首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anaerobiospirillum succiniciproducens phosphoenolpyruvate (PEP) carboxykinase catalyses the reversible metal-dependent formation of oxaloacetate (OAA) and ATP from PEP, ADP and CO(2). Mutations of PEP carboxykinase have been constructed where the residues His(225) and Asp(263), two residues of the enzyme's putative Mn(2+) binding site, were altered. Kinetic studies of the His225Glu, and Asp263Glu PEP carboxykinases show 600- and 16,800-fold reductions in V(max) relative to the wild-type enzyme, respectively, with minor alterations in K(m) for Mn(2+). Molecular modeling of wild-type and mutant enzymes suggests that the lower catalytic efficiency of the Asp263Glu enzyme could be explained by a movement of the lateral chain of Lys(248), a critical catalytic residue, away from the reaction center. The effect on catalysis of introducing a negatively charged oxygen atom in place of N(epsilon-2) at position 225 is discussed in terms of altered binding energy of the intermediate enolpyruvate.  相似文献   

2.
3.
Saccharomyces cerevisiae phosphoenolpyruvate (PEP) carboxykinase catalyses the reversible metal-dependent formation of oxaloacetate and ATP from PEP, ADP, and CO2 and plays a key role in gluconeogenesis. This enzyme also has oxaloacetate decarboxylase and pyruvate kinase-like activities. Mutations of PEP carboxykinase have been constructed where the residues Lys213 and His233, two residues of the putative Mn2+ binding site of the enzyme, were altered. Replacement of these residues by Arg and by Gln, respectively, generated enzymes with 1.9 and 2.8 kcal/mol lower Mn2+ binding affinity. Lower PEP binding affinity was inferred for the mutated enzymes from the protection effect of PEP against urea denaturation. Kinetic studies of the altered enzymes show at least a 5000-fold reduction in V(max) for the primary reaction relative to that for the wild-type enzyme. V(max) values for the oxaloacetate decarboxylase and pyruvate kinase-like activities of PEP carboxykinase were affected to a much lesser extent in the mutated enzymes. The mutated enzymes show a decreased steady-state affinity for Mn2+ and PEP. The results are consistent with Lys213 and His233 being at the Mn2+ binding site of S. cerevisiae PEP carboxykinase and the Mn2+ affecting the PEP interaction. The different effects of mutations in V(max) for the main reaction and the secondary activities suggest different rate-limiting steps for these reactions.  相似文献   

4.
Biochemical and metabolic data lead to the conclusion that the enzyme phosphoenolpyruvate carboxykinase (PEPCK) contributes to a critical point of divergence in energy conservation pathways between mammals and nematodes. The Ascaris suum PEPCK shares considerable homology with PEPCK from avian liver and is a good candidate for mutagenesis studies. The Cys306 substitution by Ser and Ala produced active enzymes and the two mutants are kinetically indistinguishable from each other. This substitution affects the catalytic affinity for the formation of the specific enzyme-nucleotide complex (k(cat)/K(m)) in the forward and reverse reactions. Studies with the substrate analogs 2(')dGDP and 2(')dGTP indicate that Cys306 in A. suum PEPCK is one of the residues important in nucleotide binding and may interact with the 2(')OH group in the ribose ring. Alternatively, mutation of this residue could cause protein changes that interfere with the proper conformation of the nucleotides for optimal catalysis to take place.  相似文献   

5.
T H Duffy  T Nowak 《Biochemistry》1984,23(4):661-670
The halogenated phosphoenolpyruvate analogues (Z)-phosphoenol-3-fluoropyruvate, (E)-phosphoenol-3-fluoropyruvate, and (Z)-phosphoenol-3-bromopyruvate were synthesized and purified. The analogues were characterized by 1H and by 19F NMR where applicable. Absolute stereoselectivity of the fluorophosphoenolpyruvate isomers as substrates with the enzymes phosphoenolpyruvate carboxykinase, enolase, and pyruvate phosphate dikinase was observed. The Z isomer exhibited substrate activity with these enzymes while no substrate activity was measured with the E isomer. Both isomers exhibited substrate activity with the enzyme pyruvate kinase, however, with a substantial decrease in the Vmax/Km ratio compared to phosphoenolpyruvate as the substrate. A metal ion dependent stereoselectivity of inhibition was measured for these analogues with the enzymes phosphoenolpyruvate carboxykinase, enolase, and pyruvate kinase. The cation activator appears to affect the specificity and thus the catalytic site of these enzymes. Proton longitudinal relaxation rate titrations demonstrate that the dissociation constants, K3, of the fluorophosphoenolpyruvate isomers from the enzyme-Mn complex agree, in most cases, with the measured KI values and analogue binding resembles phosphoenolpyruvate binding. With the enzyme phosphoenolpyruvate carboxykinase, the KI not equal to K3 for (E)-fluorophosphoenolpyruvate which suggests that the binding of the E isomer is affected by the presence of the other substrates. The halogenated derivatives apparently undergo an enzyme-Mn catalyzed Michael-type addition reaction with the bromo-substituted analogue decomposing much faster than the fluoro analogues.  相似文献   

6.
Protein phosphorylation plays a major role in bacterial cellular regulation as in eukaryotes. The HPr Kinase/Phosphorylase (HprK/P) was the first bacterial serine protein kinase to have had its structure determined, establishing that it is unrelated to the eukaryotic kinases. HprK/P belongs to another large structural family, the P-loop containing proteins. Among them, P-loop containing kinases have been assumed to only phosphorylate small molecules, but the example of HprK/P suggests that some may have proteins as substrates, defining novel cellular signal transduction pathways. Another major result of the studies presented here is that HprK/P also catalyses the phosphorolysis of the phosphoserine, yielding serine and pyrophosphate. The two different catalytic activities are carried out at the same active site. The determination of the structure of the complex with the protein substrates HPr and PserHPr allowed us to propose a catalytic mechanism. Since regulation of HPr phosphorylation has been shown to be involved in the virulence process of pathogenic bacteria, a search for specific inhibitors of HprK/P is of clinical interest and the first hit has already been found.  相似文献   

7.
The presence of arginine at the active site of avian liver phosphoenolpyruvate carboxykinase was studied by chemical modification followed by a characterization of the modified enzyme. The arginine-specific reagents phenylglyoxal, 2,3-butanedione, and 1,2-cyclohexanedione all irreversibly inhibit the enzyme with second-order rate constants of 3.42 M-1 min-1, 3.13 M-1 min-1 and 0.313 M-1 min-1, respectively. The substrates phosphoenolpyruvate, IDP, and the activator Mn2+ offer little to modest protection from inhibition. Either CO2 or CO2 in the presence of any of the other substrates elicited potent protection against modification. Protection by CO2 against modification by phenylglyoxal or 1,2-cyclohexanedione gave a biphasic pattern. Rapid loss in activity to 40-60% occurred, followed by a very slow loss. Kinetics of inhibition suggest that the modification of arginine is specific and leads to loss of enzymatic activity. Substrate protection studies indicate an arginine residue(s) at the CO2 site of phosphoenolpyruvate carboxykinase. Apparently no arginine residues are at the binding site of the phosphate-containing substrates. Partially inactive (40-60% activity) enzyme, formed in the presence of CO2, has a slight change of its kinetic constants, and no alteration of its binding parameters or secondary structure as demonstrated by kinetic, proton relaxation rate, and circular dichroism studies. Labeling of enzyme with [(7-)14C]phenylglyoxal in the presence of CO2 (40-60% activity) showed 2 mol of phenylglyoxal/enzyme or 1 arginine or cysteine residue modified. Labeling of phosphoenolpyruvate carboxykinase in the absence of CO2 yielded 6 mol of label/enzyme. Labeling results indicate that avian phosphoenolpyruvate carboxykinase has 2 or 3 reactive arginine residues out of a total of 52 and only 1 or 2 are located at the active site and are involved in CO2 binding and activation.  相似文献   

8.
HPr kinase/phosphatase (HprK/P) is a key regulatory enzyme controlling carbon metabolism in Gram- positive bacteria. It catalyses the ATP-dependent phosphorylation of Ser46 in HPr, a protein of the phosphotransferase system, and also its dephosphorylation. HprK/P is unrelated to eukaryotic protein kinases, but contains the Walker motif A characteristic of nucleotide-binding proteins. We report here the X-ray structure of an active fragment of Lactobacillus casei HprK/P at 2.8 A resolution, solved by the multiwavelength anomalous dispersion method on a seleniated protein (PDB code 1jb1). The protein is a hexamer, with each subunit containing an ATP-binding domain similar to nucleoside/nucleotide kinases, and a putative HPr-binding domain unrelated to the substrate-binding domains of other kinases. The Walker motif A forms a typical P-loop which binds inorganic phosphate in the crystal. We modelled ATP binding by comparison with adenylate kinase, and designed a tentative model of the complex with HPr based on a docking simulation. The results confirm that HprK/P represents a new family of protein kinases, first identified in bacteria, but which may also have members in eukaryotes.  相似文献   

9.
Anaerobiospirillum succiniciproducens phosphoenolpyruvate (PEP) carboxykinase catalyzes the reversible formation of oxaloacetate and adenosine triphosphate from PEP, adenosine diphosphate, and carbon dioxide, and uses Mn2+ as the activating metal ion. The enzyme is a monomer and presents 68% identity with Escherichia coli PEP carboxykinase. Comparison with the crystalline structure of homologous E. coli PEP carboxykinase [Tari, L. W., Matte, A., Goldie, H., and Delbaere, L. T. J. (1997). Nature Struct. Biol. 4, 990–994] suggests that His225, Asp262, Asp263, and Thr249 are located in the active site of the protein, interacting with manganese ions. In this work, these residues were individually changed to Gln (His225) or Asn. The mutated enzymes present 3–6 orders of magnitude lower values of V max/K m, indicating high catalytic relevance for these residues. The His225Gln mutant showed increased K m values for Mn2+ and PEP as compared with wild-type enzyme, suggesting a role of His225 in Mn2+ and PEP binding. From 1.5–1.6 Kcal/mol lower affinity for the 3(2)-O-(N-methylantraniloyl) derivative of adenosine diphosphate was observed for the His225Gln and Asp263Asn mutant A. succiniciproducens PEP carboxykinases, implying a role of His225 and Asp263 in nucleotide binding.  相似文献   

10.
We have cloned and sequenced the Lactobacillus casei hprK gene encoding the bifunctional enzyme HPr kinase/P-Ser-HPr phosphatase (HprK/P). Purified recombinant L. casei HprK/P catalyzes the ATP-dependent phosphorylation of HPr, a phosphocarrier protein of the phosphoenolpyruvate:carbohydrate phosphotransferase system at the regulatory Ser-46 as well as the dephosphorylation of seryl-phosphorylated HPr (P-Ser-HPr). The two opposing activities of HprK/P were regulated by fructose-1,6-bisphosphate, which stimulated HPr phosphorylation, and by inorganic phosphate, which stimulated the P-Ser-HPr phosphatase activity. A mutant producing truncated HprK/P was found to be devoid of both HPr kinase and P-Ser-HPr phosphatase activities. When hprK was inactivated, carbon catabolite repression of N-acetylglucosaminidase disappeared, and the lag phase observed during diauxic growth of the wild-type strain on media containing glucose plus either lactose or maltose was strongly diminished. In addition, inducer exclusion exerted by the presence of glucose on maltose transport in the wild-type strain was abolished in the hprK mutant. However, inducer expulsion of methyl beta-D-thiogalactoside triggered by rapidly metabolizable carbon sources was still operative in ptsH mutants altered at Ser-46 of HPr and the hprK mutant, suggesting that, in contrast to the model proposed for inducer expulsion in gram-positive bacteria, P-Ser-HPr might not be involved in this regulatory process.  相似文献   

11.
Phosphoenolpyruvate carboxykinase from chicken liver mitochondria and rat liver cytosol catalyzes the phosphorylation of alpha-substituted carboxylic acids such as glycolate, thioglycolate, and DL-beta-chlorolactate in reactions with absolute requirements for divalent cation activators. 31P NMR analysis of the reaction products indicates that phosphorylation occurs at the alpha-position to generate the corresponding O- or S-bridged phosphate monoesters. In addition, the enzymes catalyze the bicarbonate-dependent phosphorylation of hydroxylamine. The chicken liver enzyme also catalyze the bicarbonate-dependent phosphorylation of hydroxylamine. The chicken liver enzyme also catalyzes the bicarbonate-dependent phosphorylation of fluoride ion. The kappa cat values for these substrates are 20-1000-fold slower than the kappa cat for oxaloacetate. Pyruvate and beta-hydroxypyruvate are not phosphorylated, since the enzyme does not catalyze the enolization of these compounds. Oxalate, a structural analogue of the enolate of pyruvate, is a competitive inhibitor of phosphoenolpyruvate carboxykinase (Ki of 5 microM) in the direction of phosphoenolpyruvate formation. Oxalate is also an inhibitor of the chicken liver enzyme in the direction of oxaloacetate formation and in the decarboxylation of oxaloacetate. The chicken liver enzyme is inhibited by beta-sulfopyruvate, an isoelectronic analogue of oxaloacetate. The extensive homologies between the reactions catalyzed by phosphoenolpyruvate carboxykinase and pyruvate kinase suggest that the divalent cation activators in these reactions may have similar functions. The substrate specificity indicates that phosphoenolpyruvate carboxykinase decarboxylates oxaloacetate to form the enolate of pyruvate which is then phosphorylated by MgGTP on the enzyme.  相似文献   

12.
1. The properties of pyruvate kinase and, if present, phosphoenolpyruvate carboxykinase from the muscles of the sea anemone, scallop, oyster, crab, lobster and frog were investigated. 2. In general, the properties of pyruvate kinase from all muscles were similar, except for those of the enzyme from the oyster (adductor muscle); the pH optima were between 7.1 and 7.4, whereas that for oyster was 8.2; fructose bisphosphate lowered the optimum pH of the oyster enzyme from 8.2 to 7.1, but it had no effect on the enzymes from other muscles. Hill coefficients for the effect of the concentration of phosphoenolpyruvate were close to unity in the absence of added alanine for the enzymes from all muscles except oyster adductor muscle; it was 1.5 for this enzyme. Alanine inhibited the enzyme from all muscles except the frog; this inhibition was relieved by fructose bisphosphate. Low concentrations of alanine were very effective with the enzyme from the oyster (50% inhibition was observed at 0.4mm). Fructose bisphosphate activated the enzyme from all muscles, but extremely low concentrations were effective with the oyster enzyme (0.13mum produced 50% activation). 3. In general, the properties of phosphoenolpyruvate carboxykinase from the sea anemone and oyster muscles are similar: the K(m) values for phosphoenolpyruvate are low (0.10 and 0.13mm); the enzymes require Mn(2+) in addition to Mg(2+) for activity; and ITP inhibits the enzymes and the inhibition is relieved by alanine. These latter compounds had no effect on enzymes from other muscles. 4. It is suggested that changes in concentrations of fructose bisphosphate, alanine and ITP produce a coordinated mechanism of control of the activities of pyruvate kinase and phosphoenolpyruvate carboxykinase in the sea anemone and oyster muscles, which ensures that phosphoenolpyruvate is converted into oxaloacetate and then into succinate in these muscles under anaerobic conditions. 5. It is suggested that in the muscles of the crab, lobster and frog, phosphoenolpyruvate carboxykinase catalyses the conversion of oxaloacetate into phosphoenolpyruvate. This may be part of a pathway for the oxidation of some amino acids in these muscles.  相似文献   

13.
Previous work from our laboratory (Hod, Y., Utter, M. F., and Hanson, R. W. (1982) J. Biol. Chem. 257, 13787-13794) has demonstrated that chicken kidney contains both mitochondrial and cytosolic forms of phosphoenolpyruvate carboxykinase (GTP) (EC 4.1.1.32) and that the two forms are distinct proteins. Using poly(A+) RNA from chicken kidney, a double-stranded cDNA library was constructed. DNA clones containing sequences complementary to the mRNA for the cytosolic form of phosphoenolpyruvate carboxykinase were initially identified by colony hybridization with 32P-labeled cDNA transcribed from an RNA fraction enriched for the enzyme mRNA. The identity of plasmids containing phosphoenolpyruvate carboxykinase cDNA was confirmed by hybrid-selected translation. Mature mRNA for cytosolic phosphoenolpyruvate carboxykinase of the chicken is 2.8 kilobases in length, similar to that previously noted for mRNA coding for the same enzyme in the rat. The cDNA for the chicken enzyme hybridizes with several restriction fragments of the corresponding cDNA for the rat cytosolic phosphoenolpyruvate carboxykinase, indicating conservation of nucleotide sequences during evolution. Wide spread conservation of sequence homology is also demonstrated by the hybridization of the cDNA for the rat phosphoenolpyruvate carboxykinase with a 2.8-kilobase RNA from the livers of a variety of vertebrates including amphibian, avian, and primate species. Specific mRNA coding for the cytosolic form of phosphoenolpyruvate carboxykinase was present in chicken kidney but absent from the liver, even in animals starved for 48 h. However, the administration of cAMP to normal fed chickens caused a rapid induction of phosphoenolpyruvate carboxykinase mRNA. These findings suggest that the gene for the cytosolic enzyme in chicken liver can be expressed if the proper hormonal stimuli are present.  相似文献   

14.
The concentrations of cyclic AMP and cyclic GMP in brown fat and liver of both suckling and adult rats at fixed times after injection of insulin (2.5 U/100 g body weight) or prednisolone (2.5 mg/100 g body weight) were compared with the activity of phosphoenolpyruvate carboxykinase assayed 24 h after the injections. A stimulus that produced an increase in cyclic AMP content also produced an increase in the enzyme activity. If the content of cyclic GMP was also increased there was no rise in phosphoenolpyruvate carboxykinase activity. A rise in the content of cyclic GMP alone was associated with a reduction in the activity of the enzyme. These preliminary results indicate that cyclic AMP could be involved in the induction of phosphoenolpyruvate carboxykinase and that cyclic GMP may somehow be related to its repression. The known differences in the response of phosphoenolpyruvate carboxykinase activity to insulin and prednisolone in different tissues and at different stages of ontogenic development may thus be linked to differences in the responsiveness of enzymes concerned with the metabolism of cyclic nucleotides.  相似文献   

15.
Mutants of E. coli defective in both phosphoenolpyruvate carboxykinase and phosphoenolpyruvate synthetase are unable to use C4-dicarboxylic acids such as succinate and malate as carbon and energy sources for growth. Revertants that have restored function for either one of these enzymes can grow in a malate-mineral medium, but at a reduced rate compared with the growth of wild-type cells. E. coli appears to use two pathways for synthesis of phosphoenolpyruvate from C4-dicarboxylic acids. One of these involves decarboxylation of oxalacetate catalyzed by phosphoenolpyruvate carboxykinase. The second pathway makes use of the combined action of malic enzyme and phosphoenolpyruvate synthetase.  相似文献   

16.
The Bacillus stearothermophilus no. 236 gene encoding the bifunctional enzyme HprK/P, the key regulator of carbon catabolite repression/activation (CCR/CCA) in most Gram-positive bacteria, was cloned and the (His)(6)-tagged gene product was characterized in detail. The nucleotide sequence of the hprK/P gene corresponded to an open reading frame of 951 bp that encoded a polypeptide of 316 amino acid residues with a calculated molecular mass of 35,458 Da. The deduced amino acid sequence of the B. stearothermophilus no. 236 HprK/P showed 64.5% identity with the B. subtilis enzyme, allowing us to identify two highly conserved motifs, the nucleotide binding P-loop (Walker motif A) and the HprK/P family signature sequence in the C-terminal half of the protein. Furthermore, complementation experiments showed that the cloned hprK/P gene product was functionally active in the B. subtilis cells. The purified (His)(6)-tagged B. stearothermophilus no. 236 HprK/P migrated on SDS-PAGE gel as a single species with a molecular mass of about 36 kDa, and behaved in gel filtration like a hexameric protein. The recombinant protein catalyzes the pyrophosphate (PPi)-dependent (highest activity at pH 7.0 and 40 degrees C) as well as the ATP-dependent phosphorylation of Ser46 in HPr (maximum activity at pH 8.0 and 45 degrees C). It also catalyzes the inorganic phosphate-dependent dephosphorylation (phosphorolysis) of seryl-phosphorylated HPr, optimally at pH 6.5 and 40 degrees C. BIAcore surface resonance analysis confirmed that a divalent cation, preferentially Mg(2+), was an indispensable cofactor for the three activities of the HprK/P. Fructose-1,6-bisphosphate (FBP) was observed to stimulate ATP-dependent kinase activity, while inorganic phosophate (Pi) inhibited ATP-dependent kinase activity. Mutations in the Walker motif A simultaneously abolished both types of kinase and phosphorylase activities. On the other hand, the conserved signature residues were confirmed to be involved in the PPi-dependent kinase and phosphorylase reactions.  相似文献   

17.
Thyroxine-induced metamorphosis of the tadpole to the frog (Rana catesbeiana) is marked by increased activities of the urea cycle enzymes in liver. Cloned cDNAs for two mammalian urea cycle enzymes--carbamyl-phosphate synthetase I and argininosuccinate synthetase--were shown to cross-hybridize with the corresponding mRNAs in tadpole liver. Thyroxine treatment produced nearly 10-fold, coordinate increases in hybridizable mRNA levels for these two enzymes in tadpole liver. This increase is sufficient to account for reported increases in enzyme levels and synthesis rates, demonstrating that thyroxine largely regulates concentrations of these enzymes at a pretranslational step(s). In contrast, levels of phosphoenolpyruvate carboxykinase mRNA in tadpole liver decreased by more than 90% following thyroxine treatment. This differs from the thyroxine-induced increases in synthesis rates of enzyme and mRNA reported for phosphoenolpyruvate carboxykinase in rat liver. However, the decreased levels of this mRNA in tadpole liver may represent a secondary response due to thyroxine-stimulated release of insulin.  相似文献   

18.
The structure of human pancreatic alpha-amylase has been determined to 1.8 A resolution using X-ray diffraction techniques. This enzyme is found to be composed of three structural domains. The largest is Domain A (residues 1-99, 169-404), which forms a central eight-stranded parallel beta-barrel, to one end of which are located the active site residues Asp 197, Glu 233, and Asp 300. Also found in this vicinity is a bound chloride ion that forms ligand interactions to Arg 195, Asn 298, and Arg 337. Domain B is the smallest (residues 100-168) and serves to form a calcium binding site against the wall of the beta-barrel of Domain A. Protein groups making ligand interactions to this calcium include Asn 100, Arg 158, Asp 167, and His 201. Domain C (residues 405-496) is made up of anti-parallel beta-structure and is only loosely associated with Domains A and B. It is notable that the N-terminal glutamine residue of human pancreatic alpha-amylase undergoes a posttranslational modification to form a stable pyrrolidone derivative that may provide protection against other digestive enzymes. Structure-based comparisons of human pancreatic alpha-amylase with functionally related enzymes serve to emphasize three points. Firstly, despite this approach facilitating primary sequence alignments with respect to the numerous insertions and deletions present, overall there is only approximately 15% sequence homology between the mammalian and fungal alpha-amylases. Secondly, in contrast, these same studies indicate that significant structural homology is present and of the order of approximately 70%. Thirdly, the positioning of Domain C can vary considerably between alpha-amylases. In terms of the more closely related porcine enzyme, there are four regions of polypeptide chain (residues 237-250, 304-310, 346-354, and 458-461) with significantly different conformations from those in human pancreatic alpha-amylase. At least two of these could play a role in observed differential substrate and cleavage pattern specificities between these enzymes. Similarly, amino acid differences between human pancreatic and salivary alpha-amylases have been localized and a number of these occur in the vicinity of the active site.  相似文献   

19.
BACKGROUND AND AIMS: Recent evidence suggests that inflammatory cytokines may mediate reduced hepatic glucose production and reduced blood glucose concentrations in sepsis. Therefore the aim of this study is to provide direct evidence of a cytokine-mediated interaction between Kupffer cells and hepatocytes by characterising the effects of lipopolysaccharide-stimulated Kupffer cells on hepatocyte gluconeogenesis, and the activity of key regulatory enzymes of this pathway. METHODS AND RESULTS: Primary isolates of hepatocytes co-cultured with lipopolysaccharide-stimulated Kupffer cells in Transwell inserts showed a 48% inhibition of gluconeogenesis (P < 0.001). RNase protection assay and ELISA of Kupffer cells and the culture media following exposure to lipopolysaccharide showed increased levels of interleukin-1 alpha and beta, tumour necrosis factor alpha and IL-10. The addition of IL-1beta and IL-10 to hepatocyte cultures inhibited gluconeogenesis by 52% (P < 0.001), whereas each cytokine alone was ineffective. To determine whether altered production or activity of phosphoenolpyruvate carboxykinase or pyruvate kinase was responsible for the reduced glucose synthesis, their mRNA, protein levels and enzyme activities were measured. Primary hepatocytes co-cultured with lipopolysaccharide-stimulated Kupffer cells or cultured with a combination of IL-1beta and IL-10 displayed reduced levels of phosphoenolpyruvate carboxykinase mRNA, protein and enzyme activity. In contrast the mRNA, protein levels and enzyme activity of pyruvate kinase were not altered; suggesting that gluconeogenesis was suppressed by downregulation of phosphoenolpyruvate carboxykinase. CONCLUSIONS: Therefore, hypoglycaemia, which is often observed in sepsis, may be mediated by Kupffer cell-derived IL-1beta and IL-10. In addition this study suggests these cytokines inhibit phosphoenolpyruvate carboxykinase production and thereby hepatic gluconeogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号