during vegetative growth period. Constancy of critical N/S ratio in plants was attributed to the near constancy of N/S ratio in plant proteins. There was highly significant relationship between response of soybean to S and to N, supporting the conclusion of some earlier workers that any soil showing large responses to N may not be supplying adequate S from the mineralization of soil organic matter.  相似文献   

2.
Dissolved organic carbon and nitrogen (DOC and DON) produced in the forest floor are important for ecosystem functions such as microbial metabolism, pedogenesis and pollutant transport. Past work has shown that both DOC and DON production are related to litterfall and standing stocks of C and N in the forest floor. This study, conducted in spring, 2003, investigated variation in forest floor water extractable DOC (WEDOC) and DON (WEDON) and forest floor C and N as a function of lignin, cellulose and N contained in live canopy foliage across eight Picea abies [L.] Karst stands in northern Bohemia. Based on Near Infrared Spectroscopy (NIR) analysis of foliar materials, lignin:N and cellulose:N content of the youngest needles (those produced in 2002) were positively and significantly related to WEDOC (R2 = 0.82–0.97; P<0.01) and to forest floor C:N ratio (R = 0.72–0.78; P<0.01). Foliar N was strongly and negatively related to WEDOC and C:N ratio (R = −0.91 and 0.72; P<0.05) among our study sites. WEDON was positively correlated to foliar lignin:N (R = 0.48; P<0.05; n=40). Forest floor C pools were not positively correlated with foliar lignin and cellulose and forest floor N pools were not positively correlated with foliar N. Instead, a significant negative correlation was found between forest floor N pools and foliar cellulose (R=−0.41; P<0.05), and between forest floor C pools and foliar N (R = −0.44; P<0.05). From a remote sensing standpoint, our results are important because canopy reflectance properties are primarily influenced by the most recent foliage, and it was the chemistry of the most recently produced needles that showed a stronger relationship with forest floor WEDOC and C:N ratio suggesting forest floor production of WEDOC can be calculated regionally with remote sensing.  相似文献   

3.
Summary In a pot experiment with soils of Alfisol, Entisol, and Inceptisol orders, the relative yield of Egyptian clover (Trifolium alexandrinum L.) was significantly correlated with Morgan's reagent (N NaOAc+HOAc, pH 4.8)—extractable soil S (r=0.88), plant S (r=0.82), and plant N/S ratio (r=−0.77) suggesting suitability of these tests for diagnosing S deficiency. Total plant S lower than 0.21 per cent, plant N/S ratio wider than 17, and extractable soil S lower than 10 ppm were indicative of S deficiency, and were suggested therefore to be critical limits for these tests. Nitrogen and S in plant proteins were in near constant ratio of 16 and were significantly correlated (r=0.99). Sixty one per cent of 250 surface soil samples had less than 10 ppm extractable S and hence were deficient in S, suggesting a widespread S deficiency in soils under study. Extractable soil S in all soil series was significantly correlated with electrical conductivity and alkaline KMnO4-extractable N, but not with pH, organic C, and CaCO3.  相似文献   

4.
Abstract.
  • 1 The western spruce budworm, Choristoneura occidentalis Freeman, and Douglas-fir, Pseudotsuga menziesii (Mirb.) Franco, have been used to test the hypothesis that variation in levels of foliar sugars form part of the basis for plant resistance to herbivore attack.
  • 2 Budworm population growth was evaluated on artificial diets with 2–45% sucrose using a three generation bioassay. Diets with 1.2% and 3.9% N were tested to determine if responses to sugar were dependent on levels of protein. The 3.9% N diets were supplemented with a mineral salt mixture, so they had high levels of N and minerals.
  • 3 The response of budworm population growth to sucrose concentrations ≤20% was convex at 1.2% N and flat for 3.9% N. Population growth on the 1.2% N diet, which had levels of N and minerals similar to host foliage, was good with only 2% sugar, but optimal at the 6% sucrose level; the number of F1, F2 and F3 larvae produced declined substantially when sugar was increased to 11% and 20%. On the 3.9% N diets, population growth was equivalent for diets with 2% and 11% sucrose. Sucrose concentrations ≥29% were detrimental to the budworm at both N levels.
  • 4 Sugar concentrations in Douglas-fir foliage varied between 5.7% and 18.4%. Thus, results from the 1.2% N experiment indicated that budworm performance was best on diets with sugar concentrations near the lower limit observed for host foliage. This implies that plants with higher foliar sugar may be inferior hosts for the budworm. Field observations supported this conclusion, as putatively resistant Douglas-fir trees had significantly higher levels of sugars in their foliage than nearby paired susceptible trees. Variation in foliar sugars among individual trees may be part of the mechanism in Douglas-fir resistance to C.occidentalis damage.
  相似文献   

5.
Red spruce (Picea rubens Sarg.) trees are uniquely vulnerable to foliar freezing injury during the cold season (fall and winter), but are also capable of photosynthetic activity if temperatures moderate. To evaluate the influence of calcium (Ca) addition on the physiology of red spruce during the cold season, we measured concentrations of foliar polyamines and free amino acids (putative stress-protection compounds), chlorophyll (a key photosystem component), and sapwood area (a proxy for foliar biomass), for trees in Ca-addition (CaSiO3 added) and Ca-depleted (reference) watersheds at the Hubbard Brook Experimental Forest (NH, USA). Ca-addition increased concentrations of the amino acids alanine and γ-aminobutyric acid (GABA) and the polyamines putrescine (Put) and spermidine (Spd) in November, and Put in February relative to foliage from the reference watershed. Consistent with increased stress protection, foliage from the Ca-addition watershed had higher total chlorophyll and chlorophyll a concentrations in February than foliage from the reference watershed. In contrast, foliage from the reference watershed had significantly lower glutamic acid (Glu) and higher alanine (Ala) concentrations in February than foliage from the Ca-addition watershed. Imbalances in Ala:Glu have been attributed to cold sensitivity or damage in other species. In addition to concentration-based differences in foliar compounds, trees from the Ca-addition watershed had higher estimated levels of foliar biomass than trees from the reference watershed. Our findings suggest that Ca-addition increased the stress tolerance and productive capacity of red spruce foliage during the cold season, and resulted in greater crown mass compared to trees growing on untreated soils.  相似文献   

6.
The gypsy moth (Lymantria dispar L.), a major defoliator of hardwood forests in the eastern U.S., has a highly alkaline midgut pH. We hypothesized that the high pH would cause high rates of ammonia (NH3) volatilization as larvae consumed foliage, leading to potentially large losses of N from the ecosystem to the atmosphere during gypsy moth outbreaks. We measured NH3 emission during the consumption of oak foliage by larvae in the laboratory. Surprisingly, we found very low amounts of NH3 release of about 0.1% of the N consumed in foliage. We speculate that digestive mechanisms may limit NH3 production in the midgut, and that the acidic environment of the hindgut traps most of the small amount of NH3 that is produced, effectively preventing a potentially very large N loss from both larvae and ecosystem. The estimated rate of NH3 emission from a defoliated forest is small compared to other inputs and outputs of N from the ecosystem, but could potentially enhance the neutralization of atmospheric acidity during the defoliation period. Received: 12 May 1998 / Accepted: 28 July 1998  相似文献   

7.
We present a simple theoretical analysis of the long term response of forest growth and carbon allocation to increased atmospheric [CO2] and N deposition. Our analysis is based on a recent model which predicts that plant light-use efficiency increases with [CO2] but is independent of plant N supply. We combine that model with simple assumptions for nitrogen fluxes in the soil. A quasi-equilibrium analysis of the short term tree and soil pools is then used to develop a simple graphical depiction of the long term carbon and nitrogen supply constraints on total growth, stem growth and foliar allocation. Our results suggest that long-term growth responses to [CO2] and N deposition depend strongly on the extent to which stem allocation and foliage allocation are coupled. At one extreme (‘no coupling’), when stem allocation is fixed and independent of foliage allocation, there is no response of total growth or stem growth to increased [CO2] unless N deposition increases. At the other extreme (‘linear coupling’), when stem allocation is proportional to foliage allocation, there is a significant long-term increase in total growth following a doubling of [CO2], even when N deposition is unchanged, but stem growth decreases because of a long-term decrease in foliage allocation. For both types of coupling, total growth and stem growth increase with increasing N deposition. In the case of linear coupling, however, the N deposition response of stem growth is significantly larger than that of total growth, because of a long-term increase in foliage allocation. We compare our results with those obtained previously from an alternative model of canopy light-use efficiency involving a dependence on the foliar N:C ratio in addition to [CO2]. Our results highlight the need for more experimental information on (i) the extent to which canopy light-use efficiency is independent of N supply, and (ii) the relationship between foliage allocation and stem allocation.  相似文献   

8.
This study examined the effects of CO2 and light availability on sapling growth and foliar chemistry, and consequences for insect performance. Quaking aspen (Populus tremuloides Michx.), paper birch (Betula papyrifera Marsh.), and sugar maple (Acer saccharum Marsh.) were grown in controlled environment greenhouses under ambient or elevated CO2 (38.7 and 69.6 Pa), and low or high light availability (375 and 855 μmol m−2 s−1). Because CO2 and light are both required for carbon assimilation, the levels of these two resources are expected to have strong interactive effects on tree growth and secondary metabolism. Results from this study support that prediction, indicating that the relative effect of rising atmospheric CO2 concentrations on the growth and secondary metabolism of deciduous trees may be dependent on light environment. Trees in ambient CO2-low light environments had substantial levels of phytochemicals despite low growth rates; the concept of basal secondary metabolism is proposed to explain allocation to secondary metabolites under growth-limiting conditions. Differences between CO2 and light effects on the responses of growth and secondary metabolite levels suggest that relative allocation is not dependent solely on the amount of carbon assimilated. The relative growth rates and indices of feeding efficiency for gypsy moth (Lymantria dispar L.) larvae fed foliage from the experimental treatments showed no significant interactive effects of light and CO2, although some main effects and many host species interactions were significant. Gypsy moth performance was negatively correlated with CO2- and light-induced increases in the phenolic glycoside content of aspen foliage. Insects were not strongly affected, however, by treatment differences in the nutritional and secondary chemical components of birch and maple. Received: 15 July 1998 / Accepted: 23 December 1998  相似文献   

9.
 Three-year-old Eucalyptus nitens (Deane and Maiden) Maiden trees and 1-year-old ramets of a single clone of E. nitens were pruned to remove 0, 50% or 70% of the green crown length. This was equivalent to removal of 0, 55% or 88% of foliage area of trees, and 0, 77% or 94% of foliage area of ramets. CO2 assimilation (A) and stomatal conductance (gs) were measured at constant illumination in five height zones and three foliage-age classes of trees over a 16-month period following pruning. Foliar nitrogen (N) and phosphorus (P) concentrations were determined for each measurement time during the first 12 months of the experiment. In ramets A and gs were measured in four height zones and two foliage-age classes over a six-week period, and N and P concentrations were measured only once, at the end of the experiment. Rates of A increased by up to 175% following pruning. This response occurred throughout the canopy irrespective of position in the crown or foliage age. The magnitude of the response was generally greater in ramets than in trees, and increased with increasing severity of pruning. The initiation of the response was later, and the duration of the response was longer, in trees than ramets. In the lower crown of trees there was evidence of delayed senescence following pruning. Photosynthetic enhancement was not related to changes in foliar N concentrations. The ratio of A/N increased in many zones following pruning, especially after more severe defoliation. There was no evidence that changes in P concentrations were responsible for the result. The increases in A may have been related to changes in gs, as maximum values of gs were greater, and the ratio of A/gs was generally lower, in pruned than unpruned plants. Received: 31 December 1996 / Accepted: 19 August 1997  相似文献   

10.
Transferring fine-scale ecological knowledge into an understanding of earth system processes presents a considerable challenge to ecologists. Our objective here was to identify and quantify heterogeneity of, and relationships among, vegetation and soil properties in terra firme rain forest ecosystems in eastern Amazonia and assess implications for generating regional predictions of carbon (C) exchange. Some of these properties showed considerable variation among sites; soil textures varied from 11% to 92% clay. But we did not find any significant correlations between soil characteristics (percentage clay, nitrogen [N], C, organic matter) and vegetation characteristics (leaf area index [LAI], foliar N concentration, basal area, biomass, stem density). We found some evidence for increased drought stress on the sandier sites: There was a significant correlation between soil texture and wood δ13C (but not with foliar δ13C); volumetric soil moisture was lower at sandier sites; and some canopy foliage had large, negative dawn water potentials (ψld), indicating limited water availability in the rooting zone. However, at every site at least one foliage sample indicated full or nearly full rehydration, suggesting significant interspecific variability in drought vulnerability. There were significant differences in foliar δ15N among sites, but not in foliar % N, suggesting differences in N cycling but not in plant access to N. We used an ecophysiological model to examine the sensitivity of gross primary production (GPP) to observed inter- and intrasite variation in key driving variables—LAI, foliar N, and ψld. The greatest sensitivity was to foliar N; standard errors on foliar N data translated into uncertainty in GPP predictions up to ±10% on sunny days and ±5% on cloudy days. Local variability in LAI had a minor influence on uncertainty, especially on sunny days. The largest observed reductions in ψld reduced GPP by 4%–6%. If uncertainty in foliar N estimates is propagated into the model, then GPP estimates are not significantly different among sites. Our results suggest that water restrictions in the sandier sites are not enough to reduce production significantly and that texture is not the key control on plant access to N. Received 28 June 2001; accepted 13 March 2002.  相似文献   

11.
Nitrogen isotope measurements may provide insights into changing interactions among plants, mycorrhizal fungi, and soil processes across environmental gradients. Here, we report changes in δ15N signatures due to shifts in species composition and nitrogen (N) dynamics. These changes were assessed by measuring fine root biomass, net N mineralization, and N concentrations and δ15N of foliage, fine roots, soil, and mineral N across six sites representing different post-deglaciation ages at Glacier Bay, Alaska. Foliar δ15N varied widely, between 0 and –2‰ for nitrogen-fixing species, between 0 and –7‰ for deciduous non-fixing species, and between 0 and –11‰ for coniferous species. Relatively constant δ15N values for ammonium and generally low levels of soil nitrate suggested that differences in ammonium or nitrate use were not important influences on plant δ15N differences among species at individual sites. In fact, the largest variation among plant δ15N values were observed at the youngest and oldest sites, where soil nitrate concentrations were low. Low mineral N concentrations and low N mineralization at these sites indicated low N availability. The most plausible mechanism to explain low δ15N values in plant foliage was a large isotopic fractionation during transfer of nitrogen from mycorrhizal fungi to plants. Except for N-fixing plants, the foliar δ15N signatures of individual species were generally lower at sites of low N availability, suggesting either an increased fraction of N obtained from mycorrhizal uptake (f), or a reduced proportion of mycorrhizal N transferred to vegetation (T r). Foliar and fine root nitrogen concentrations were also lower at these sites. Foliar N concentrations were significantly correlated with δ15N in foliage of Populus, Salix, Picea, and Tsuga heterophylla, and also in fine roots. The correlation between δ15N and N concentration may reflect strong underlying relationships among N availability, the relative allocation of carbon to mycorrhizal fungi, and shifts in either f or T r. Received: 14 December 1998 / Accepted: 16 August 1999  相似文献   

12.
Minocha  Rakesh  Long  Stephanie  Magill  Alison H.  Aber  John  McDowell  William H. 《Plant and Soil》2000,222(1-2):119-137
Polyamines (putrescine, spermidine, and spermine) are low molecular weight, open-chained, organic polycations which are found in all organisms and have been linked with stress responses in plants. The objectives of our study were to investigate the effects of chronic N additions to pine and hardwood stands at Harvard Forest, Petersham, MA on foliar polyamine and inorganic ion contents as well as soil and soil solution chemistry. Four treatment plots were established within each stand in 1988: control, low N (50 kg N ha-1 yr-1 as NH4NO3), low N + sulfur (74 kg S ha-1 yr-1 as Na2SO4), and high N (150 kg N ha-1 yr-1 as NH4NO3). All samples were analyzed for inorganic elements; foliage samples were also analyzed for polyamines and total N. In the pine stand putrescine and total N levels in the foliage were significantly higher for all N treatments as compared to the control plot. Total N content was positively correlated with polyamines in the needles (P 0.05). Both putrescine and N contents were also negatively correlated with most exchangeable cations and total elements in organic soil horizons and positively correlated with Ca and Mg in the soil solution (P 0.05). In the hardwood stand, putrescine and total N levels in the foliage were significantly higher for the high N treatment only as compared to the control plot. Here also, total foliar N content was positively correlated with polyamines (P 0.05). Unlike the case with the pine stand, in the hardwood stand foliar polyamines and N were significantly and negatively correlated with foliar total Ca, Mg, and Mn (P 0.05). Additional significant (P 0.05) relationships in hardwoods included: negative correlations between foliar polyamines and N content to exchangeable K and P and total P in the organic soil horizon; and positive correlations between foliar polyamines and N content to Mg in soil solution. With few exceptions, low N + S treatment had effects similar to the ones observed with low N alone for both stands. The changes observed in the pine stand for polyamine metabolism, N uptake, and element leaching from the soil into the soil solution in all treatment plots provide additional evidence that the pine stand is more nitrogen saturated than the hardwood stand. These results also indicate that the long-term addition of N to these stands has species specific and/or site specific effects that may in part be explained by the different land use histories of the two stands.  相似文献   

13.
Yield increases observed among eight genotypes of tomato (Lycopersicon esculentum Mill.) grown at ambient CO2 (about 350) or 1000 microliters per liter CO2 were not due to carbon exchange rate increases. Yield varied among genotypes while carbon exchange rate did not. Yield increases were due to a change in partitioning from root to fruit. Tomatoes grown with CO2 enrichment exhibited nonepinastic foliar deformation similar to nutrient deficiency symptoms. Foliar deformation varied among genotypes, increased throughout the season, and became most severe at elevated CO2. Foliar deformation was positively related to fruit yield. Foliage from the lower canopy was sampled throughout the growing season and analysed for starch, K, P, Ca, Mg, Fe, and Mn concentrations. Foliar K and Mn concentrations were the only elements correlated with deformation severity. Foliar K decreased while deformation increased. In another study, foliage of half the plants of one genotype received foliar applications of 7 millimolar KH2PO4. Untreated foliage showed significantly greater deformation than treated foliage. Reduced foliar K concentration may cause CO2-enhanced foliar deformation. Reduced K may occur following decreased nutrient uptake resulting from reduced root mass due to the change in partitioning from root to fruit.  相似文献   

14.
Willow shows great promise as a biomass crop and is now used worldwide. However, willow is a nutrient and water demanding plant that often requires the use of nitrogen (N) fertilizer to maximize growth on poor soils. The intercropping of Salix miyabeana with the atmospheric N2-fixing Caragana arborescens on poor soils of the Canadian Prairies could provide a portion of the N demand of the willow. The main objectives were to: (1) determine the yield potential, N nutrition and water use efficiency (WUE) of willow and Caragana grown in pure and mixed plantations across a range of soil productivity and (2) assess the extent of atmospheric N2-fixation by the Caragana within the first rotation in central Saskatchewan. We found large differences in willow yields, foliar N and WUE across the sites. The willow yields (1.24 to 15.6 t dry matter ha−1 over 4 years) were low compared to northeastern North American values and reflect the short and dry summers of the region. The yields were positively correlated to foliar N (ranging between 14.3 and 32.4 mg g−1), whereas higher WUE (expressed as δ13C) were not positively correlated to water availability but to higher yields. Caragana N2-fixation (measured using 15N isotope dilution) was not active at the most productive site but up to 60% of the foliar N was of atmospheric origin at the two other sites. Willow growth increased with Caragana proportions at the least productive site, which is typical of the benefits of N2-fixing plants on the growth of other plants on poor soils. At the most productive site, Caragana decreased the growth of willow early on due to competition for resources, but willow eventually shaded Caragana to a point of significant canopy decline and dieback. It is therefore more appropriate to intercrop the two species on less productive soils as Caragana is more likely to add N to the system via N2-fixation and is less likely to be shaded out by willow.  相似文献   

15.
We quantified the amount, spatial distribution, and importance of salmon (Oncorhynchus spp.)-derived nitrogen (N) by brown bears (Ursus arctos) on the Kenai Peninsula, Alaska. We tested and confirmed the hypothesis that the stable isotope signature (δ15N) of N in foliage of white spruce (Picea glauca) was inversely proportional to the distance from salmon-spawning streams (r=–0.99 and P<0.05 in two separate watersheds). Locations of radio-collared brown bears, relative to their distance from a stream, were highly correlated with δ15N depletion of foliage across the same gradient (r=–0.98 and –0.96 and P<0.05 in the same two separate watersheds). Mean rates of redistribution of salmon-derived N by adult female brown bears were 37.2±2.9 kg/year per bear (range 23.1–56.3), of which 96% (35.7±2.7 kg/year per bear) was excreted in urine, 3% (1.1±0.1 kg/year per bear) was excreted in feces, and <1% (0.3± 0.1 kg/year per bear) was retained in the body. On an area basis, salmon-N redistribution rates were as high as 5.1±0.7 mg/m2 per year per bear within 500 m of the stream but dropped off greatly with increasing distance. We estimated that 15.5–17.8% of the total N in spruce foliage within 500 m of the stream was derived from salmon. Of that, bears had distributed 83–84%. Thus, brown bears can be an important vector of salmon-derived N into riparian ecosystems, but their effects are highly variable spatially and a function of bear density. Received: 11 February 1999 / Accepted: 7 July 1999  相似文献   

16.
Autotrophic respiration may regulate how ecosystem productivity responds to changes in temperature, atmospheric [CO2] and N deposition. Estimates of autotrophic respiration are difficult for forest ecosystems, because of the large amount of biomass, different metabolic rates among tissues, and seasonal variation in respiration rates. We examined spatial and seasonal patterns in autotrophic respiration in a Pinus strobus ecosystem, and hypothesized that seasonal patterns in respiration rates at a common temperature would vary with [N] for fully expanded foliage and fine roots, with photosynthesis for foliage, and with growth for woody tissues (stems, branches, and coarse roots). We also hypothesized that differences in [N] would largely explain differences in maintenance or dormant‐season respiration among tissues. For April–November, mean respiration at 15 °C varied from 1.5 to 2.8 μmol kg?1 s?1 for fully expanded foliage, 1.7–3.0 for growing foliage, 0.8–1.6 for fine roots, 0.6–1.1 (sapwood) for stems, 0.5–1.8 (sapwood) for branches, and 0.2–1.5 (sapwood) for coarse roots. Growing season variation in respiration for foliage produced the prior year was strongly related to [N] (r2 = 0.94), but fine root respiration was not related to [N]. For current‐year needles, respiration did not covary with [N]. Night‐time foliar respiration did not vary in concert with previous‐day photosynthesis for either growing or fully expanded needles. Stem growth explained about one‐third of the seasonal variation in stem respiration (r2 = 0.38), and also variation among trees (r2 = 0.43). We did not determine the cause of seasonal variation in branch and coarse root respiration, but it is unlikely to be directly related to growth, as the pattern of respiration in coarse roots and branches was not synchronized with stem growth. Seasonal variations in temperature‐corrected respiration rates were not synchronized among tissues, except foliage and branches. Spatial variability in dormant‐season respiration rates was significantly related to tissue N content in foliage (r2 = 0.67), stems (r2 = 0.45), coarse roots (r2 = 0.36), and all tissues combined (r2 = 0.83), but not for fine roots and branches. Per unit N, rates for P. strobus varied from 0.22 to 3.4 μmol molN?1 s?1 at 15 °C, comparable to those found for other conifers. Accurate estimates of annual autotrophic respiration should reflect seasonal and spatial variation in respiration rates of individual tissues.  相似文献   

17.
Seedlings ofPicea sitchensis, Thuja plicata andTsuga heterophylla were supplied N hydroponically at one of four exponentially increasing rates of addition (0.09, 0.07, 0.05, or 0.025 gN-1 day-1) for up to 3 months in a naturally illuminated glasshouse. Relative growth rates (RGR) were analyzed as a function of N uptake, the allocation of assimilated N to foliage (LNFR), foliar N concentrations (Nla) and met assimilation rates (NAR), which were combined to estimate N productivity (RGR per unit whole-plant N concentration). Nitrogen accumulation, biomass and N partitioning and RGR and its components varied with species in response to the different N regimes.T. heterophylla had the lowest maximum wholeplant N concentrations (wpN) and specific absorption rates for N and exhibited the least plasticity in root: shoot ratios as wpN increased from 11–21 mg g-1. In all species, RGR increased linearly with wpN, while LNFR increased curvilinearly. Foliar N (Nla) increased linearly with wpN and NAR increased linearly with Nla. The RGRs ofT. heterophylla were highest at wpNs up to 18 mg g-1, a result of higher foliar N use efficiencies (NAR/Nla). However, RGR increased more with wpN inT. plicata andP. sitchensis. Although LNFR increased with wpN in all species, foliar N use efficiency declined, possibly due to an increased partitioning of foliar soluble N to non-photosynthetic compounds. Thus, in each species, N productivity did not increase above intermediate levels of wpN: 14 mg g-1 inT. heterophylla, 16 mg g-1 inP. sitchensis and 17 mg g-1 inT. plicata.  相似文献   

18.
The proportion of total sulphur lost during combustion (600 °C) of Douglas-fir (Pseudotsuga menziesii) foliage is reduced from> 90% to 65–70% as the SO4-S concentration increases from 10% to 45–50% of the total S content. Foliar SO4-S content is decreased by improvement of plant nitrogen status, suggesting that alterations to soil N availability may influence S transfer to the atmosphere during biomass burning.  相似文献   

19.
Seasonal changes in foliage nitrogen (N) and carbon (C) concentrations and δ15N and δ13C ratios were monitored during a year in Erica arborea, Myrtus communis and Juniperus communis co-occurring at a natural CO2 spring (elevated [CO2], about 700 μmol mol−1) and at a nearby control site (ambient [CO2], 360 μmol mol−1) in a Mediterranean environment. Leaf N concentration was lower in elevated [CO2] than in ambient [CO2] for M. communis, higher for J. communis, and dependent on the season for E. arborea. Leaf C concentration was negatively affected by atmospheric CO2 enrichment, regardless of the species. C/N ratio varied concomitantly to N. Leaves in elevated [CO2] showed lower δ13C, and therefore likely lower water use efficiencies than leaves at the control site, regardless of the species, suggesting substantial photosynthetic acclimation under long-term CO2-enriched atmosphere. Leaves of E. arborea showed lower values of δ15N under elevated [CO2], but this was not the case of M. communis and J. communis foliage. The use of the resources and leaf chemical composition are affected by elevated [CO2], but such an effect varies during the year, and is species-dependent. The seasonal dependency and species specificity suggest that plants are able to exploit different available water and N resources within Mediterranean sites. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Relationships of foliar carbon isotope composition (δ13C) with foliar C, N, P, K, Ca, Mg contents and their ratios of 219 C3 species leaf samples, obtained in August in 2004 to 2007 from 82 high altitude grassland sites on the Qinghai-Tibet Plateau China, were examined. This was done with reference to the proposition that foliar δ13C increases with altitude and separately for the life-form groups of graminoids, forbs and shrubs and for the genera Stipa and Kobresia. For all samples, foliar δ13C was negatively related to foliar K, P and ∑K+ Ca+ Mg, and positively correlated to foliar C, C/N and C/P. The significance of these correlations differed for the taxonomic and life-form groups. Lack of a relationship of foliar δ13C with foliar N was inconsistent with the majority of studies that have shown foliar δ13C to be positively related to foliar N due to a decrease of Ci/Ca (the ratio between intercellular and atmospheric concentration of CO2) and explained as a result of greater photosynthetic capacity at higher foliar N concentration. However this inconsistency relates to other high altitude studies that have found that photosynthetic capacity remains constant as foliar N increases. After accounting for the altitudinal relationship with foliar δ13C, of the elements only the K effect was significant and was most strongly expressed for Kobresia. It is concluded that factors critical to plant survival and growth at very high altitudes, such as low atmospheric pressure and low temperatures, may preclude expression of relationships between foliar δ13C and foliar elements that have been observed at lower altitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号