首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J L Vanneste  J Yu    S V Beer 《Journal of bacteriology》1992,174(9):2785-2796
Erwinia herbicola Eh252 is a nonpathogenic epiphytic bacterium that reduces fire blight incidence when sprayed onto apple blossoms before inoculation with Erwinia amylovora, the causal agent of fire blight. Eh252 was found to produce on minimal medium an antibiotic that inhibited the growth of E. amylovora. This antibiotic was inactivated by histidine but not by Fe(II), was sensitive to proteolytic enzymes, and showed a narrow host range of activity. To determine the role of this antibiotic in the control of fire blight, two prototrophic Tn5-induced mutants, 10:12 and 17:12, that had lost their ability to inhibit E. amylovora on plates (Ant- mutants) were compared with the wild-type strain for their ability to suppress fire blight in immature pear fruits. The two mutants had single Tn5 insertions in the chromosome; although they grew in immature pear fruits at a rate similar to that of the wild-type strain, neither of these mutants suppressed fire blight as well as Eh252 did. The Tn5-containing fragment isolated from 10:12 was used to mutagenize Eh252 by marker exchange. Derivatives that acquired the Tn5-containing fragment by homologous recombination lost the ability to inhibit E. amylovora on minimal medium. Furthermore, the three Ant- derivatives tested were also affected in their ability to inhibit E. amylovora in immature pear fruits. The results obtained suggest that antibiotic production is a determinant of the biological control of E. amylovora by Eh252, but that another mechanism(s) is involved.  相似文献   

2.
Stigma colonization by Erwinia amylovora is the crucial first step in the development of most fire blight infections in apple and pear trees. Suppression at this point of the disease process by antagonists of E. amylovora, such as Pantoea agglomerans (Erwinia herbicola) strain Eh1087, is a rational approach to control fire blight. We tested the hypothesis that the ability of E. amylovora to compete with Eh1087 for colonization of a stigma is reduced by the potential for Eh1087 to produce the phenazine antibiotic, d-alanylgriseoluteic acid (AGA). In competition experiments on the stigmas of apple flowers, E. amylovora was significantly less successful against Eh1087 (AGA+) than against EhDeltaAGA (AGA-). Further experiments to test the importance of pre-emptive colonization of the stigma by either the pathogen or the antagonist suggested that AGA production significantly enhanced the competitiveness of Eh1087 when it was applied at the same time or 24 h before the pathogen. We also found that pre-emptive stigma colonization by either the pathogen or the antagonist resulted in a population that was resilient to subsequent invasion by a second species suggesting that niche exclusion has a dominant influence on the dynamics of bacterial populations on stigmas.  相似文献   

3.
Mutants of Erwinia herbicola Eh1087 (Ant), which did not produce antibiotic activity against Erwinia amylovora, the fire blight pathogen, were selected after TnphoA mutagenesis. In immature pear fruit Ant mutants grew at the same rate as wild-type strain Eh1087 but did not suppress development of the disease caused by E. amylovora. These results indicated that antibiosis plays an important role in the suppression of disease by strain Eh1087. All of the Ant mutations obtained were located in a 2.2-kb region on a 200-kb indigenous plasmid. Sequence analysis of the mutated DNA region resulted in identification of six open reading frames, designated ORF1 through ORF6, four of which were essential to antibiotic expression. One gene was identified as a gene which encodes a translocase protein which is probably involved in antibiotic secretion. A sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of plasmid proteins produced in Escherichia coli minicells confirmed the presence of proteins whose sizes corresponded to the sizes of the predicted open reading frame products.  相似文献   

4.
Erwinia herbicola strain Eh1087 produces the broad-spectrum phenazine antibiotic D-alanylgriseoluteic acid (AGA). In this report, a cluster of 16 ehp (Erwinia herbicola phenazine) plasmid genes required for the production of AGA by Eh1087 is described. The extent of the gene cluster was revealed by the isolation of 82 different Eh1087 AGA- mutants, all found to possess single mini-Tn5lacZ2 insertions within a 14 kbp DNA region. Additional transposon insertions that did not affect antibiotic production by Eh1087 were created to define the boundaries of the gene cluster. The size and location of genes between these boundaries were derived from a combination of DNA sequence analyses, minicell protein analyses and the correlation between mutation position and the production of coloured AGA intermediates by many ehp mutants. Precursor-feeding and complementation experiments resulted in 15 ehp genes being assigned to one of four functional groups according to their role in the synthesis of AGA. Group 1 is required for the synthesis of the phenazine nucleus in the form of antibiotic precursor one (AP1, phenazine-1,6-dicarboxylic acid). Group 2 is responsible for conversion of AP1 to AP2, which is subsequently modified to AP3 (griseoluteic acid) and exported by the group 3 gene products. Group 4 catalyses the addition of D-alanine to AP3 to create AGA, independently of groups 1, 2 and 3. A gene that is divergently transcribed from the 15 AGA synthesis ehp genes confers resistance to AGA.  相似文献   

5.
The mechanisms by which Erwinia herbicola inhibits Erwinia amylovora , the fire blight pathogen, were investigated. The optimum pH for growth of Erw. amylovora strain Ea273 in nutrient-yeast extract-glucose broth (NYGB) was 7.0 and growth was markedly reduced at pH values below 6.0. In contrast, the growth rates of Erw. herbicola strains Eh141 and Eh112Y were only slightly reduced at pH levels as low as 4.5, relative to pH 6-8. When Ea273 was grown in NYGB in the presence of Eh141 or Eh112Y, the media became acidic and lower populations of Ea273 were recovered, compared with populations from buffered NYGB. Acidification of plant tissue as a consequence of growth of Erw. herbicola did not occur, however, and thus acid-based inhibition of growth in planta is unlikely. The growth rates of nine strains of Erw. herbicola and their abilities to reduce the pH of NYGB did not correlate with their different abilities to prevent development of fire blight incited by Ea273 in a research apple orchard. When grown in mixed culture, Eh114 and Eh112Y grew to higher populations than Ea273 due to depletion of a nitrogen source needed by Ea273. The ability of 12 strains of Erw. herbicola to produce antibiotics inhibitory to Ea273 on a glucose-asparagine medium correlated with the effectiveness of the strains in suppressing fire blight. A crude preparation of the Eh318 antibiotic delayed development of disease in immature pear fruits incited by Ea273 but not by strain Ea273R318, which is resistant in vitro to the Eh318 antibiotic. Cells of Eh318 protected immature pear fruits more effectively from infection by Ea273 than from the resistant strain Ea273R318.  相似文献   

6.
Pantoea agglomerans (synonym: Erwinia herbicola) strain Eh318 produces through antibiosis a complex zone of inhibited growth in an overlay seeded with Erwinia amylovora, the causal agent of fire blight. This zone is caused by two antibiotics, named pantocin A and B. Using a genomic library of Eh318, two cosmids, pCPP702 and pCPP704, were identified that conferred on Escherichia coli the ability to inhibit growth of E. amylovora. The two cosmids conferred different antibiotic activities on E. coli DH5alpha and had distinct restriction enzyme profiles. A smaller, antibiotic-conferring DNA segment from each cosmid was cloned. Each subclone was characterized and mutagenized with transposons to generate clones that were deficient in conferring pantocin A and B production, respectively. Mutated subclones were introduced into Eh318 to create three antibiotic-defective marker exchange mutants: strain Eh421 (pantocin A deficient); strain Eh439 (pantocin B deficient), and Eh440 (deficient in both pantocins). Cross-hybridization results, restriction maps, and spectrum-of-activity data using the subclones and marker exchange mutants, supported the presence of two distinct antibiotics, pantocin A and pantocin B, whose biosynthetic genes were present in pCPP702 and pCPP704, respectively. The structure of pantocin A is unknown, whereas that of pantocin B has been determined as (R)-N-[((S)-2-amino-propanoylamino)-methyl]-2-methanesulfonyl-s uccina mic acid. The two pantocins mainly affect other enteric bacteria, based on limited testing.  相似文献   

7.
Genes coding for lysozyme-inhibiting proteins (Ivy) were cloned from the chromosomes of the plant pathogens Erwinia amylovora and Erwinia pyrifoliae. The product interfered not only with activity of hen egg white lysozyme, but also with an enzyme from E. amylovora phage ΦEa1h. We have expressed lysozyme genes from the genomes of three Erwinia species in Escherichia coli. The lysozymes expressed from genes of the E. amylovora phages ΦEa104 and ΦEa116, Erwinia chromosomes and Arabidopsis thaliana were not affected by Ivy. The enzyme from bacteriophage ΦEa1h was fused at the N- or C-terminus to other peptides. Compared to the intact lysozyme, a His-tag reduced its lytic activity about 10-fold and larger fusion proteins abolished activity completely. Specific protease cleavage restored lysozyme activity of a GST-fusion. The bacteriophage-encoded lysozymes were more active than the enzymes from bacterial chromosomes. Viral lyz genes were inserted into a broad-host range vector, and transfer to E. amylovora inhibited cell growth. Inserted in the yeast Pichia pastoris, the ΦEa1h-lysozyme was secreted and also inhibited by Ivy. Here we describe expression of unrelated cloned 'silent' lyz genes from Erwinia chromosomes and a novel interference of bacterial Ivy proteins with a viral lysozyme.  相似文献   

8.
Autoinducers are important for cellular communication of bacteria. The luxS gene has a central role in the synthesis of autoinducer-2 (AI-2). The gene was identified in a shotgun library of Erwinia amylovora and primers designed for PCR amplification from bacterial DNA. Supernatants of several Erwinia amylovora strains were assayed for AI-2 activity with a Vibrio harveyi mutant and were positive. Many other plant-associated bacteria also showed AI-2 activity such as Erwinia pyrifoliae and Erwinia tasmaniensis. The luxS genes of several bacteria were cloned, sequenced, and complemented Escherichia coli strain DH5alpha and a Salmonella typhimurium mutant, both defective in luxS, for synthesis of AI-2. Assays to detect AI-2 activity in culture supernatants of several Pseudomonas syringae pathovars failed, which may indicate the absence of AI-2 or synthesis of another type. Several reporter strains did not detect synthesis of an acyl homoserine lactone (AHL, AI-1) by Erwinia amylovora, but confirmed AHL-synthesis for Erwinia carotovora ssp. atroseptica and Pantoea stewartii.  相似文献   

9.
The frequency and diversity of antibiotic production by putative Erwinia herbicola strains were investigated. Of 346 putative Erw. herbicola strains isolated from plants in various regions of France, 42% produced antibiotics on a glycerol-ammonium medium that were inhibitory to Erw. amylovora , the fire-blight pathogen. Of the 90 strains studied in detail that produced antibiotics, 84 produced types of antibiotics that were not toxic to Erw. amylovora (strain CFBP3051) in the presence of different amino acids. On the basis of the amino acids that inhibited the toxicity of the antibiotics to CFBP3051, the 90 strains could be divided into 13 different groups. It is suggested that the effectiveness of an antibiotic in inhibiting Erw. amylovora in vivo may depend on the free amino acid composition of the plant.  相似文献   

10.
Fire blight, a plant disease of economic importance caused by Erwinia amylovora, may be controlled by the application of bacteriophages. Here, we provide the complete genome sequences and the annotation of three E. amylovora-specific phages isolated in North America and genomic information about a bacteriophage induced by mitomycin C treatment of an Erwinia tasmaniensis strain that is antagonistic for E. amylovora. The American phages resemble two already-described viral genomes, whereas the E. tasmaniensis phage displays a singular genomic sequence in BLAST searches.  相似文献   

11.
The episomic element F'lac(+) was transferred, probably by conjugation, from Escherichia coli to Lac(-) strains of Erwinia herbicola, Erwinia amylovora, and Erwinia chrysanthemi (but not to several other Erwinia spp. In preliminary trials). The lac genes in the exconjugants of the Erwinia spp. showed varying degrees of stability depending on the strain (stable in E. herbicola strains Y46 and Y74 and E. amylovora strain EA178, but markedly unstable in E. chrysanthemi strain EC16). The lac genes and the sex factor (F) were eliminated from the exconjugants by treatment with acridine orange, thus suggesting that both lac and F are not integrated in the Erwinia exconjugants. All of the tested Lac(+) exconjugants of E. herbicola strains Y46 and Y74 and E. amylovora strain EA178, but not of E. chrysanthemi strain EC 16, were sensitive to the F-specific phage M13. The heterogenotes (which harbored F'lac(+)) of E. herbicola strains Y46 and Y74, E. amylovora strain EA178, and E. chrysanthemi strain EC16 were able to transfer lac genes by conjugation to strains of E. herbicola, E. amylovora, E. chrysanthemi, Escherichia coli, and Shigella dysenteriae. The frequency of such transfer from Lac(+) exconjugants of Erwinia spp. was comparable to that achieved by using E. coli F'lac(+) as donors, thus indicating the stability, expression, and restriction-and-modification properties of the sex factor (F) in Erwinia spp.  相似文献   

12.
Plant tissues often contain beta-glucosides that can be enzymatically hydrolyzed to produce toxic aglycones. It has been suggested that the low beta-glucosidase activity found in Erwinia amylovora contributes to bacterial virulence by allowing the bacteria to infect plants that contain beta-glucosides without inducing the formation of toxic aglycones. To test this suggestion, we created strains of E. amylovora which had high beta-glucosidase activities and studied the ability of these strains to cause fire blight disease in pears (Pyrus communis). We isolated spontaneous mutants that were able to utilize beta-glucosides as the sole carbon source and showed that one class had about 10 times as much beta-glucosidase activity as the wild-type strain. In addition, we constructed several plasmids that carry the Escherichia coli bgl operon under the control of a transposon Tn5 promoter that is expressed in E. amylovora. These plasmids were introduced in E. amylovora by transformation. Pathogenesis studies in immature Bartlett pear fruits, etiolated sprouts, and young shoots showed that a 100-fold increase in beta-glucosidase activity does not interfere with normal development of fire blight disease in these model systems.  相似文献   

13.
Nine strains of Erwinia amylovora were isolated from new host plants in Bulgaria--chokeberry and strawberry. The strains were characterized morphologically and biochemically using the API 20E and BIOLOG system. It was established that they showed three different API 20E metabolic profiles, not found by previous studies of E. amylovora. All strains were identified as E. amylovora due to their metabolic fingerprint patterns obtained by the BIOLOG system. The identification was confirmed by PCR amplification of a specific region of plasmid pEA29 and genome ams-region. This study is the first characterization and identification of E. amylovora strains isolated from chokeberry and strawberry by the API 20E and BIOLOG system and by polymerase chain reaction.  相似文献   

14.
The plant pathogen Erwinia pyrifoliae has been classified as a separate species from Erwinia amylovora based in part on differences in molecular properties. In this study, these and other molecular properties were examined for E. pyrifoliae and for additional strains of E. amylovora, including strains from brambles (Rubus spp.). The nucleotide composition of the internal transcribed spacer (ITS) region was determined for six of the seven 16S-23S rRNA operons detected in these species with a 16S rRNA gene probe. Each species contained four operons with a tRNA(Glu) gene and two with tRNA(Ile) and tRNA(Ala) genes, and analysis of the operons from five strains of E. amylovora indicated a high degree of ITS variability among them. One tRNA(Glu)-containing operon from E. pyrifoliae Ep1/96 was identical to one in E. amylovora Ea110, but three tRNA(Glu) operons and two tRNA(Ile) and tRNA(Ala) operons from E. pyrifoliae contained unique nucleotide changes. When groEL sequences were used for species-specific identification, E. pyrifoliae and E. amylovora were the closest phylogenetic relatives among a set of 12 bacterial species. The placement of E. pyrifoliae distinct from E. amylovora corroborated molecular hybridization data indicating low DNA-DNA similarity between them. Determination of the nucleotide sequence of plasmid pEP36 from E. pyrifoliae Ep1/96 revealed a number of presumptive genes that matched genes previously found in pEA29 from E. amylovora and similar organization for the genes and origins of replication. Also, pEP36 and pEA29 were incompatible with clones containing the reciprocal origin regions. Finally, the ColE1-like plasmid pEP2.6 from strain Ep1/96 contained sequences found in small plasmids in E. amylovora strains IL-5 and IH3-1.  相似文献   

15.
Erwinia amylovora is the causative agent of fire blight, a serious disease of some Rosaceae plants. The newly isolated bacteriophage PhiEaH2 is able to lyse E. amylovora in the laboratory and has reduced the occurrence of fire blight cases in field experiments. This study presents the sequenced complete genome and analysis of phage PhiEaH2.  相似文献   

16.
Erwinia amylovora is a phytopathogenic bacterium that causes fire blight, an economically important disease of Rosaceae . Several isolates from pears and apples with fire blight symptoms from Belarus were identified as E. amylovora . All tested isolates were yellow and mucoid on MM2Cu medium, positive in levan production and showed pathogenicity in immature pear fruits. These isolates have identical total protein patterns with E. amylovora 1/79. The PCR with specific primers for E. amylovora harpin gene also gave positive results.  相似文献   

17.
Fire blight has spread from North America to New Zealand, Europe, and the Mediterranean region. We were able to differentiate strains from various origins with a novel PCR method. Three Single Nucleotide Polymorphisms (SNPs) in the Erwinia amylovora genome were characteristic of isolates from North America and could distinguish them from isolates from other parts of the world. They were derived from the galE, acrB, and hrpA genes of strains Ea273 and Ea1/79. These genes were analyzed by conventional PCR (cPCR) and quantitative PCR (qPCR) with differential primer annealing temperatures. North-American E. amylovora strains were further differentiated according to their production of L: -2,5-dihydrophenylalanine (DHP) as tested by growth inhibition of the yeast Rhodotorula glutinis. E. amylovora fruit tree (Maloideae) and raspberry (rubus) strains were also differentiated by Single Strand Conformational Polymorphism analysis. Strains from the related species Erwinia pyrifoliae isolated in Korea and Japan were all DHP positive, but were differentiated from each other by SNPs in the galE gene. Differential PCR is a rapid and simple method to distinguish E. amylovora as well as E. pyrifoliae strains according to their geographical origin.  相似文献   

18.
A protease with a molecular mass of 48 kDa is secreted by the fire blight pathogen Erwinia amylovora in minimal medium. We characterized this activity as a metalloprotease, since the enzyme was inhibited by EDTA and o -phenanthroline. A gene cluster was determined to encode four genes connected to protease expression, including a structural gene (prtA) and three genes (prtD, prtE, prtF) for secretion of the protease, which are transcribed in the same direction. The organization of the protease gene cluster in E. amylovora is different from that in other Gram-negative bacteria, such as Erwinia chrysanthemi, Pseudomonas aeruginosa and Serratia marcescens. On the basis of the conservative motif of metalloproteases, PrtA was identified to be a member of the metzincin subfamily of zinc-binding metalloproteases, and was confirmed to be the 48 kDa protease on gels by sequencing of tryptic peptide fragments derived from the protein. The protease is apparently secreted into the external medium through the type I secretion pathway via PrtD, PrtE and PrtF which share more than 90% identity with the secretion apparatus for lipase of S. marcescens. A protease mutant was created by Tn 5 -insertions, and the mutation localized in the prtD gene. The lack of protease reduced colonization of an E. amylovora secretion mutant labelled with the gene for the green fluorescent protein (gfp) in the parenchyma of apple leaves.  相似文献   

19.
An array of short-sequence DNA repeats (SSRs) occurs in the plasmid pEA29 of the fire blight pathogen Erwinia amylovora. A large number of "fruit tree" strains, mainly from Central and Western Europe, were screened for their SSR numbers, and the analyses were extended to five raspberry strains from North America and six pear pathogenic Erwinia strains from Japan. The repeat ATTACAGA present in all E. amylovorastrains was found to be reiterated 3 to 15 times. The Japanese strains contained the major repeat sequence GGATTCTG, which was reiterated 16 to 24 times. ATTACAGG, which resembles the SSR of E. amylovora, was reiterated two or three times. In a novel approach, sequencing gels were used to visualize the rare occurrence of shorter arrays (down to three repeats) in E. amylovoraand the Japanese Erwinia strains. Changes in the repeat numbers in E. amylovora were observed repeatedly when the bacteria had been exposed to stress conditions. The repeat structures of homo- and heteroduplices of PCR-amplified repeats were also analyzed by cleavage of annealed molecules with the single-strand-specific endonuclease from bacteriophage T4. Not only heteroduplexes, but also homoduplexes showed non-matching regions in the SSRs, which could arise from transient formation of loops due to strand slippage during the assays.  相似文献   

20.
Antibiotic resistance carried on R factors was transferred by conjugation from Escherichia coli B/r and Shigella flexneri 1a to Erwinia spp. Tetracycline resistance (TetR) carried on R factor R100 drd-56 was transferred from E. coli B/r to strains of Erwinia amylovora, E. aroideae, E. atroseptica, E. chrysanthemi, E. cytolytica, E. dissolvens, E. herbicola, E. nigrifluens, and E. nimipressuralis, but not to strains of Erwinia carotovora, E. carnegieana, E. dieffenbachiae, E. oleraceae, and E. quercina. Multiple antibiotic resistance (chloramphenicol, streptomycin, tetracycline; ChlR-StrR-TetR) carried on R factor SR1 was transferred from a clinical isolate of S. flexneri 1a to strains of E. aroideae, E. chrysanthemi, E. herbicola, and E. nigrifluens, but not to strains of other Erwinia spp. The frequency of this transfer was low with receptive cultures of Erwinia spp. and E. coli (F(-) strain). Antibiotic resistance in the exconjugants showed varying degrees of stability in the presence or absence of acridine orange, depending on the strain tested. The frequencies of segregation to drug susceptibility in the presence of acridine orange, though low, suggest that the elements exist as plasmids in the majority of the Erwinia exconjugants. Multiple antibiotic resistance (ChlR-StrR-TetR) was found to segregate into various resistance classes (ChlR-StrR, StrR-TetR, TetR, StrR, and none) in these exconjugants. The exconjugants of E. amylovora, E. herbicola, and E. nigrifluens, to which R100 drd-56 was transferred from E. coli B/r, were sensitive to the male (F)-specific phage M13. There was a positive correlation between the susceptibility of exconjugants to the F-specific phage M13 and their ability to transfer R100 drd-56 to the recipient cultures of Escherichia coli, Erwinia herbicola, Salmonella typhimurium, and Shigella dysenteriae. Exceptions were, however, noted with Erwinia dissolvens and E. nimipressuralis exconjugants harboring R100 drd-56; these exconjugants, although not susceptible to M13, transferred R100 drd-56 to the recipient cultures. The frequency of transfer of R100 drd-56 and the levels of resistance to tetracycline in Erwinia exconjugants were found to differ markedly depending upon the strain employed. Transfer of multiple antibiotic resistance (ChlR-StrR-TetR) from Erwinia exconjugants was not obtained in preliminary trials with an E. coli F(-) strain as the recipient culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号