首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human methylmalonyl CoA mutase (MCM) cDNA has been used to localize the MUT locus on the short arm of chromosome 6 proximal to the glyoxalase locus in 6p deletion cell lines. A HindIII polymorphism identified by the MCM cDNA was used to study linkage relationships of MUT to HLA (A-B-DQ-DR) and D6S4 in the reference CEPH families. The maximum lod score for MUT versus HLA was 3.04 at a recombination fraction of 0.28. The maximum lod score for MUT versus D6S4 was 22.93 at a recombination fraction of 0.01. These data suggest that MUT and D6S4 loci are tightly linked and may be used as one locus in a haplotype form for linkage studies on proximal 6p and diagnostic analysis of pedigrees with mut methylmalonic acidemia.  相似文献   

2.
Linkage analysis was performed to evaluate the relationship between the locus for X-linked juvenile retinoschisis (RS) and five X-chromosomal markers-RC8 (DXS9), SE3.2L (DXS16), 99-6 (DXS41), D2 (DXS43), and 782 (DXS85)-all mapped to the interval Xp22.1-p22.3. Seven U.S. families with 56 affected males were studied. No recombinants were found between RS and DXS9 with a maximum lod score (Z) of 4.93 at a recombination fraction of zero. Obligate recombinants were found for RS with DXS16, DXS41, DXS43, and DXS85. Multipoint linkage analysis and consideration of recombination events within pedigrees suggest that DXS41 and DXS43, and also DXS41 and DXS16, flank RS and that DXS85 lies outside the interval DXS41-DXS43. Our pedigrees provide no evidence for genetic heterogeneity of RS, with five of our families individually showing evidence of linkage. (Z greater than 2.0) to the least one of these probes from Xp22.1-p22.3.  相似文献   

3.
OBJECTIVES: The Admixture test is routinely used in linkage analysis to take account of genetic heterogeneity, and yields an estimate of the proportion of families (alpha) segregating the linked disease gene. In complex disorders, the assumptions of the Admixture test are violated. We therefore explore how the estimate of alpha relates to the true proportion of linked families with a complex disorder in a population or dataset. METHODS: We simulated a two-locus heterogeneity model and varied genetic parameters, ascertainment scheme and phenocopy frequency. RESULTS: In this model, alpha is almost always overestimated, by as little as 5% to as much as 60%. The bias is largely attributable to (1). intrafamilial heterogeneity arising from ascertainment of families with many affected members or from analysis of dense pedigrees; (2). low informativeness, which occurs in the presence of reduced penetrance; and (3). differences in the evidence for linkage in linked and unlinked families. This bias is also affected by the analysis phenocopy frequency, but only if the linked locus is dominant and the unlinked locus is recessive. CONCLUSIONS: We conclude that, in complex diseases, the Admixture test has greater value in detecting linkage than in estimating the proportion of linked families in a dataset.  相似文献   

4.
Several recent studies indicate that the von Recklinghausen neurofibromatosis (NF1) gene is located near the centromere of chromosome 17 in some families. However, variable expressivity and a very high mutation rate suggest that defects at several different loci could result in phenotypes categorized as NF1. In order to assess this possibility and to map the NF1 gene more precisely, we have used two polymorphic DNA markers from chromosome 17 to screen several pedigrees for linkage to NF1. We ascertained a large Caucasian pedigree (33 individuals sampled, 17 NF1 affected) as well as eight smaller pedigrees and nuclear families (50 individuals sampled, 30 NF1 affected). Here, we report strong evidence of linkage of NF1 to the centromeric marker D17Z1 (maximum lod = 4.42) and a weaker suggestion of linkage to the ERBA1 oncogene (maximum lod = 0.57), both at a recombination fraction of zero. Since obligate cross-overs with NF1 were not observed for either marker in any of the informative families tested, the possibility of NF1 locus heterogeneity is not supported.  相似文献   

5.
Leber hereditary optic neuroretinopathy (LHON) is a maternally inherited disease, probably transmitted by mutations in mtDNA. The variation in the clinical expression of the disease among family members has remained unexplained, but pedigree data suggest an involvement of an X-chromosomal factor. We have studied genetic linkage of the liability to develop optic atrophy to 15 polymorphic markers on the X chromosome in six pedigrees with LHON. The results show evidence of linkage to the locus DXS7 on the proximal Xp. Tight linkage to the other marker loci was excluded. Multipoint linkage analysis placed the liability locus at DXS7 with a maximum lod score (Zmax) of 2.48 at a recombination fraction (theta) of .0 and with a Zmax - 1 support interval theta = .09 distal to theta = .07 proximal of DXS7. No evidence of heterogeneity was found among different types of families, with or without a known mtDNA mutation associated with LHON.  相似文献   

6.
Interest in searching for genetic linkage between diseases and marker loci has been greatly increased by the recent introduction of DNA polymorphisms. However, even for the most well-behaved Mendelian disorders, those with clear-cut mode of inheritance, complete penetrance, and no phenocopies, genetic heterogeneity may exist; that is, in the population there may be more than one locus that can determine the disease, and these loci may not be linked. In such cases, two questions arise: (1) What sample size is necessary to detect linkage for a genetically heterogeneous disease? (2) What sample size is necessary to detect heterogeneity given linkage between a disease and a marker locus? We have answered these questions for the most important types of matings under specified conditions: linkage phase known or unknown, number of alleles involved in the cross at the marker locus, and different numbers of affected and unaffected children. In general, the presence of heterogeneity increases the recombination value at which lod scores peak, by an amount that increases with the degree of heterogeneity. There is a corresponding increase in the number of families necessary to establish linkage. For the specific case of backcrosses between disease and marker loci with two alleles, linkage can be detected at recombination fractions up to 20% with reasonable numbers of families, even if only half the families carry the disease locus linked to the marker. The task is easier if more than two informative children are available or if phase is known. For recessive diseases, highly polymorphic markers with four different alleles in the parents greatly reduce the number of families required.  相似文献   

7.
Model-free linkage analysis using likelihoods.   总被引:6,自引:2,他引:4       下载免费PDF全文
Misspecification of transmission model parameters can produce artifactually negative lod scores at small recombination fractions and in multipoint analysis. To avoid this problem, we have tried to devise a test that aims to detect a genetic effect at a particular locus, rather than attempting to estimate the map position of a locus with specified effect. Maximizing likelihoods over transmission model parameters, as well as linkage parameters, can produce seriously biased parameter estimates and so yield tests that lack power for the detection of linkage. However, constraining the transmission model parameters to produce the correct population prevalence largely avoids this problem. For computational convenience, we recommend that the likelihoods under linkage and non-linkage are independently maximized over a limited set of transmission models, ranging from Mendelian dominant to null effect and from null effect to Mendelian recessive. In order to test for a genetic effect at a given map position, the likelihood under linkage is maximized over admixture, the proportion of families linked. Application to simulated data for a wide range of transmission models in both affected sib pairs and pedigrees demonstrates that the new method is well behaved under the null hypothesis and provides a powerful test for linkage when it is present. This test requires no specification of transmission model parameters, apart from an approximate estimate of the population prevalence. It can be applied equally to sib pairs and pedigrees, and, since it does not diminish the lod score at test positions very close to a marker, it is suitable for application to multipoint data.  相似文献   

8.
Linkage analysis of 72 pedigrees by the maximum-likelihood method provides evidence of linkage between HLA and the hypothesized multiple sclerosis susceptibility gene (MSSG) for both the dominant and recessive models of inheritance and for penetrance values ranging from 5%--65% (or higher). This MSSG, if it exists, is most likely located at 15%--20% recombination units from the HLA complex, probably on the B-D side. The analysis also shows that there is no heterogeneity in the estimates of linkage, and lod scores are not artifically inflated because of the association of multiple sclerosis (MS) with HLA-B7.  相似文献   

9.
In nine families in which X-linked retinitis pigmentosa (XLRP) is segregating, the lod scores of XLRP in a map of 10 RFLP loci were obtained by multipoint linkage analysis. The XLRP locus was located telomeric to DXS7 in seven of the families and centromeric to DXS7 in two of the families. Under the hypothesis of two XLRP loci, a heterogeneity (admixture) test was performed, providing significant evidence of heterogeneity in XLRP (P less than .01). No correlation was detected between the clinical manifestations of XLRP and the two different disease loci.  相似文献   

10.
Wilson disease (WD) is an autosomal recessive disorder resulting in copper accumulation to toxic levels. Patients may present with neurologic, hepatic, or hematologic disease at any age between the first and fifth decade of life. Because of clinical heterogeneity, genetic heterogeneity in the etiology of the disease has been proposed. Recently, linkage of the WD locus to loci on 13q has been demonstrated in five Middle-Eastern kindreds. We have used esterase D and several polymorphic markers on 13q to investigate linkage in WD pedigrees from the United States and Canada. Ten kindreds, three with hepatic and seven with neurologic presentations, were informative, yielding a lod score of 2.189 at a recombination fraction of .06 with probe 7F12 at D13S1. Patients were generally of mixed European background, but one particularly informative pedigree was Hispanic. Our data confirm the provisional assignment of the gene for WD to 13q. More specifically, our findings indicate that, irrespective of ethnic background or clinical presentation, the linkage to 13q will be present in most pedigrees. The relative lack of linkage heterogeneity indicates that closely linked polymorphic loci on 13q can be useful in prenatal and presymptomatic diagnosis and in heterozygote detection.  相似文献   

11.
12.
Summary Three families with at least three generations of family members affected with spino-cerebellar ataxia transmitted in a dominant fashion were studied. In each family every available member, above the lowest age at onset observed in that family, was subject to a thorough clinical investigation and blood was sampled for HLA,A,B and C-typing. In all three families the affected members had signs which were characteristic for cerebellar ataxia, without spasticity or dementia. In two families the mean age at onset was in accordance with the literature, viz. in the fourth and fifth decade, while in the third family mean age at onset was over 50 years. In the two pedigrees with the usual age at onset there was evidence of linkage between the disease and the HLA-system with a combined lod score of 1.499 at a recombination fraction of 0.05 for males. The third pedigree gave negative lod scores for linkage between HLA and the disease locus for both males and females but in this family also the high age at onset was indicative of genetic heterogeneity.  相似文献   

13.
X-linked Amelogenesis imperfecta (AI) is a genetic disorder affecting the formation of enamel. In the present study two families, one with X-linked dominant and one with X-linked recessive AI, were studied by linkage analysis. Eleven cloned RFLP markers of known regional location were used. Evidence was obtained for linkage between the AI locus and the marker p782, defining the locus DXS85 at Xp22, by using two-point analysis. No recombination was scored between these two loci in 15 informative meioses, and a peak lod score (Zmax) of 4.45 was calculated at zero recombination fraction. Recombination was observed between the more distal locus DXS89 and AI, giving a peak lod score of 3.41 at a recombination fraction of .09. Recombination was also observed between the AI locus and the more proximal loci DXS43 and DXS41 (Zmax = 0.09 at theta max = 0.31 and Zmax = 0.61 at theta max = 0.28, respectively). Absence of linkage was observed between the AI locus and seven other loci, located proximal to DXS41 or on the long arm of the X chromosome. On the basis of two-point linkage analysis and analysis of crossover events, we propose the following order of loci at Xp22: DXS89-(AI, DXS85)-DXS43-DXS41-Xcen.  相似文献   

14.
We have recently assigned the facioscapulohumeral muscular dystrophy (FSHD) gene to chromome 4 by linkage to the microsatellite marker Mfd 22 (locus D4S171). We now report that D4S139, a VNTR locus, is much more closely linked to FSHD. Two-point linkage analysis between FSHD and D4S139 in nine informative families showed a maximum combined lod score (Zmax) of 17.28 at a recombination fraction theta of 0.027. Multipoint linkage analysis between FSHD and the loci D4S139 and D4S171 resulted in a peak lod score of 20.21 at 2.7 cM from D4S139. Due to the small number of recombinants found with D4S139, the position of the FSHD gene relative to that of D4S139 could not be established with certainty. D4S139 was mapped to chromosome 4q35-qter by in situ hybridization, thus firmly establishing the location of the FSHD gene in the subtelomeric region of chromosome 4q. One small family yielded a negative lod score for D4S139. In the other families no significant evidence for genetic heterogeneity was obtained. Studies of additional markers and new families will improve the map of the FSHD region, reveal possible genetic heterogeneity, and allow better diagnostic reliability.  相似文献   

15.
The AMELX gene located at Xp22.1-p22.3 encodes for the enamel protein amelogenin and has been implicated as the gene responsible for the inherited dental abnormality X-linked amelogenesis imperfecta (XAI). Three families with XAI have been investigated using polymorphic DNA markers flanking the position of AMELX. Using two-point linkage analysis, linkage was established between XAI and several of these markers in two families, with a combined lod score of 6.05 for DXS16 at theta = 0.04. This supports the involvement of AMELX, located close to DXS16, in the XAI disease process (AIH1) in those families. Using multipoint linkage analysis, the combined maximum lod score for these two families was 7.30 for a location of AIH1 at 2 cM distal to DXS16. The support interval around this location extended about 8 cM proximal to DXS92, and the AIH1 location could not be precisely defined by multipoint mapping. Study of recombination events indicated that AIH1 lies in the interval between DXS143 and DXS85. There was significant evidence against linkage to this region in the third family, indicating locus heterogeneity in XAI. Further analysis with markers on the long arm of the X chromosome showed evidence of linkage to DXS144E and F9 with no recombination with either of these markers. Two-point analysis gave a peak lod score at DXS144E with a maximum lod score of 2.83 at theta = 0, with a peak lod score in multipoint linkage analysis of 2.84 at theta = 0. The support interval extended 9 cM proximal to DXS144E and 14 cM distal to F9.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Autosomal dominant familial exudative vitreoretinopathy (adFEVR) is a hereditary disorder characterized by the incomplete vascularization of the peripheral retina. The primary biochemical defect in adFEVR is unknown. The adFEVR locus has tentatively been assigned to 11q by linkage studies. We report the results of an extended multipoint linkage analysis of two families with adFEVR by using five markers (INT2, D11S533, D11S527, D11S35, and CD3D) from 11q13-q23. Pairwise linkage data obtained in the two families were rather similar and hence have not provided evidence for genetic heterogeneity. The highest complied two-point lod score (3.67, at a recombination fraction of .07) was obtained for the disease locus versus D11S533. Multipoint analyses showed that the adFEVR locus maps most likely, with a maximum location score of over 20, between D11S533/D11S527 and D11S35, at recombination rates of .147 and .104, respectively. Close linkage without recombination (maximum lod score 11.26) has been found between D11S533 and D11S527.  相似文献   

17.
The chromosomal localization of the gene for Thomsen disease, an autosomal dominant form of myotonia congenita, is unknown. Electrophysiologic data in Thomsen disease point to defects in muscle-membrane ion-channel function. A mouse model of myotonia congenita appears to result from transposon inactivation of a muscle chloride-channel gene which maps to a region of mouse chromosome 6. The linkage group containing this gene includes several loci which have human homologues on human chromosome 7q31-35 (synteny), and this is a candidate region for the Thomsen disease locus. Linkage analysis of Thomsen disease to the T-cell-receptor beta (TCRB) locus at 7q35 was carried out in four pedigrees (25 affected and 23 unaffected individuals) by using a PCR-based dinucleotide repeat polymorphism in the TCRB gene. Two-point linkage analysis between Thomsen disease and TCRB showed a maximum cumulative lod score of 3.963 at a recombination fraction of .10 (1-lod support interval .048-.275). We conclude that the Thomsen disease locus is linked to the TCRB locus in these families.  相似文献   

18.
One hundred families with insulin-dependent diabetes mellitus (IDDM) were analyzed for linkage with 27 genetic markers, including HLA, properdin factor B (BF), and glyoxalase 1(GLO) on chromosome 6, and Kidd blood group (Jk) on chromosome 2. The linkage analyses were performed under several different genetic models. An approximate correction for two-locus linkage analysis was developed and applied to four markers. Two different heterogeneity tests were implemented and applied to all the markers. One, the Predivided-Sample Test, utilizes various criteria thought to be relevant to genetic heterogeneity in IDDM. The other, the Admixture Test, looks for heterogeneity without specifying a prior how the sample should be divided. Results continued to support linkage of IDDM with three chromosome 6 markers: HLA, BF, and GLO. The total lod score for Kidd blood group, under the recessive model with 20% penetrance, is 1.63--down 1.2 from the 2.83 reported by us earlier. The only other marker whose lod score exceeded 1.0 under any model was pancreatic amylase (AMY2). The two-locus correction, which involved lowering the penetrance values used in the analysis, affected estimates of theta (recombination fraction) but did not markedly change the lod scores themselves. There was little evidence for heterogeneity within any of the lod scores, under either the Predivided-Sample Test or the Admixture Test.  相似文献   

19.
Facioscapulohumeral muscular dystrophy (FSHD) is a slowly progressive primary disease of muscle which is usually inherited as an autosomal dominant disorder. FSHD has been localized to the long arm of chromosome 4, specifically to the 4q3.5-qter region. Initially published linkage studies showed no evidence for heterogeneity in FSHD. In the present study we have examined individuals in seven FSHD families. Two-point lod scores show significant evidence for linkage for D4S163 (lod score 3.04 at recombination fraction .21) and D4S139 (lod score 3.84 at recombination fraction .20). D4S171 also gave a positive score (lod score 2.56 at recombination fraction .24). Significant evidence for heterogeneity was found for each of the three markers. Multipoint linkage analysis in this region resulted in a peak multipoint lod score of 6.47. The multipoint analysis supported the two-point studies with odds of 20:1 showing linkage and heterogeneity over linkage and homogeneity. Five of the seven families gave a posterior probability of >95% of being of the linked type, while two families appeared unlinked to this region of 4q (P < .01%). Individuals in the two unlinked families met the clinical criteria for the diagnosis of FSHD, including facial weakness, clavicular flattening, scapula winging, proximal muscle weakness, and myopathic changes on muscle biopsies without inflammatory or mitochondrial pathology. This study demonstrates genetic heterogeneity in FSHD and has important implications for both genetic counseling and the elucidation of the etiology of FSHD.  相似文献   

20.
OBJECTIVES: A recent linkage analysis of 360 families at high risk for prostate cancer identified the q27-28 region on chromosome X as the potential location of a gene involved in prostate cancer susceptibility. Here we report on linkage analysis at this putative HPCX locus in an independent set of 186 prostate cancer families participating in the Prostate Cancer Genetic Research Study (PROGRESS). METHODS: DNA samples from these families were genotyped at 8 polymorphic markers spanning 14.3 cM of the HPCX region. RESULTS: Two-point parametric analysis of the total data set resulted in positive lod scores at only two markers, DXS984 and DXS1193, with scores of 0.628 at a recombination fraction (theta) of 0.36 and 0.012 at theta = 0.48, respectively. The stratification of pedigrees according to the assumed mode of transmission increased the evidence of linkage at DXS984 in 81 families with no evidence of male-to-male transmission (lod = 1.062 at theta = 0.28). CONCLUSIONS: Although this analysis did not show statistically significant evidence for the linkage of prostate cancer susceptibility to Xq27-28, the results are consistent with a small percentage of families being linked to this region. The analysis further highlights difficulties in replicating linkage results in an etiologically heterogeneous, complexly inherited disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号