首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: To determine whether horC confers beer-spoilage ability and to evaluate the validity of horC as a trans-species genetic marker for differentiating the beer-spoilage ability of lactic acid bacteria (LAB). METHODS AND RESULTS: Hop-sensitive Lactobacillus brevis ABBC45cc was transformed with an expression plasmid, pHYchorBC, containing putative multidrug resistance gene horC and its putative regulator horB, and the transformant was designated as ABBC45cc/pHYchorBC. As a control, ABBC45cc was transformed with pHYchorB that contains horB, and the transformed strain was designated as ABBC45cc/pHYchorB. As a result of beer-spoilage assay of these transformants, ABBC45cc/pHYchorBC exhibited beer-spoilage ability, whereas ABBC45cc/pHYchorB did not. Furthermore ABBC45cc/pHYchorBC showed higher hop resistance than ABBC45cc/pHYchorB, accounting for the differences in beer-spoilage ability observed between the two transformants. ABBC45cc/pHYchorBC also exhibited higher resistance to various structurally unrelated drugs, compared with ABBC45cc/pHYchorB. CONCLUSIONS: horC was shown to confer hop resistance and beer-spoilage ability on ABBC45cc by presumably encoding a multidrug transporter. SIGNIFICANCE AND IMPACT OF THE STUDY: The finding that horC plays an important role in hop resistance and beer-spoilage ability supports the validity of horC as a trans-species genetic marker for differentiating the beer-spoilage ability of LAB.  相似文献   

2.
AIMS: To determine whether the beer-spoilage ability is an intrinsic character of Lactobacillus paracollinoides and identify a genetic marker for differentiating the beer-spoilage ability of strains belonging to this species. METHODS AND RESULTS: The ribotype of a nonspoilage strain, Lact. brevis ATCC8291, was found to be identical with that of Lact. paracollinoides LA7. The 16S rDNA sequence analysis and DNA-DNA hybridization study indicates that nonspoilage ATCC8291 should belong to Lact. paracollinoides. We further isolated nonspoilage variants from Lact. paracollinoides LA2(T) and LA9 by incubating these strains at 30 degrees C. To identify a genetic marker for differentiating the beer-spoilage ability of Lact. paracollinoides, open reading frames 5 (ORF5), the previously reported genetic marker for Lact. brevis, was evaluated. As a result, ORF5 homologues were detected in all of the 12 beer-spoilage strains of Lact. paracollinoides, while this ORF was not found in ATCC8291 or the two nonspoilage variants obtained from LA2(T) and LA9. CONCLUSIONS: Lactobacillus paracollinoides is not an intrinsic beer-spoiler and the nonspoilage strain Lact. brevis ATCC8291 should be reclassified as Lact. paracollinoides. ORF5 was found to be useful for differentiating beer-spoilage ability of this species. SIGNIFICANCE AND IMPACT OF THE STUDY: The finding that Lact. paracollinoides includes nonspoilage strains necessitates brewers to use a genetic marker that is associated with the beer-spoilage ability of this species.  相似文献   

3.
AIMS: Lactobacillus sp. LA2 (DSM15502) and related strains (LA2 group) possess strong beer-spoilage ability. The 16S rDNA sequence of LA2 strain is virtually indistinguishable from that of L. collinoides, generally considered to be nonbeer-spoilage bacteria. The aim of this study was to identify the genetic marker to distinguish between Lactobacillus sp. LA2 group and L. collinoides and to provide a rapid means of identifying beer-spoilage strains belonging to Lactobacillus sp. LA2 group. METHODS AND RESULTS: The 16-23S rDNA intergenic spacer (ITS) regions of Lactobacillus sp. LA2 and L. collinoides JCM1123T were sequenced to identify a genetic marker to distinguish between the two groups. As a result, 300 and 500 bp ITS regions of Lactobacillus sp. LA2 were found to be almost identical with those of L. collinoides JCM1123T. Sequence comparison analysis between Lactobacillus sp. LA2 and L. collinoides JCM1123T revealed that the two contiguously located nucleotides are absent in both ITS regions of Lactobacillus sp. LA2. Based on the sequence difference, we have designed specific PCR primers with a minor modification to the primer sequence that can differentiate between beer-spoilage Lactobacillus sp. LA2 group and nonbeer-spoilage L. collinoides. CONCLUSIONS: The PCR-based method has been developed to identify Lactobacillus sp. LA2 group, providing a rapid and sensitive means of determining the beer-spoilage ability of detected bacterial strains. SIGNIFICANCE AND IMPACT OF THE STUDY: The substitution of one nucleotide, located at the third position to the 3'-end in the primer sequence, enhanced the specificity of the PCR method while retaining sufficient sensitivity. The nucleotide gap identified in this study appeared to serve as a useful genetic marker that can differentiate 12 beer-spoilage Lactobacillus sp. LA2 group strains from its close relatives that exhibit no beer-spoilage ability.  相似文献   

4.
AIMS: To conduct an inter-species comparative study on the nucleotide sequences of the conserved DNA regions surrounding ORF5, a genetic marker for differentiating beer-spoilage lactic acid bacteria. METHODS AND RESULTS: The conserved DNA regions surrounding ORF5 were examined by PCR analysis, using three beer-spoilage strains, Lactobacillus brevis ABBC45C, L. paracollinoides LA2T and Pediococcus damnosus ABBC478. As a result, the DNA regions containing ORF1-7, originally found in ABBC45C, appeared to be conserved among the three strains, while the downstream region was not found in L. paracollinoides LA2T and P. damnosus ABBC478. The sequencing analysis of the conserved DNA regions of LA2T and ABBC478 revealed ca 99% nucleotide sequence identities with that of ABBC45C. CONCLUSIONS: The nucleotide sequences of the ca 8.2 kb DNA regions containing ORF1-7 were virtually identical among the three strains belonging to different species. The internal organizations of the ORFs were found to be remarkably similar. SIGNIFICANCE AND IMPACT OF THE STUDY: The level of nucleotide sequence identities suggests the DNA regions surrounding ORF5 were horizontally acquired by these beer-spoilage strains belonging to the three different species of lactic acid bacteria.  相似文献   

5.
Aims:  To investigate the genetic basis of Cr(VI) resistance and its reduction to Cr(III) in indigenous bacteria isolated from tannery effluent.
Methods and Results:  Four bacteria resistant to high Cr(VI) levels were isolated and identified as Bacillus spp. Their Cr(VI) reduction ability was tested. To assess the genetic basis of Cr(VI) resistance and reduction, plasmid transfer and curing studies were performed. Among all, B. brevis was resistant to 180 μg Cr(VI) ml−1 and showed the greatest degree of Cr(VI) reduction (75·8%) within 28 h and its transformant was resistant to 160 μg Cr(VI) ml−1 and reduced 69·9% chromate. It harboured a stable 18 kb plasmid DNA. Transfer and curing studies revealed that both the chromate resistance and reduction were plasmid mediated. The presence of other metal cations did not have any significant effect on Cr(VI) bioreduction.
Conclusions:  Bacillus brevis was resistant to elevated Cr(VI) levels and may potentially reduce it in short time from an environment where other metal ions are also present in addition to chromium ions. The strain tested shows a positive correlation between genetic basis of Cr(VI) resistance and reduction.
Significance and Impact of the Study:  To our knowledge, this is the first study on the genetic correlation between chromium resistance and reduction in bacteria. Such strains may potentially be useful in biotechnological applications and in situ Cr(VI) bioremediation.  相似文献   

6.
Tyramine, a frequent amine in wines, is produced from tyrosine by the tyrosine decarboxylase (TDC) activity of bacteria. The tyramine-producing strain Lactobacillus brevis IOEB 9809 isolated from wine and the reference strain L. brevis ATCC 367 were studied. At the optimum pH, 5.0, K(m) values of IOEB 9809 and ATCC 367 crude extracts for L-tyrosine were 0.58 mM and 0.67 mM, and V(max) was higher for the wine strain (115 U) than the ATCC 367 (66 U). TDC exhibited a preference for L-tyrosine over L-DOPA as substrate. Enzyme activity was pyridoxal-5'-phosphate (PLP)-dependent and it was stabilized by the substrate and coenzyme. In contrast, glycerol and beta-mercaptoethanol strongly inhibited TDC. Tyramine competitively inhibited TDC for both strains. Citric acid, lactic acid and ethanol had an inhibitory effect on cells and crude extracts, but none could inhibit TDC at the usual concentrations in wines.  相似文献   

7.
Analysis of S-layer proteins of Lactobacillus brevis   总被引:2,自引:0,他引:2  
Abstract The presence of S-layer proteins in Lactobacillus brevis was examined by SDS-PAGE analysis. Thirty six out of a total of 41 L. brevis strains possessed S-layer proteins of molecular masses ranging from 38 to 55 kDa. Western blot analysis using antisera raised against whole cells of S-layer protein-carrying strains demonstrated the heterogeneity of L. brevis S-layer proteins. No clear relationship was observed between the presence of S-layer proteins or their immunological characteristics and the physiological activity of L. brevis as a beer spoilage organism.  相似文献   

8.
一株短乳杆菌所产细菌素的部分特性   总被引:1,自引:0,他引:1  
为了研究分离自内蒙古传统发酵乳制品——"焦克"的短乳杆菌KLDS1.0373所产细菌素的部分生物学特性(抑菌谱,对酶、pH和温度的敏感性,作用方式)。短乳杆菌KLDS1.0373发酵液经硫酸铵沉淀和葡聚糖凝胶纯化后,测定其部分生物学特性,并采用Tricine-SDS-PAGE方法确定细菌素的分子量范围。结果表明:短乳杆菌KLDS1.0373所产细菌素的抑菌活性对热和pH不敏感,在100°C或121°C处理30 min后抑菌活力略有增强,可被多种蛋白酶失活,但对α-淀粉酶不敏感。该细菌素分子量约为3.8 kD,对多种革兰氏阳性和阴性菌有抑制作用,作用方式为杀菌。  相似文献   

9.
以短乳杆菌(Lactobacillus brevis)Lb-2菌株cDNA为模板克隆了谷氨酸脱羧酶(Glutamate decarboxylase,GAD)基因。采用在线分析工具及相应软件分析预测了GAD基因核苷酸和氨基酸序列的组成、理化性质、信号肽以及高级结构等,并构建系统发育树。该基因序列全长1 407 bp,为一个完整的阅读框,编码468个氨基酸。GAD相对分子量理论预测值和等电点分别是53 517.8 u和5.42,没有跨膜区,没有其他亚细胞定位序列,为亲水性蛋白,与植物乳杆菌(Lactobacillus plantarum)和德氏乳酸杆菌(Lactobacillus delbrueckii)的GAD进化关系最近。  相似文献   

10.
亚硝酸盐影响Lactobacillus brevis 4903发酵的研究   总被引:1,自引:0,他引:1  
通过研究可知,亚硝酸盐对Lactobacillusbrevis4903发酵有抑制作用,环境中亚硝酸盐一旦分解掉,这种抑制作用就会被解除。分析其原因:①亚硝酸盐抑制了乳酸菌生长,从而抑制了乳酸发酵;②在发酵初期可能因亚硝酸盐还原酶的作用,使亚硝酸盐酶解生成NH3,NH3中和了乳酸菌生成的酸(H ),从而使环境pH值的下降和酸的积累变得缓慢。  相似文献   

11.
12.
AIMS: Beer-spoilage ability of lactic acid bacteria such as Lactobacillus brevis is a strain-dependent phenomenon in which the mechanism has not yet been completely clarified. In order to systematically identify genes that contribute to beer-spoilage, large-scale random amplified polymorphic DNA (RAPD)-based cloning methods was carried out. METHODS AND RESULTS: A systematic RAPD polymerase chain reaction (PCR) analysis using 600 primers was performed on beer-spoilage and on nonspoilage strains of L. brevis. Among 600 primers, three were found to amplify a single locus highly specific to beer-spoilage strains. DNA sequencing of this locus revealed a three-part operon encoding a putative glycosyl transferase, membrane protein and teichoic acid glycosylation protein. PCR analysis of typical beer-spoilage lactic acid bacteria suggested that this locus is highly specific to beer-spoilage strains. CONCLUSION: The cloned markers are highly specific to identify the beer-spoilage strains not only in L. brevis but also in Pediococcus damnosus, Lactobacillus collinoides and Lactobacillus coryniformis. SIGNIFICANCE AND IMPACT OF THE STUDY: This paper proves that RAPD-PCR is an efficient method for cloning the strain-specific genes from bacteria. The markers described here is one of the most useful tools to identify the beer-spoilage strains of lactic acid bacteria.  相似文献   

13.
Aims: To study glycosidase activities of a Lactobacillus brevis strain and to isolate an intracellular β‐glucosidase from this strain. Methods and Results: Lactic acid bacteria (LAB) isolated from a commercially available starter culture preparation for malolactic fermentation were tested for β‐glycosidase activities. A strain of Lact. brevis showing high intracellular β‐d ‐glucosidase, β‐d ‐xylosidase and α‐l ‐arabinosidase activities was selected for purification and characterization of its β‐glucosidase. The pure glucosidase from Lact. brevis has also side activities of xylosidase, arabinosidase and cellobiosidase. It is a homotetramer of 330 kDa and has an isoelectric point at pH 3·5. The Km for p‐nitrophenyl‐β‐d ‐glucopyranoside and p‐nitrophenyl‐β‐d ‐xylopyranoside is 0·22 and 1·14 mmol l?1, respectively. The β‐glucosidase activity was strongly inhibited by gluconic acid δ‐lactone, partially by glucose and gluconate, but not by fructose. Ethanol and methanol were found to increase the activity up to twofold. The free enzyme was stable at pH 7·0 (t1/2 = 50 day) but not at pH 4·0 (t1/2 = 4 days). Conclusions: The β‐glucosidase from Lact. brevis is widely different to that characterized from Lactobacillus casei ( Coulon et al. 1998 ) and Lactobacillus plantarum ( Sestelo et al. 2004 ). The high tolerance to fructose and ethanol, the low inhibitory effect of glucose on the enzyme activity and the good long‐term stability could be of great interest for the release of aroma compounds during winemaking. Significance and Impact of the study: Although the release of aroma compounds by LAB has been demonstrated by several authors, little information exists on the responsible enzymes. This study contains the first characterization of an intracellular β‐glucosidase isolated from a wine‐related strain of Lact. brevis.  相似文献   

14.
15.
目的 探讨短乳杆菌DM9218在核苷酸代谢过程中的蛋白表达差异。方法 分别提取DM9218菌株与底物(肌苷+鸟苷)反应前后的菌体蛋白,利用蛋白双向凝胶电泳(2-DE)技术,找出该菌株与底物反应前后的差异蛋白质点,选取其中差异变化较大的蛋白点进一步做蛋白质谱分析。结果 2-DE分析显示两样品蛋白点主要分布在等电点4~9和分子量11~90 kD范围内,将所得的蛋白点结合其蛋白得率、浓度、储存蛋白含量进行比较,得到匹配的蛋白点数为732个。从中选取14个差异显著的蛋白点进行质谱分析,质谱结果显示所选取蛋白质点主要与物质代谢、能量转换及基因水平转录和翻译等生物学功能密切相关。结论 本研究为后期分析研究短乳杆菌DM9218在核苷酸代谢过程中蛋白的表达奠定了基础。  相似文献   

16.
The R‐specific alcohol dehydrogenase from Lactobacillus brevis (Lb‐ADH) catalyzes the enantioselective reduction of prochiral ketones to the corresponding secondary alcohols. It is stable and has broad substrate specificity. These features make this enzyme an attractive candidate for biotechnological applications. A drawback is its preference for NADP(H) as a cofactor, which is more expensive and labile than NAD(H). Structure‐based computational protein engineering was used to predict mutations to alter the cofactor specificity of Lb‐ADH. Mutations were introduced into Lb‐ADH and tested against the substrate acetophenone, with either NAD(H) or NADP(H) as cofactor. The mutant Arg38Pro showed fourfold increased activity with acetophenone and NAD(H) relative to the wild type. Both Arg38Pro and wild type exhibit a pH optimum of 5.5 with NAD(H) as cofactor, significantly more acidic than with NADP(H). These and related Lb‐ADH mutants may prove useful for the green synthesis of pharmaceutical precursors.  相似文献   

17.
18.
【背景】从黄酒发酵液中分离的短乳杆菌2-34具有重吸收瓜氨酸的能力,可用于降低黄酒中的瓜氨酸从而减少氨基甲酸乙酯的形成,然而瓜氨酸重吸收机制的不明确阻碍了该菌的合理利用。【目的】通过确定短乳杆菌2-34中的瓜氨酸转运蛋白编码基因,为其在黄酒中的利用提供理论依据。【方法】以pRSFDuet-1和pETDuet-1为表达载体,通过多顺反子串联表达系统及双质粒表达系统,在大肠杆菌C43(DE3)中表达短乳杆菌2-34精氨酸脱亚胺途径中瓜氨酸代谢相关蛋白:精氨酸降解酶ArcD和ADI、瓜氨酸降解酶OTC及膜蛋白DcuC和AO antiporter。【结果】重组表达大肠杆菌发酵过程中可利用精氨酸形成瓜氨酸,但表达了膜蛋白DcuC和AO antiporter的重组菌发酵液中瓜氨酸含量较低。【结论】短乳杆菌2-34中DcuC和AOantiporter均具有吸收瓜氨酸的功能,且DcuC活性更高。  相似文献   

19.
AIMS: To characterize horA and its flanking regions of Pediococcus damnosus ABBC478 and, on the basis of this insight, to develop a more specific and sensitive horA PCR method. METHODS AND RESULTS: A plasmid harbouring the homologue of a hop-resistance gene, horA, was sequenced and designated pRH478. The nucleotide sequence and open reading frame structure of horA and its flanking regions of pRH478 were found to be highly similar to those of pRH45, a horA-harbouring plasmid previously identified in Lactobacillus brevis ABBC45. The nucleotide sequence of the horA homologue of P. damnosus ABBC478 was 99.6% identical with that of horA. Based on this insight, new primers specific to horA were designed and compared with the previously reported specific primer pair. As a consequence, it was demonstrated that the new primer pair is superior in specificity and sensitivity. CONCLUSIONS: The newly developed horA PCR method allows more specific and sensitive determination of the beer-spoilage ability of lactic acid bacteria (LAB). SIGNIFICANCE AND IMPACT OF THE STUDY: The nucleotide sequences of the horA homologues were found to be essentially identical among distinct species of LAB, indicating that horA-specific primers can be designed from almost any region of the horA gene.  相似文献   

20.
目的 探讨短乳杆菌DM9218肌苷水解酶基因A0008的异源表达及其对肌苷的分解活性检测。方法 克隆来源于短乳杆菌DM9218基因组的肌苷水解酶基因A0008,构建原核表达载体,转入大肠埃希菌BL21诱导重组蛋白表达并纯化,进行体外酶活检测。结果 成功构建了肌苷水解酶A0008-pET28a原核表达载体,表达并纯化出重组蛋白,酶活结果显示该重组蛋白具有水解肌苷的能力。结论 短乳杆菌DM9218基因A0008可能编码肌苷水解酶并参与DM9218对肌苷的分解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号