首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of temperature and oxygen on the in vivo oleate desaturation and microsomal oleate desaturase (FAD2) activity was studied in peeled developing sunflower seeds. Using an oxygen concentration that was saturating for FAD2 enzyme, the amount of linoleic acid increased for all studied temperatures, being maximal at 20 degrees C. Under these conditions, FAD2 activity increased at the beginning of the incubation, remaining constant for the rest of the time, but reaching a lower level at 30 degrees C. Anoxia brought about a decrease in the FAD2 activity for all studied temperatures, becoming faster as the temperature increased. All these data suggest that temperature and oxygen control the level of FAD2 activity by separate mechanisms.  相似文献   

2.
The temperature and oxygen regulation of the microsomal oleate desaturase (FAD2, EC 1.3.1.35) activity has been studied in developing sunflower ( Helianthus annuus L.) seeds. In plants cultivated in growth chambers, the linoleic acid content in the seed lipids increased along the 25/15°C (day/night) cycle, except during the first hours of the warm period, where it decreased significantly. In contrast, FAD2 activity decreased notably at the beginning of the warm period, showing a small and continuous increase during the rest of the cycle. The temperature effect on the linoleic acid content and the FAD2 activity was also investigated using peeled seeds and detached achenes subjected to temperature changes. In peeled seeds, a change of temperature from 10 to 30°C brought about a significant decrease of FAD2 activity. On the contrary, when the temperature shifted from 30 to 10°C, FAD2 activity only increased slightly. Unlike peeled seeds, detached achenes showed a fast and dramatic increase or decrease in the level of FAD2 activity in response to a temperature change from 30 to 10°C, or from 10 to 30°C, respectively. The in vivo and in vitro thermal properties of the FAD2 enzyme were also studied. Optimal temperature and heat-resistance profile showed similar patterns in both conditions. All these data support the hypothesis that temperature regulates FAD2 activity by two different and independent mechanisms: a direct effect, and an indirect effect affecting oxygen availability. Furthermore, these results suggest that the low thermal stability of the enzyme is the main factor responsible for the direct temperature effect on FAD2 activity.  相似文献   

3.
Callus cultures from olive (Olea europaea L.) were used to study characteristics of desaturation in this oil-rich tissue. The incorporation of [1-(14)C]oleate and [1-(14)C]linoleate into complex lipids and their further desaturation was followed in incubations of up to 48 h. Both radiolabelled fatty acids were rapidly incorporated into lipids, especially phosphatidylcholine and triacylglycerol. Radiolabelling of these two lipids peaked after 1-4 h, after which it fell. In contrast, other phosphoglycerides and the galactosylglycerides were labelled in a more sustained manner. [1-(14)C]Linoleate was almost exclusively found in the galactolipids. With [1-(14)C]linoleate as a precursor, the only significant desaturation to linolenate was in the galactolipids. Monogalactosyldiacylglycerol was the first lipid in which [1-(14)C]linoleate and [1-(14)C]linolenate appeared after incubation of the calli with [1-(14)C]oleate and [1-(14)C]linoleate, respectively. The presence of radioactivity in the plastidial lipids shows that both [1-(14)C]oleate and [1-(14)C]linoleate can freely enter the chloroplast. Two important environmental effects were also examined. Raised incubation temperatures (30-35 degrees C) reduced oleate desaturation and this was also reflected in the endogenous fatty acid composition. Low light also caused less oleate desaturation. The data indicate that lysophosphatidylcholine acyltransferase is important for the entry of oleate and linoleate into olive callus lipid metabolism and phospholipid:diacylglycerol acyltransferase may be involved in triacylglycerol biosynthesis. In addition, it is shown that plastid desaturases are mainly responsible for the production of polyunsaturated fatty acids. Individual fatty acid desaturases were differently susceptible to environmental stresses with FAD2 being reduced by both high temperature and low light, whereas FAD7 was only affected by high temperature.  相似文献   

4.
High-Oleate Oilseeds Fail to Develop at Low Temperature   总被引:10,自引:1,他引:9       下载免费PDF全文
The fad2 mutants of Arabidopsis thaliana are deficient in activity of the endoplasmic reticulum oleate desaturase that is the main enzyme responsible for polyunsaturated lipid synthesis in developing seeds of oil crops. A comparison of wild-type and fad2 seeds developing on heterozygous (FAD2/-) plants was used as a model for genetically engineered high-oleate oilseeds of species such as soybean and canola. When fad2 seeds developed at normal temperatures (22[deg]C), they showed high viability compared to wild-type seeds. When a portion of seed development took place at 6[deg]C, germination of the wild-type siblings remained high but germination of fad2 segregants declined considerably. This was true even when exposure to low temperature was limited to the final stages of seed filling and maturation. Compared to wild-type seeds, fully viable fad2 seeds produced at 22[deg]C had reduced lipid contents and were slower to germinate at 10 and 6[deg]C. Taken together, these results indicate that for some oilseed species at least, molecular genetic manipulation of oleate levels in the oil may result in plant lines with unacceptable performance in the field.  相似文献   

5.
6.
Germination of freshly harvested seeds of a non-dormant (ND) line (Stonehouse 319) of wild oats ( Avena fatua L.) was inhibited by incubation of the seeds at relatively high temperatures of 25 and 30°C. The germination inhibition in these seeds appeared to be a case of thermo-inhibition which was the direct effect of hightemperature treatment (HIT), since it did not persist after transferring the seeds to an optimum germination temperature of 20°C. Even a prolonged HTT of 30°C for over 5 weeks did not prevent germination of about 80% of the seeds transferred to 20°C. However, in a significant proportion of the seeds, thermo-dormancy was induced by 10 days of HTT at 30°C if the seeds were then incubated at sub-optimal temperatures of 5 to 15°C. This thermo-dormancy would appear to be 'restrictive' in form, since its expression was restricted to very specific conditions. Relatively low inclubation temperaturs of 5 and 10°C markedly slowed germination whether HTT was applied or not. The results suggest that thermo-inhibition and thermo-dormancy, induced during seasonal temperature fluctuations, may provide a survival mechanism for seeds of such ND lines as Stonehouse 319.  相似文献   

7.
Sycamore cells (Acer pseudoplatanus L.) in suspension culture were grown at 25 degrees C in culture medium containing two oxygen concentrations: 250 microM O2 (standard conditions) and 10 microM O2 (O2-limiting conditions). The decrease of O2 concentration in the culture medium did not modify significantly the relative proportion of each phospholipid. In contrast, the molar proportion of fatty acids was dramatically changed in all lipid classes of the cell membranes; the average percentage of oleate increased from 3 to 45% whereas that of linoleate decreased from 49 to 22%. When normal culture conditions were restored (250 microM O2), oleate underwent a rapid desaturation process; the loss of oleic acid was associated with a stoichiometric appearance of linoleic acid at a rate of about 4 nmol of oleate desaturated/h/10(6) cells. Under these conditions, no change in the Arrhenius-type plots of the rate of sycamore cell respiration was observed; the values of the transition temperature and of the Arrhenius activation energy (Ea) associated with the cell respiration as well as with the respiration-associated enzymes remained unchanged. Thus it was concluded that the fact that a strong decrease in the fraction of unsaturated fatty acid residues present in the mitochondria had no effect on electron transport rates and Arrhenius plot discontinuities casts doubt on the significance of such changes in terms of chilling injury. Finally it is suggested that some of the Arrhenius discontinuities observed at the level of membrane enzyme could be the consequence of intrinsic thermotropic changes in protein arrangement independent of lipid fluidity.  相似文献   

8.
ABSTRACT. Major fatty acid components of Acanthamoeba castellanii lipids extracted after growth at 30°C include myristate, palmitate, stearate and the polyunsaturates linoleate, eicosadienoate, eicosatrienoate and arachidonate, with oleate as the sole major monounsaturated fatty acid. By comparison, growth at 15°C gave increased linoleate, eicosatrienoate and arachidonate, but decreased oleate and palmitate. When the growth temperature was shifted downwards from 30°C to 15°C, increased lipid unsaturation occurred over a period of 24 h; thus decreases of oleate and eicosadienoate were accompanied by increases in linoleate, eicosatrienoate, arachidonate and eicosapentaenoate. An upwards shift from 15°C to 30°C gave negligible alterations in fatty acid composition over a similar period. At 15°C organisms rapidly use [1-14C] acetate for de novo fatty acid synthesis; stearate is converted via oleate to further desaturation and chain elongation products. Similar short term experiments at 30°C indicate only de novo synthesis and Δ9-desaturation; synthesis of polyunsaturates was a much slower process. Rapid incorporation of [1-14C] oleate at 30°C was not accompanied by metabolic conversion over two hours, whereas at 15°C n-6 desaturation to linoleate was observed. Temperature shift of organisms from 15°C to 30°C in the presence of [1-14C] acetate revealed that over half of the fatty acids in newly-synthesised lipids were saturated, but the proportions of unsaturated fatty acids increased with time until the total polyenoate components reached 17% after 22 h. A shift of temperature in the reverse direction gave a corresponding figure of 60% for polyunsaturated fatty acids. These results emphasize the importance of n-6 desaturation in the low temperature adaptation of Acanthamoeba castellanii .  相似文献   

9.
[1-14C]Oleic and [1-14C]linoleic acids were rapidly desaturated when incubated with maize leaves from 8-day-old plants and the labeled fatty acids, and their desaturation products, were rapidly incorporated into glycerolipids. Oleic acid was desaturated to linoleate at the rate of 0.7 nmol/100 mg tissue/h and further desaturated to linolenate at about one-third this rate. The rates of linolenate formation were similar when either oleic acid or linoleic acid was the substrate although there was a 2-h lag period when oleic acid was substrate. When radioactive oleic, linoleic, and linolenic acids were substrates, phosphatidylcholine was the most extensively labeled glycerolipid followed by monogalactosyldiacylglycerol. The relative rates of incorporation of label into individual glycerolipids are consistent with a movement of labeled fatty acids from phosphatidylcholine to monogalactosyldiacylglycerol and then to diagalactosyldiacylglycerol. The rates of labeling of phosphatidylcholine oleate and of phosphatidylcholine linoleate are consistent with a precursor-product relationship in that there was a delayed accumulation of phosphatidylcholine linoleate relative to that of phosphatidylcholine oleate and phosphatidylcholine linoleate continued to accumulate while phosphatidylcholine oleate declined. Linoleate formed from oleate was widely distributed in glycerolipids but neither phosphatidylcholine linolenate nor linolenate-containing diacylglycerol was detected at short and intermediate incubation times when either oleic or linoleic acid was substrate. The kinetics of incorporation of linoleate and linolenate into monogalactosyldiacylglycerol suggest a transfer of linoleate from phosphatidylcholine. The initial rate of accumulation of labeled linolenate in monogalactosyldiacylglycerol was very similar to the rate of desaturation of linoleate and it is suggested that desaturation of linoleate occurs while associated with monogalactosyl-diacylglycerol.  相似文献   

10.
Oleoyl-phosphatidylcholine desaturase (FAD2) is a key enzyme involved in fatty acid desaturation in oilseeds, which is affected by environmental temperature. The results of this study show that FAD2 is regulated in vivo via temperature-dependent endogenous oxygen concentrations in developing sunflower (Helianthus annuus L.) seeds. By combining in vivo oxygen profiling, in situ hybridization of FAD2 genes, an assay of energy status, fatty acid analysis, and an in vitro FAD2 enzyme activity assay, it is shown that: (i) the oil-storing embryo is characterized by a very low oxygen level that is developmentally regulated. Oxygen supply is mainly limited by the thin seed coat. (ii) Elevations of external oxygen supply raised the energy status of seed and produced a dramatic increase of the FAD2 enzyme activity as well as the linoleic acid content. (iii) A clear negative correlation exists between temperature and internal oxygen concentration. The changes occurred almost instantly and the effect was fully reversible. The results indicate that the internal oxygen level acts as a key regulator for the activity of the FAD2 enzyme. It is concluded that a major mechanism by which temperature modifies the unsaturation degree of the sunflower oil is through its effect on dissolved oxygen levels in the developing seed.  相似文献   

11.
1. In vitro assay conditions have been defined for measurement of delta 9 desaturase activity in Tetrahymena pyriformis W. 2. The reaction depends on the presence of oxygen and a reduced pyridine nucleotide cofactor. FAD supports a low level of enzymatic activity. 3. Both stearyl-CoA and palmityl-CoA are acceptable substrates. Oleate formation is maximal at 30 degrees C. 4. Delta-9 desaturase activity appears to be localized in the microsomal fraction. Delta-6 and/or delta 12 desaturase activities have also been observed. 5. When the specificity of the delta 9 desaturase towards stearyl-CoA and palmityl-CoA was observed at 30 and 16 degrees C it was found that lowering the assay temperature did not affect specificity. Stearyl-CoA was more readily desaturated at both temperatures. 6. Exogenous oleyl-CoA and diisopropylfluorophosphate had little effect on delta 9 desaturase activity. However, cyanide strongly inhibited desaturation and a sensitivity to sulfhydryl-binding reagents has also been demonstrated.  相似文献   

12.
In-vivo experiments with developing sunflower (Helianthus annuus L.) seeds demonstrated that oleate desaturase activity was stimulated by low temperature (10 °C), repressed by high temperature (30 °C) and rapidly restored by returning the seeds to low temperature. Within time periods of 2–4 h, in which the de-novo fatty acid synthesis was negligible, the percentages of oleate (18:1) and linoleate (18:2) were modified in the seed lipids as a consequence of temperature adaptation. When the seeds were transferred to low temperature, the 18:2 content increased in all lipids from both microsomal membranes and oil bodies. After shifting to high temperature, the overall 18:2 content remained constant, but the 18:2 content decreased in diacylglycerols, phosphatidylcholine (PC) and other polar lipids of the two fractions and also in triacylglycerols (TAGs) of the microsomes but increased in TAGs of the oil bodies. The results indicate that the mechanism for the rapid adaptation of sunflower seeds to temperature changes involves (i) the synthesis or activation of oleate desaturase at low temperature and the reversible inhibition of this enzyme at high temperature and (ii) the exchange of 18:1 and 18:2 between TAGs and PC. Under both low and high temperature, 18:1 is transferred from reserve TAGs to PC and 18:2 is transferred from PC to reserve TAGs. At low temperature, 18:1 is desaturated to 18:2 thus allowing the enrichment of membrane lipids with 18:2, the excess being stored in reserve TAGs. At high temperature, however, and provided that oleate desaturase is repressed, the membrane lipids become enriched in 18:1 and the oil-body TAGs become enriched in 18:2. Received: 11 August 1997 / Accepted: 10 November 1997  相似文献   

13.
1. [14C]Oleoyl-CoA was metabolized rapidly and essentially completely by microsomal preparations from developing safflower (Carthamus tinctorius) cotyledons, and most of the [14C]oleate was incorporated into 3-sn-phosphatidylcholine. 2. In aerobic reaction mixtures containing NADH2 the [14C]oleate in 3-sn-phosphatidylcholine was converted into [14C]linoleate without any change in the specific radioactivity of the lipid. Over a 60 min incubation period the extent of conversion of [14C]oleoyl phosphatidylcholine into [14C]linoleoyl phosphatidylcholine was generally greater than 60%. The rate of desaturation of endogenous [14C]oleoyl phosphatidylcholine labelled from [14C]oleoyl-CoA was much greater that of exogenous [14C]dioleoyl phosphatidylcholine the specific radioactivity of the oleoyl moiety of the lipid remained constant, indicating that labelled and unlabelled oleate were desaturated at the same rate. On this assumption an initial rate of desaturation of about 15 nmol of oleate desaturated/min per mumol of 3-sn-phosphatidylcholine was estimated. 4. [14C]Oleate esterified at positions 1 and 2 of both endogenous and exogenous 3-sn-phosphatidylcholine was desaturated. 5. Attempts to demonstrate the presence of an oleoyl-CoA desaturase in safflower microsomal fractions by the appearance of linoleoyl-CoA in reaction mixtures were inconclusive.  相似文献   

14.
Respiration and soluble sugar metabolism in sugar pine embryos   总被引:1,自引:0,他引:1  
Embroys excised from dormant seeds of sugar pine ( Pinus lambertiana Dougl.) incubated at 25°C (non-dormancy-breaking) or stratified at 5°C (dormancy-breaking) were analyzed to determine temperature effects on the relative activities of respiration and fermentative metabolism, the levels of soluble sugers and the activities of the hydrolytic enzymes, invertase and sucrose synthase, as related to the release of dormancy and germinatio. At 25°C, despite a sharp drop in embryo oxygen uptake after 48 h, a simultaneous decline in acetaldehyde and ethanol concentrations indicated that there was not a shift to fermentative metabolism. The concentrations of soluble sugars showed no treatment effects. Embryo invertase (EC 3.2.1.26) activity changed only slightly at either temperature, while stratification was accompanied by a 4-fold increase in sucrose synthase (EC 2.4.1.13) activity (cleavage direction). Upon transfer of stratified seeds to 25°C, embryo sucrose synthase activity rapidly increased almost 10-fold, with the increase beginning prior to germination, while mvertase activity increased 20-fold, concomitant with germination.  相似文献   

15.
Germination of spinach (Spinacia oleracea L. var. grabra cv.Nobel) seeds was inhibited at a high temperature (35?C). Effectsof KCN on the respiration of seeds incubated at 20 and 35?Cwere compared in order to investigate the mechanism of inhibitionof seed germination by high temperature. Respiration of germinatingseeds incubated at 20?C was inhibited about 50% by 5 mM. KCNsolution, whereas it hardly inhibited the weak respiration ofthe seeds at 35?C. Germination of seeds was delayed by exogenousKCN. When the KCN solution was renewed daily, germination wascompletely inhibited. Pericarp removal promoted germinationat 35?C, but atypical germination (cotyledons emerging earlierthan a radicle) took up more than half of the total germination.The inhibitory action of KCN on the respiration of seeds wasnot altered by pericarp removal. A KCN addition, even at 20?C,elicited atypical germination in the pericarp-less seeds. Theseresults show that cyanide-sensitive respiration is needed toinduce typical spinach seed germination (root emergence), butis rendered inoperative by high temperatures thus bringing aboutpoor germination and atypical germination. (Received December 1, 1984; Accepted February 8, 1985)  相似文献   

16.
R. Garcés  C. Sarmiento  M. Mancha 《Planta》1992,186(3):461-465
The effect of temperature on oleate desaturation in developing sunflower (Helianthus annuus L.) seeds has been examined. When seeds from plants grown at low (20/10° C, day/night) temperature were transferred for 24 h to 10° C, an increase in the linoleate/oleate ratio in phosphatidylcholine and triacylglycerol was observed, but not when transfer was to 20 or 30° C. The same effect was observed in triacylglycerol, phosphatidylcholine and phosphatidylethanolamine in the newly synthesized lipids after in-vivo incubation with [1-14C]oleate at 10° C. The microsomal oleoyl phosphatidylcholine desaturase (ODS) activity of the seeds maintained at 10 C was also enhanced. The stimulation was observed after only 3 h in plants grown at high temperature (30/20° C). This effect was inhibited by cycloheximide, implying that the low-temperature stimulation of the ODS activity was caused by the synthesis of new enzyme. As a consequence, seeds from plants grown at low temperature had higher ODS activities and linoleate contents than those grown at high temperature. The microsomal ODS activity of seeds from plants grown at low temperature was dependent on incubation temperature and showed a maximum at 20° C. By contrast, this activity was almost temperature-insensitive in seeds from plants grown at high temperature. These results could explain how temperature regulates the fatty-acid composition in sunflower-seed lipids.Abbreviations DAF days after flowering - ODS oleoyl phosphatidylcholine desaturase - PC phosphatidylcholine - PE phosphatidylethanolamine - TAG triacylglycerol - 181 oleic acid - 182 linoleic acid To whom correspondence should be addressedThanks are due to M.C. Ruiz for skillful technical assistance. This work was supported by a grant from Junta de Andalucia, Spain.  相似文献   

17.
The main aims of the present work were to investigate whether a chilling treatment which breaks dormancy of Douglas fir ( Pseudotsuga menziesii (Mirb.) Franco) seeds induces changes in the sensitivity of seeds to exogenous ABA or in ABA levels in the embryo and the megagametophyte, and whether these changes are related to the breaking of dormancy. Dormant seeds germinated very slowly within a narrow range of temperatures (20–30°C), the thermal optimum being approximately 25°C. The seeds were also very sensitive to oxygen deprivation. Treatment of dormant seeds at 5°C improved further germination, and resulted in a widening of the temperature range within which germination occurred and in better germination in low oxygen concentrations. In dry dormant seeds the embryo contained about one-third of the ABA in the megagametophyte. ABA content of both organs increased during the first 4 weeks of chilling. It then decreased sharply in the megagametophyte to the level in the embryo after 7–15 weeks of chilling. At 15°C, a temperature at which dormancy was expressed, the ABA level increased in the embryo and the megagametophyte of dormant unchilled seeds whereas it decreased in the organs of chilled seeds. The longer the chilling treatment, the faster the decrease in ABA after the transfer of seeds from 5°C to higher temperatures, and the decrease was faster at 25 than at 15°C. These results suggest that the breaking of dormancy by cold was associated with a lower capacity of ABA biosynthesis and/or a higher ABA catabolism in the seeds subsequently placed at 15 or 25°C. Moreover, the chilling treatment resulted in a progressive decrease in the sensitivity of seeds to exogenous ABA. However, seeds remained more sensitive to ABA at 15 than at 25°C. The possible involvement of ABA synthesis and of responsiveness of seeds to ABA in the breaking of dormancy by cold treatment is discussed.  相似文献   

18.
Fertilized Chondrostoma nasus eggs were incubated at 10, 13, 16 and 19° C until full resorption of the yolk sac. High survival was observed at 10–16° C (89–92% at the onset of external feeding), whereas at 19) C survival was depressed (76%). The time at which 5, 50 and 95% of individuals had hatched, filled the swim bladder, ingested the first food and fully resorbed the yolk sac was determined. An increase in temperature accelerated development and made it more synchronous. Within the period from fertilization to hatching embryonic development was theoretically arrested (t0 dev) at 8·8° C, and growth was arrested (t0gr) at 8·86° C. For the whole endogenous feeding period (from fertilization to full yolk resorption) the amount of matter transformed into tissue was temperature independent between 10° and 19° C. Respiration increased exponentially with age; the respiration increase was faster at higher temperatures, but, in general, metabolic expenditures of C. nasus were low. As a consequence, the efficiency of utilizing yolk energy for growth was high as compared with other fish species (57% during the whole endogenous feeding period); it was temperature independent. However, time was used less efficiently at low temperatures, increasing a risk of predation. Within the endogenous feeding period a shift from lower to higher temperatures for optimal yolk utilization efficiency was observed. The temperatures optimal for survival and energetic performance seem to be 13–16° C for egg incubation and 15–18° C for rearing of yolk-feeding larvae. Chondrostoma nasus is a potential candidate for aquaculture for restocking purposes.  相似文献   

19.
The germination percentage of peach [ Prunus persica (L.) Batsch cv. Halford] seeds at 20°C was low (< 20%) after incubation at 5°C for as long as 35 days, but then increased considerably (> 40%) when the seeds were maintained at 5°C for longer than 42 days. Four zones of gibberellin-like activity were found in partially purified seed extracts. Gibberellin-like activity remained low in seeds incubated at 5°C for as long as 28 days, but increased significantly in three of these zones after 35 days, and in the fourth zone after 49 days. The increase in gibberellin-like activity was evident prior to the transfer of the seeds to 20°C. Moreover, seeds maintained at 5°C germinated at this temperature after 63 days. For seeds incubated and germinated at 20°C, both the germination percentage and the gibberellin-like activity remained low throughout the experimental period. Application of the growth retardant paclobutrazol to seeds after 28 days of a 49 day total incubation period at 5°C did not substantially reduce seed germination, although the increase in gibberellin-like activity was prevented. Seeds did, however, require a longer time to germinate after transfer to 20°C and were dwarfed in appearance. Application of GA3 to seeds prior to stratification increased the percentage germination of seeds only when they had been incubated at 5°C for at least 35 days. The major changes in gibberellin-like activity are, therefore, associated not so much with the processes which allow germination to take place in peach, but more with those processes which allow normal growth and development of the seedling.  相似文献   

20.
Interactions between growth temperature and measurement temperature were examined for their effects on white spruce [ Picea glauca (Moench) Voss] root respiration. Total dark respiration rates increased with measurement temperature and were unaffected by growth temperature. Partitioning of respiratory electron flow between the cytochrome and alternative pathways was also unaffected by growth temperature. The proportion of respiration mediated by the alternative pathway was constant at measurement temperatures between 4°C and 18°C, but was increased at higher temperatures. Changes in alternative pathway activity were paralleled by changes in capacity, and the alternative pathway was almost fully engaged at all temperatures. Roots grown at low temperature displayed higher carbohydrate levels than roots grown at higher temperatures, but respiration rate was unaffected. Spruce root respiration did not appear to acclimate to growth temperature, and the alternative pathway was not preferentially engaged at low temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号